Araştırma Makalesi
BibTex RIS Kaynak Göster

Iğdır Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi

Yıl 2019, Cilt: 9 Sayı: 4, 2346 - 2363, 01.12.2019
https://doi.org/10.21597/jist.598068

Öz

Toprak özelliklerinin mekânsal değişim desenlerinin belirlenmesi sürdürülebilir toprak yönetim stratejilerinin geliştirilebilmesi için önemlidir. Bu çalışma, Iğdır Üniversitesi Uygulama ve Araştırma Merkezi Deneme Alanı topraklarının fiziksel ve kimyasal toprak özelliklerinin yersel değişimlerinin jeoistatistiksel yöntemlerle belirlenmesi ve dağılım paternlerinin haritalanarak değerlendirilmesi amacıyla yürütülmüştür. Çalışma alanı yaklaşık 10 ha olup 50x60 m’de K-G ve D-B yönlerinde oluşturulan gridlerin kesişim noktalarından 0-20 cm derinlikten 35 noktadan bozulmamış ve bozulmuş toprak örneği alınmıştır. Bozulmamış örneklerde hacim ağırlığı ve hidrolik iletkenlik belirlenirken, bozulmuş toprak örneklerinden tekstür, CaCO3, organik madde, katyon değişim kapasitesi (KDK), değişebilir katyonlar, elektriksel iletkenlik (EC), toprak reaksiyonu (pH) ve değişebilir sodyum yüzdesi (ESP) değerleri belirlenmiştir. Toprak özelliklerinin yersel değişkenliklerini için semivariogram analizi uygulanmış ve Kriging analizi yapılarak haritalar oluşturulmuştur. Toprak özellikleri çok yönlü (isotropic) dağılım göstermiştir. Dağılım haritaları oluşturulmuş, karşılaştırılmış ve değerlendirilmiştir. Toprak örneklerinin kil içeriğinin %18 ile %39 arasında, kum içeriğinin %20 ile %45 arasında değiştiği, tekstürün killi tın, siltli killi tın ve tın sınıflarında yer aldığı belirlenmiştir. Araştırma alanı topraklarının ortalama olarak CaCO3 içeriğinin %11.4, organik madde içeriğinin %1.0, P2O5 içeriğinin 2.4 kg da-1 ve KDK’sının 25.1 me 100gr-1 olduğu belirlenmiştir. Alanda tuzluluk ve alkalilik problemi yersel olarak değişmekte olup ortalama pH, EC ve ESP değerleri sırasıyla 8.5, 6.5 mS cm-1 ve %18.8 olarak belirlenmiştir.

Kaynakça

  • Aiken RM, Jawson MD, Grahammer K, Polymenopoulos AD, 1991. Positional, spatially correlated and random components of carbon dioxide flux. Journal of Environmental Quality, 20(1): 301-308.
  • Anonim, 2017. Devlet Meteoroloji İşleri Genel Müdürlüğü, Ankara.
  • Baldovinos F, Thomas GW, 1967. The effect of soil clay content on phosphorus uptake. Soil Science Society of America Journal, 31(5): 680-682.
  • Barik K, Aksakal EL, Islam KR, Sari S, Angin I, 2014. Spatial variability in soil compaction properties associated with field traffic operations. Catena, 120: 122-133.
  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE, 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5): 1501-1511.
  • Cerozi BS, Fitzsimmons K, 2016. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresource Technology, 219: 778-781.
  • Dahiya SS, Singh M, 1976. Effect of salinity, alkalinity and iron application on the availability of iron, manganese, phosphorus and sodium in pea (Pisum sativum L.) crop. Plant and Soil, 44(3): 697-702.
  • Debicki R, Glinski J, Lipiec J, Pukos A, Turski R, 1993. Soil strength, stability and structural state of orthic luvisols under different land use. International Agrophysics, 7(2-3): 155-161.
  • Ersahin S, 2003. Comparing ordinary kriging and cokriging to estimate infiltration rate. Soil Science Society of America Journal, 67: 1848-1855.
  • Gee GW, Bauder JW, 1986. Particle-size analysis. Methods of Soil Analysis. Part 1. Physical and Minerological Methods. Second Edition. Agronomy No: 9, p: 383-441.
  • Gotway CA, Bullock DG, Pierce FJ, Stroup WW, Hergert GW, Eskridge KM, 1997. Experimental Design Issues and Statistical Evaluation Techniques for Site pecific Management. p 301-337. InF.J. Pierce and E.J. Sadler (eds) The State of Site-Specific Management for Agriculture. ASA, CSSA, SSSA, Madison, WI.
  • Green TR, Ahuja LR, Benjamin JG, 2003. Advances and challenges in predicting agricultural management effects on soil hydraulic properties. Geoderma, 116(1-2): 3-27.
  • Grossman RB, Reinsch TG, 2002. Bulk Density and Linear Extensibility, in: Dane, J.H., Topp, G.C. (Eds.), Methods of Soil Analysis. Part 4, Physical Methods. SSSA Book Series 5. Madison, WI: pp. 201-228.
  • Håkansson I, Medvedev VW, 1995. Protection of soils from mechanical overloading by establishing limits for stresses caused by heavy vehicles. Soil and Tillage Research, 35(1-2): 85-97.
  • Hassink J, Bouwman LA, Zwart KB, Bloem J, Brussaard L, 1993. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. International Workshop on Methods of Research on Soil Structure/Soil Biota Interrelationships, Held at the International Agricultural Centre, Wageningen, The Netherlands, 105-128.
  • Hassink J, 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, 191: 77-87.
  • Haynes RJ, Ludecke TE, 1981. Effect of lime and phosphorus applications on concentrations of available nutrients and on P, A1 and Mn uptake by two pasture legumes in an acid soil. Plant and Soil, 62: 117-128.
  • Hohn ME, 1988. Geostatisttics and Petroleum Geology, Van Nostrans Reinhold, 264 p, New York
  • IBM, 2011. IBM Statistics for Windows, version 20.0. IBM Corporation. Armonk, New York.
  • Imhoff S, da Silva AP, Tormena CA, 2000. Spatial heterogeneity of soil properties in areas under elephant-grass short-duration grazing system. Plant and Soil, 219: 161-168.
  • Isaaks EH, Srivastava RM, 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York.
  • Journel AG, Huijbregts Ch J, 1978. Mining Geostatistics, Academic Press, p: 600.
  • Júnior VV, Carvalho MP, Dafonte J, Freddi OS, Vazquez, EV, Ingaramo OE, 2006. Spatial variability of soil water content and mechanical resistance of Brazilian ferralsol. Soil and Tillage Research, 85: 166-177.
  • Kribaa M, Hallaire V, Curmi P, Lahmar R, 2001. Effect of various cultivation methods on the structure and hydraulic properties of a soil in a semi-arid climate. Soil and Tillage Research, 60: 43-53
  • Mubarak I, Angulo-Jaramillo R, Mailhol JC, Ruelle P, Khaledian M, Vauclin M, 2010. Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agricultural Water Management, 97(10): 1517-1526.
  • Nelson DW, Sommers LE, 1982. Total Carbon, Organic Carbon, and Organic Matter. Methods of Soil Analysis.Part 2. Chemical and Microbiological Properties. 2nd Edition. Agronomy No: 9. 539-579, 1159 p, Madison, Wisconsin USA.
  • Nelson RE, 1982. Carbonate and Gypsum. Methods of Soil Analysis.Part 2. Chemical and Microbiological Properties. 2nd Edition. Agronomy No: 9. 181-197, 1159 p, Madison, Wisconsin USA.
  • Olsen SR, Sommers LE, 1982. Phosphorus. Methods of Soil Analysis.Part 2. Chemical and Microbiological Properties. 2nd Edition. Agronomy No: 9, 403-427, 1159 p, Madison, Wisconsin USA.
  • Öztaş T, 1995. Jeoistatistiğin Toprak Bilimindeki Önemi ve Uygulanışı. İ. Akalın Toprak ve Çevre Semp. I:271-280, Ankara.
  • Petersen LW, Moldrup P, Jacobsen OH, Rolston DE, 1996. Relations between specific surface area and soil physical and chemical properties. Soil Science, 161(1): 9-21.
  • Reynolds WD, Elrick DE, 2002. Saturated and field-saturated water flow parameters. Constant head soil core (tank) method. In Methods of soil analysis, Part 4, Physical methods, Dane JH, Topp GC (eds). SSSA Inc.: Madison, WI; 804–808.
  • Rhoades JD, 1982a. Cation Exchange Capacity. Methods of Soil Analysis Part 2. chemical and microbiological properties second edition. Agronomy. No: 9 Part 2. Edition P: 149-157.
  • Rhoades JD, 1982b. Exchangeable Cations. Methods of Soil Analysis Part2. Chemicaland microbiological properties second edition. Agronomy. No: 9 Part 2. Edition P: 159-164.
  • Rietz DN, Haynes RJ, 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry, 35(6): 845-854.
  • Rochette P, Desjardins RL, Pattey E, 1991. Spatial and temporal variability of soil respiration in agricultural fields. Canadian Journal of Soil Science, 71(2): 189-196.
  • Ryel RJ, Caldwell MM, Manwaring JH, 1996. Temporal dynamics of soil spatial heterogeneity in sagebrush–wheatgrass steppe during a growing season. Plant and Soil, 184: 299-309.
  • Sauer TJ, Meek DW, 2003. Spatial variation of plantavailable phosphorus in pastures with contrasting management. Soil Science Society of America Journal, 67: 826-836.
  • Sezen Y, 1995. Toprak Kimyası. Atatürk Üni. Yayınları No: 790. Ziraat Fakültesi Yayın No: 322. Ders Kitapları Serisi No: 71. Erzurum.
  • Some’e BS, Hassanpour F, Ezani A, Miremadi SR, Tabari H, 2011. Investigation of spatial variability and pattern analysis of soil properties in the northwest of Iran. Environmental Earth Science, 64(7): 1849-1864.
  • Strudley MW, Timothy RG, Ascough II JC, 2008. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil and Tillage Research, 99(1): 4-48.
  • Suarez DL, Rhoades JD, Lavado R, Grieve CM, 1984. Effect of pH on saturated hydraulic conductivity and soil dispersion. Soil Science Society of America Journal, 48(1): 50-55.
  • Thomas GW, 1996. Soil pH and soil acidity, in: Sparks, D.L. (Ed.), Methods of Soil Analysis. Part 3, Chemical Methods. SSSA Book Series 5. Madison, WI: pp. 475-490.
  • Webster R, 2000. Is soil variation random? Geoderma, 97(3-4): 149-163.
  • Westermann DT, 1992. Lime effects on phosphorus availability in a calcareous soil. Soil Science Society of America Journal, 56(2): 489-494.
  • White PJ, 2012. Ion uptake mechanisms of individual cells and roots: short-distance transport. In Marschner's mineral nutrition of higher plants, 7-47. Academic Press.
  • Wilding LP, 1985. Spatial variability: Its documentation, accommodation, and implication to soil surveys. In Soil Spatial Variability. D.R.Nielsen and J. Bouma (eds.). Pudoc, Wageningen, The Netherlands, pp. 166–194.
  • Yates SR, Warrick AW, 1987. Estimating soil water content using cokriging. Soil Science Society of America Journal, 51: 23-30.
  • Yost RS, Uehara G, Fox RL, 1982. Geostatistical analysis of soil chemical properties of large land areas: I. Semi-variograms. Soil Science Society of America Journal, 46: 1028-1032.

Asessment of Spatial Distribution Patterns of Soil Properties at the Experimental Fields of Igdir University

Yıl 2019, Cilt: 9 Sayı: 4, 2346 - 2363, 01.12.2019
https://doi.org/10.21597/jist.598068

Öz

Assessment of spatial distribution patterns of soil properties are important for developing sustainable soil management strategies. The objective of this study was to define spatial variability characteristics of physical and chemical properties of soil at the experimental fields of Igdir University. The study area with a size of 10 ha was gridded by 50x60 m in the N-S and E-W directions, respectively and totally 35 soil samples (both disturbed and undisturbed) were collected from 0-20 cm soil depth at each intersection of the grid system. Undisturbed soil samples were used for obtaining bulk density and hydraulic conductivity, and disturbed soil samples for texture, CaCO3, organic matter, cation exchange capacity (CEC), exchangeable cations, electrical conductivity (EC), soil reaction (pH) and exchangeable sodium percentage (ESP) determinations. Semivariogram analysis was performed for defining spatial variability and Kriging analysis was used for enterpolation and mapping of measured soil properties. Most of the soil properties showed isotropic distributions. Distribution maps were produced, compared and evaluated. The soils at the experimental fields were mainly medium textured (CL, SiCL and L) with a clay content changing from 18% to 39%, sand content changing from 20% to 45%. On the average, soil samples of the evaluated area were determined CaCO3 11.4%, organic matter content 1.0%, P2O5 content 2.4 kg da-1, CEC 25.1 me 100gr-1. Spatial distribution patterns indicated that there was salinity and alkalinity problems in local levels. On the average soil pH, EC and ESP were 8.5, 6,5 mS cm-1 and 18.8%, respectively.

Kaynakça

  • Aiken RM, Jawson MD, Grahammer K, Polymenopoulos AD, 1991. Positional, spatially correlated and random components of carbon dioxide flux. Journal of Environmental Quality, 20(1): 301-308.
  • Anonim, 2017. Devlet Meteoroloji İşleri Genel Müdürlüğü, Ankara.
  • Baldovinos F, Thomas GW, 1967. The effect of soil clay content on phosphorus uptake. Soil Science Society of America Journal, 31(5): 680-682.
  • Barik K, Aksakal EL, Islam KR, Sari S, Angin I, 2014. Spatial variability in soil compaction properties associated with field traffic operations. Catena, 120: 122-133.
  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE, 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5): 1501-1511.
  • Cerozi BS, Fitzsimmons K, 2016. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresource Technology, 219: 778-781.
  • Dahiya SS, Singh M, 1976. Effect of salinity, alkalinity and iron application on the availability of iron, manganese, phosphorus and sodium in pea (Pisum sativum L.) crop. Plant and Soil, 44(3): 697-702.
  • Debicki R, Glinski J, Lipiec J, Pukos A, Turski R, 1993. Soil strength, stability and structural state of orthic luvisols under different land use. International Agrophysics, 7(2-3): 155-161.
  • Ersahin S, 2003. Comparing ordinary kriging and cokriging to estimate infiltration rate. Soil Science Society of America Journal, 67: 1848-1855.
  • Gee GW, Bauder JW, 1986. Particle-size analysis. Methods of Soil Analysis. Part 1. Physical and Minerological Methods. Second Edition. Agronomy No: 9, p: 383-441.
  • Gotway CA, Bullock DG, Pierce FJ, Stroup WW, Hergert GW, Eskridge KM, 1997. Experimental Design Issues and Statistical Evaluation Techniques for Site pecific Management. p 301-337. InF.J. Pierce and E.J. Sadler (eds) The State of Site-Specific Management for Agriculture. ASA, CSSA, SSSA, Madison, WI.
  • Green TR, Ahuja LR, Benjamin JG, 2003. Advances and challenges in predicting agricultural management effects on soil hydraulic properties. Geoderma, 116(1-2): 3-27.
  • Grossman RB, Reinsch TG, 2002. Bulk Density and Linear Extensibility, in: Dane, J.H., Topp, G.C. (Eds.), Methods of Soil Analysis. Part 4, Physical Methods. SSSA Book Series 5. Madison, WI: pp. 201-228.
  • Håkansson I, Medvedev VW, 1995. Protection of soils from mechanical overloading by establishing limits for stresses caused by heavy vehicles. Soil and Tillage Research, 35(1-2): 85-97.
  • Hassink J, Bouwman LA, Zwart KB, Bloem J, Brussaard L, 1993. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. International Workshop on Methods of Research on Soil Structure/Soil Biota Interrelationships, Held at the International Agricultural Centre, Wageningen, The Netherlands, 105-128.
  • Hassink J, 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, 191: 77-87.
  • Haynes RJ, Ludecke TE, 1981. Effect of lime and phosphorus applications on concentrations of available nutrients and on P, A1 and Mn uptake by two pasture legumes in an acid soil. Plant and Soil, 62: 117-128.
  • Hohn ME, 1988. Geostatisttics and Petroleum Geology, Van Nostrans Reinhold, 264 p, New York
  • IBM, 2011. IBM Statistics for Windows, version 20.0. IBM Corporation. Armonk, New York.
  • Imhoff S, da Silva AP, Tormena CA, 2000. Spatial heterogeneity of soil properties in areas under elephant-grass short-duration grazing system. Plant and Soil, 219: 161-168.
  • Isaaks EH, Srivastava RM, 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York.
  • Journel AG, Huijbregts Ch J, 1978. Mining Geostatistics, Academic Press, p: 600.
  • Júnior VV, Carvalho MP, Dafonte J, Freddi OS, Vazquez, EV, Ingaramo OE, 2006. Spatial variability of soil water content and mechanical resistance of Brazilian ferralsol. Soil and Tillage Research, 85: 166-177.
  • Kribaa M, Hallaire V, Curmi P, Lahmar R, 2001. Effect of various cultivation methods on the structure and hydraulic properties of a soil in a semi-arid climate. Soil and Tillage Research, 60: 43-53
  • Mubarak I, Angulo-Jaramillo R, Mailhol JC, Ruelle P, Khaledian M, Vauclin M, 2010. Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agricultural Water Management, 97(10): 1517-1526.
  • Nelson DW, Sommers LE, 1982. Total Carbon, Organic Carbon, and Organic Matter. Methods of Soil Analysis.Part 2. Chemical and Microbiological Properties. 2nd Edition. Agronomy No: 9. 539-579, 1159 p, Madison, Wisconsin USA.
  • Nelson RE, 1982. Carbonate and Gypsum. Methods of Soil Analysis.Part 2. Chemical and Microbiological Properties. 2nd Edition. Agronomy No: 9. 181-197, 1159 p, Madison, Wisconsin USA.
  • Olsen SR, Sommers LE, 1982. Phosphorus. Methods of Soil Analysis.Part 2. Chemical and Microbiological Properties. 2nd Edition. Agronomy No: 9, 403-427, 1159 p, Madison, Wisconsin USA.
  • Öztaş T, 1995. Jeoistatistiğin Toprak Bilimindeki Önemi ve Uygulanışı. İ. Akalın Toprak ve Çevre Semp. I:271-280, Ankara.
  • Petersen LW, Moldrup P, Jacobsen OH, Rolston DE, 1996. Relations between specific surface area and soil physical and chemical properties. Soil Science, 161(1): 9-21.
  • Reynolds WD, Elrick DE, 2002. Saturated and field-saturated water flow parameters. Constant head soil core (tank) method. In Methods of soil analysis, Part 4, Physical methods, Dane JH, Topp GC (eds). SSSA Inc.: Madison, WI; 804–808.
  • Rhoades JD, 1982a. Cation Exchange Capacity. Methods of Soil Analysis Part 2. chemical and microbiological properties second edition. Agronomy. No: 9 Part 2. Edition P: 149-157.
  • Rhoades JD, 1982b. Exchangeable Cations. Methods of Soil Analysis Part2. Chemicaland microbiological properties second edition. Agronomy. No: 9 Part 2. Edition P: 159-164.
  • Rietz DN, Haynes RJ, 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry, 35(6): 845-854.
  • Rochette P, Desjardins RL, Pattey E, 1991. Spatial and temporal variability of soil respiration in agricultural fields. Canadian Journal of Soil Science, 71(2): 189-196.
  • Ryel RJ, Caldwell MM, Manwaring JH, 1996. Temporal dynamics of soil spatial heterogeneity in sagebrush–wheatgrass steppe during a growing season. Plant and Soil, 184: 299-309.
  • Sauer TJ, Meek DW, 2003. Spatial variation of plantavailable phosphorus in pastures with contrasting management. Soil Science Society of America Journal, 67: 826-836.
  • Sezen Y, 1995. Toprak Kimyası. Atatürk Üni. Yayınları No: 790. Ziraat Fakültesi Yayın No: 322. Ders Kitapları Serisi No: 71. Erzurum.
  • Some’e BS, Hassanpour F, Ezani A, Miremadi SR, Tabari H, 2011. Investigation of spatial variability and pattern analysis of soil properties in the northwest of Iran. Environmental Earth Science, 64(7): 1849-1864.
  • Strudley MW, Timothy RG, Ascough II JC, 2008. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil and Tillage Research, 99(1): 4-48.
  • Suarez DL, Rhoades JD, Lavado R, Grieve CM, 1984. Effect of pH on saturated hydraulic conductivity and soil dispersion. Soil Science Society of America Journal, 48(1): 50-55.
  • Thomas GW, 1996. Soil pH and soil acidity, in: Sparks, D.L. (Ed.), Methods of Soil Analysis. Part 3, Chemical Methods. SSSA Book Series 5. Madison, WI: pp. 475-490.
  • Webster R, 2000. Is soil variation random? Geoderma, 97(3-4): 149-163.
  • Westermann DT, 1992. Lime effects on phosphorus availability in a calcareous soil. Soil Science Society of America Journal, 56(2): 489-494.
  • White PJ, 2012. Ion uptake mechanisms of individual cells and roots: short-distance transport. In Marschner's mineral nutrition of higher plants, 7-47. Academic Press.
  • Wilding LP, 1985. Spatial variability: Its documentation, accommodation, and implication to soil surveys. In Soil Spatial Variability. D.R.Nielsen and J. Bouma (eds.). Pudoc, Wageningen, The Netherlands, pp. 166–194.
  • Yates SR, Warrick AW, 1987. Estimating soil water content using cokriging. Soil Science Society of America Journal, 51: 23-30.
  • Yost RS, Uehara G, Fox RL, 1982. Geostatistical analysis of soil chemical properties of large land areas: I. Semi-variograms. Soil Science Society of America Journal, 46: 1028-1032.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toprak Bilimi ve Ekolojisi
Bölüm Toprak Bilimi ve Bitki Besleme / Soil Science and Plant Nutrition
Yazarlar

Serdar Sarı 0000-0002-9990-7918

Ekrem Lütfi Aksakal 0000-0002-8910-3190

Taşkın Öztaş 0000-0001-5001-103X

Yayımlanma Tarihi 1 Aralık 2019
Gönderilme Tarihi 29 Temmuz 2019
Kabul Tarihi 16 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 4

Kaynak Göster

APA Sarı, S., Aksakal, E. L., & Öztaş, T. (2019). Iğdır Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi. Journal of the Institute of Science and Technology, 9(4), 2346-2363. https://doi.org/10.21597/jist.598068
AMA Sarı S, Aksakal EL, Öztaş T. Iğdır Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2019;9(4):2346-2363. doi:10.21597/jist.598068
Chicago Sarı, Serdar, Ekrem Lütfi Aksakal, ve Taşkın Öztaş. “Iğdır Üniversitesi Tarımsal Uygulama Ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi”. Journal of the Institute of Science and Technology 9, sy. 4 (Aralık 2019): 2346-63. https://doi.org/10.21597/jist.598068.
EndNote Sarı S, Aksakal EL, Öztaş T (01 Aralık 2019) Iğdır Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi. Journal of the Institute of Science and Technology 9 4 2346–2363.
IEEE S. Sarı, E. L. Aksakal, ve T. Öztaş, “Iğdır Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 9, sy. 4, ss. 2346–2363, 2019, doi: 10.21597/jist.598068.
ISNAD Sarı, Serdar vd. “Iğdır Üniversitesi Tarımsal Uygulama Ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi”. Journal of the Institute of Science and Technology 9/4 (Aralık 2019), 2346-2363. https://doi.org/10.21597/jist.598068.
JAMA Sarı S, Aksakal EL, Öztaş T. Iğdır Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:2346–2363.
MLA Sarı, Serdar vd. “Iğdır Üniversitesi Tarımsal Uygulama Ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi”. Journal of the Institute of Science and Technology, c. 9, sy. 4, 2019, ss. 2346-63, doi:10.21597/jist.598068.
Vancouver Sarı S, Aksakal EL, Öztaş T. Iğdır Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi Deneme Alanı Toprak Özelliklerinin Yersel Değişim Paternlerinin Jeoistatistiksel Yöntemlerle Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(4):2346-63.