Araştırma Makalesi
BibTex RIS Kaynak Göster

Sulu Çözeltiden Remazol Brilliant Blue R Gideriminde Kaolin Destekli Nano Boyutlu Sıfır Değerlikli Demir Kullanımı

Yıl 2020, Cilt: 10 Sayı: 1, 63 - 72, 01.03.2020
https://doi.org/10.21597/jist.622811

Öz

Bu çalışmada, kaolin destekli nano boyutlu sıfır değerlikli demir (K-nZVI) partikülleri kaolin varlığında borhidrür indirgeme metodu ile sentezlenmiş ve sulu çözeltiden Remazol Brilliant Blue R (RBBR) gideriminde kullanılmıştır. RBBR gideriminde çözelti başlangıç pH’ı, K-nZVI dozajı, temas süresi ve başlangıç boyar madde konsantrasyonunun etkisi değerlendirilmiştir. Giderim veriminin pH’a bağlı olduğu tespit edilmiş ve RBBR’nin maksimum giderim verimi pH 3’te gerçekleşmiştir. 0.3-1.0 g L-1 dozaj aralığında K-nZVI dozajının artışı ile RBBR giderim verimi artmıştır. 60 dakikalık temas süresinde dengeye ulaşılmıştır. Başlangıç boyar madde konsantrasyonun artışı ile giderim verimi azalmıştır. Çalışmada, deneysel verilerin Langmuir ve Freundlich izoterm modellere uygunluğu da araştırılmış ve bu modellere ait parametreler hesaplanmıştır. K-nZVI ile RBBR adsorpsiyonun hem Langmuir hem de Freundlich izoterme uygun olduğu tespit edilmiştir. Maksimum adsorpsiyon kapasitesi 200 mg g-1 olarak belirlenmiştir.

Kaynakça

  • Abbassi R, Yadav AK, Kumar N, Huang S, Jaffe PR, 2013. Modeling and Optimization of Dye Removal Using “Green” Clay Supported Iron Nano-Particles. Ecological Engineering, 61 (PART A): 366–370.
  • Almeelbi T, Bezbaruah A, 2012. Aqueous Phosphate Removal Using Nanoscale Zero-Valent Iron. Journal of Nanoparticle Research, 4: 900.
  • Baghapour MA, Pourfadakari S, Mahvi AH, 2014. Investigation of Reactive Red Dye 198 Removal Using Multiwall Carbon Nanotubes in Aqueous Solution. Journal of Industrial and Engineering Chemistry, 20(5): 2921–2926.
  • Bokare AD, Chikate RC, Rode CV, Paknikar KM, 2008. Iron-Nickel Bimetallic Nanoparticles for Reductive Degradation of Azo Dye Orange G in Aqueous Solution. Applied Catalysis B: Environmental, 79(3): 270–278.
  • Çakmak M, Taşar Ş, Selen V, Özer D, Özer A, 2017. Removal of Astrazon Golden Yellow 7GL from Colored Wastewater Using Chemically Modified Clay. Journal of Central South University, 24(4): 743−753.
  • Capar G, Yetis U, Yilmaz L, 2006. Membrane Based Strategies for the Pre-Treatment of Acid Dye Bath Wastewaters. Journal of Hazardous Materials, 135(1-3): 423–430.
  • Cengiz S, Tanrikulu F, Aksu S, 2012. An Alternative Source of Adsorbent for the Removal of Dyes from Textile Waters: Posidonia Oceanica (L.). Chemical Engineering Journal, 189–190: 32– 40.
  • Chen J, Qiu X, Fang Z, Yang M, Pokeung T, Gu F, Cheng W, Lan B, 2012. Removal Mechanism of Antibiotic Metronidazole from Aquatic Solutions by Using Nanoscale Zero-Valent Iron Particles. Chemical Engineering Journal, 181–182: 113–119.
  • Chen Z, Wang T, Jin X, Chen Z, Megharaj M, Naidu, R, 2013. Multifunctional Kaolinite-Supported Nanoscale Zero-Valent Iron Used for the Adsorption and Degradation of Crystal Violet in Aqueous Solution. Journal of Colloid and Interface Science, 398: 59–66.
  • Demiral H, Gündüzoğlu G, 2010. Removal of Nitrate from Aqueous Solutions by Activated Carbon Prepared from Sugar Beet Bagasse. Bioresource Technology, 101(6): 1675–1680.
  • Dursun AY, Tepe O., Uslu G., Dursun G., Saatci Y., 2013. Kinetics of Remazol Black B Adsorption onto Carbon Prepared from Sugar Beet Pulp, Environmental Science and Pollution Research 20(4): 2472–2483.
  • Epolito WJ, Yang H, Bottomley LA, Pavlostathis SG, 2008. Kinetics of Zero-Valent Iron Reductive Transformation of the Anthraquinone Dye Reactive Blue 4. Journal of Hazardous Materials, 160(2-3): 594–600.
  • Fan J, Guo Y, Wang J, Fan M, 2009. Rapid Decolorization of Azo Dye Methyl Orange in Aqueous Solution by Nanoscale Zerovalent Iron Particles. Journal of Hazardous Materials, 166(2-3): 904–910.
  • Fang Z, Chen J, Qiu X, Qiu X, Cheng W, Zhu, L, 2011. Effective Removal of Antibiotic Metronidazole from Water by Nanoscale Zero-Valent Iron Particles. Desalination, 268(1-3): 60–67.
  • Frost RL, Xi Y, He H, 2010. Synthesis, Characterization of Palygorskite Supported Zero-Valent Iron and Its Application for Methylene Blue Adsorption. Journal of Colloid and Interface Science, 341(1): 153–161.
  • Ghanbari F, Moradi M, Manshouri M, 2014. Textile Wastewater Decolorization by Zero Valent Iron Activated Peroxymonosulfate: Compared with Zero Valent Copper. Journal of Environmental Chemical Engineering, 2(3): 1846–1851.
  • Han L, Xue S, Zhao S, Yan J, Qian L, Chen M, 2015. Biochar Supported Nanoscale Iron Particles for the Efficient Removal of Methyl Orange Dye in Aqueous Solutions. PLOS ONE, 1-15.
  • Hanay Ö, Türk H, 2015. Comprehensive Evaluation of Adsorption and Degradation of Tetracycline and Oxytetracycline by Nanoscale Zero-Valent Iron. Desalination and Water Treatment, 53(7): 1986–1994.
  • Karabelli D, Üzüm Ç, Shahwan T, Eroğlu AE, Scott TB, Hallam KR, Lieberwirth I, 2008. Batch Removal of Aqueous Cu2+ Ions Using Nanoparticles of Zero-Valent Iron: A Study of the Capacity and Mechanism of Uptake. Industrial &Engineering Chemistry Research, 47(14): 4758–4764.
  • Lee S, Lee K, Rhee S, Park J, 2007. Development of a New Zero-Valent Iron Zeolite Material to Reduce Nitrate without Ammonium Release, Journal of Environmental Engineering, 133(1): 6–12.
  • Li P, Song Y, Wang S, Tao Z, Yu S, Liu Y, 2015. Enhanced Decolorization of Methyl Orange Using Zero-Valent Copper Nanoparticles under Assistance of Hydrodynamic Cavitation. Ultrasonics Sonochemistry, 22: 132–138.
  • Lin Y-T, Weng C-H, Chen F-Y, 2008. Effective Removal of AB24 Dye by Nano/Micro-Size Zero-Valent Iron. Separation and Purification Technology, 64(1): 26–30.
  • Liu M, Lü Z, Chen Z, Yu S, Gao C, 2011. Comparison of Reverse Osmosis and Nanofiltration Membranes in the Treatment of Biologically Treated Textile Effluent for Water Reuse. Desalination, 281: 372–378.
  • Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV, 2005. TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties. Environmental Science and Technology, 39(5): 1338–1345.
  • Luo S, Qin P, Shao J, Peng L, Zeng Q, Gu J-D, 2013. Synthesis of Reactive Nanoscale Zero Valent Iron Using Rectorite Supports and Its Application for Orange II Removal. Chemical Engineering Journal, 223: 1–7.
  • Marković S, Stanković A, Lopičić Z, Lazarević S, Stojanović M, Uskoković D, 2015. Application of Raw Peach Shell Particles for Removal of Methylene Blue. Journal of Environmental Chemical Engineering, 3(2): 716–724.
  • Panizza M, Cerisola G, 2009. Electro-Fenton Degradation of Synthetic Dyes, Water Research, 43(2): 339–344.
  • Ponder SM, Darab JG, Mallouk TE, 2000. Remediation of Cr (VI) and Pb (II) Aqueous Solutions Using Supported, Nanoscale Zero-Valent Iron. Environmental Science & Technology, 34(12): 2564–2569.
  • Riera-Torres M, Gutiérrez-Bouzán M, Crespi C, 2010. Combination of Coagulation–Flocculation and Nanofiltration Techniques for Dye Removal and Water Reuse in Textile Effluents. Desalination, 252(1-3): 53–59.
  • Sahinkaya E, Uzal N, Yetis U, Dilek FB, 2008. Biological Treatment and Nanofiltration of Denim Textile Wastewater for Reuse. Journal of Hazardous Materials, 153(3): 1142–1148.
  • Shi L-n, Lin Y-M, Zhang X, Chen Z-l, 2011. Synthesis, Characterization and Kinetics of Bentonite Supported NZVI for the Removal of Cr(VI) from Aqueous Solution. Chemical Engineering Journal, 171(2): 612– 617.
  • Shu H-Y, Chang M-C, Chen C-C, Chen P-E, 2010. Using Resin Supported Nano Zero-Valent Iron Particles for Decoloration of Acid Blue 113 Azo Dye Solution. Journal of Hazardous Materials, 184(1-3): 499–505.
  • Sun Z, Zheng S, Ayoko GA, Frost RL, Xi Y, 2013. Degradation of Simazine From Aqueous Solutions by Diatomite-Supported Nanosized Zero-Valent Iron Composite Materials. Journal of Hazardous Materials, 263(Part 2): 768–777.
  • Tunc O, Tanacı H, Aksu Z, 2009. Potential Use of Cotton Plant Wastes for the Removal of Remazol Black B Reactive Dye. Journal of Hazardous Materials, 163(1): 187–198.
  • Wang X, Wang P, Ma J, Liu H, Ning P, 2015. Synthesis, Characterization, and Reactivity of Cellulose Modified Nano Zero-Valent Iron for Dye Discoloration. Applied Surface Science, 345: 57–66.
  • Xi Y, Megharaj M, Naidu R, 2011. Dispersion of Zerovalent Iron Nanoparticles onto Bentonites and Use of These Catalysts for Orange II Decolourisation. Applied Clay Science, 53(4): 716–722.
  • Zhang X, Lin S, Lu X-Q, Chen Z-l, 2010. Removal of Pb(II) from Water Using Synthesized Kaolin Supported Nanoscale Zero-Valent Iron. Chemical Engineering Journal, 163(3): 243–248.

Use of Kaolin-supported Nano-scale Zero-valent Iron for Removal of Remazol Brilliant Blue R from Aqueous Solution

Yıl 2020, Cilt: 10 Sayı: 1, 63 - 72, 01.03.2020
https://doi.org/10.21597/jist.622811

Öz

In this study, kaolin supported nano-sized zero-valent iron (K-nZVI) particles were synthesized by borohydride reduction method in presence of kaolin and used for removal of Remazol Brilliant Blue R (RBBR) from aqueous solution. The effects of solution initial pH, K-nZVI dosage, contact time and initial dye concentration for removal of RBBR were evaluated. The removal efficiency was determined to be pH dependent and the maximum removal efficiency of RBBR was obtained at pH 3. RBBR removal efficiency increased with increasing K-nZVI dosage in the dosage range of 0.3 and 1.0 g L-1. The equilibrium was reached at the contact time of 60 minutes. The removal efficiency decreased with the increase of the initial dye concentration. In this study, the suitability of experimental data to Langmuir and Freundlich isotherm models was also investigated and the parameters of these models were calculated. It was found that RBBR adsorption by K-nZVI was suitable for both Langmuir and Freundlich isotherm. The maximum adsorption capacity was determined as 200 mg g-1.

Kaynakça

  • Abbassi R, Yadav AK, Kumar N, Huang S, Jaffe PR, 2013. Modeling and Optimization of Dye Removal Using “Green” Clay Supported Iron Nano-Particles. Ecological Engineering, 61 (PART A): 366–370.
  • Almeelbi T, Bezbaruah A, 2012. Aqueous Phosphate Removal Using Nanoscale Zero-Valent Iron. Journal of Nanoparticle Research, 4: 900.
  • Baghapour MA, Pourfadakari S, Mahvi AH, 2014. Investigation of Reactive Red Dye 198 Removal Using Multiwall Carbon Nanotubes in Aqueous Solution. Journal of Industrial and Engineering Chemistry, 20(5): 2921–2926.
  • Bokare AD, Chikate RC, Rode CV, Paknikar KM, 2008. Iron-Nickel Bimetallic Nanoparticles for Reductive Degradation of Azo Dye Orange G in Aqueous Solution. Applied Catalysis B: Environmental, 79(3): 270–278.
  • Çakmak M, Taşar Ş, Selen V, Özer D, Özer A, 2017. Removal of Astrazon Golden Yellow 7GL from Colored Wastewater Using Chemically Modified Clay. Journal of Central South University, 24(4): 743−753.
  • Capar G, Yetis U, Yilmaz L, 2006. Membrane Based Strategies for the Pre-Treatment of Acid Dye Bath Wastewaters. Journal of Hazardous Materials, 135(1-3): 423–430.
  • Cengiz S, Tanrikulu F, Aksu S, 2012. An Alternative Source of Adsorbent for the Removal of Dyes from Textile Waters: Posidonia Oceanica (L.). Chemical Engineering Journal, 189–190: 32– 40.
  • Chen J, Qiu X, Fang Z, Yang M, Pokeung T, Gu F, Cheng W, Lan B, 2012. Removal Mechanism of Antibiotic Metronidazole from Aquatic Solutions by Using Nanoscale Zero-Valent Iron Particles. Chemical Engineering Journal, 181–182: 113–119.
  • Chen Z, Wang T, Jin X, Chen Z, Megharaj M, Naidu, R, 2013. Multifunctional Kaolinite-Supported Nanoscale Zero-Valent Iron Used for the Adsorption and Degradation of Crystal Violet in Aqueous Solution. Journal of Colloid and Interface Science, 398: 59–66.
  • Demiral H, Gündüzoğlu G, 2010. Removal of Nitrate from Aqueous Solutions by Activated Carbon Prepared from Sugar Beet Bagasse. Bioresource Technology, 101(6): 1675–1680.
  • Dursun AY, Tepe O., Uslu G., Dursun G., Saatci Y., 2013. Kinetics of Remazol Black B Adsorption onto Carbon Prepared from Sugar Beet Pulp, Environmental Science and Pollution Research 20(4): 2472–2483.
  • Epolito WJ, Yang H, Bottomley LA, Pavlostathis SG, 2008. Kinetics of Zero-Valent Iron Reductive Transformation of the Anthraquinone Dye Reactive Blue 4. Journal of Hazardous Materials, 160(2-3): 594–600.
  • Fan J, Guo Y, Wang J, Fan M, 2009. Rapid Decolorization of Azo Dye Methyl Orange in Aqueous Solution by Nanoscale Zerovalent Iron Particles. Journal of Hazardous Materials, 166(2-3): 904–910.
  • Fang Z, Chen J, Qiu X, Qiu X, Cheng W, Zhu, L, 2011. Effective Removal of Antibiotic Metronidazole from Water by Nanoscale Zero-Valent Iron Particles. Desalination, 268(1-3): 60–67.
  • Frost RL, Xi Y, He H, 2010. Synthesis, Characterization of Palygorskite Supported Zero-Valent Iron and Its Application for Methylene Blue Adsorption. Journal of Colloid and Interface Science, 341(1): 153–161.
  • Ghanbari F, Moradi M, Manshouri M, 2014. Textile Wastewater Decolorization by Zero Valent Iron Activated Peroxymonosulfate: Compared with Zero Valent Copper. Journal of Environmental Chemical Engineering, 2(3): 1846–1851.
  • Han L, Xue S, Zhao S, Yan J, Qian L, Chen M, 2015. Biochar Supported Nanoscale Iron Particles for the Efficient Removal of Methyl Orange Dye in Aqueous Solutions. PLOS ONE, 1-15.
  • Hanay Ö, Türk H, 2015. Comprehensive Evaluation of Adsorption and Degradation of Tetracycline and Oxytetracycline by Nanoscale Zero-Valent Iron. Desalination and Water Treatment, 53(7): 1986–1994.
  • Karabelli D, Üzüm Ç, Shahwan T, Eroğlu AE, Scott TB, Hallam KR, Lieberwirth I, 2008. Batch Removal of Aqueous Cu2+ Ions Using Nanoparticles of Zero-Valent Iron: A Study of the Capacity and Mechanism of Uptake. Industrial &Engineering Chemistry Research, 47(14): 4758–4764.
  • Lee S, Lee K, Rhee S, Park J, 2007. Development of a New Zero-Valent Iron Zeolite Material to Reduce Nitrate without Ammonium Release, Journal of Environmental Engineering, 133(1): 6–12.
  • Li P, Song Y, Wang S, Tao Z, Yu S, Liu Y, 2015. Enhanced Decolorization of Methyl Orange Using Zero-Valent Copper Nanoparticles under Assistance of Hydrodynamic Cavitation. Ultrasonics Sonochemistry, 22: 132–138.
  • Lin Y-T, Weng C-H, Chen F-Y, 2008. Effective Removal of AB24 Dye by Nano/Micro-Size Zero-Valent Iron. Separation and Purification Technology, 64(1): 26–30.
  • Liu M, Lü Z, Chen Z, Yu S, Gao C, 2011. Comparison of Reverse Osmosis and Nanofiltration Membranes in the Treatment of Biologically Treated Textile Effluent for Water Reuse. Desalination, 281: 372–378.
  • Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV, 2005. TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties. Environmental Science and Technology, 39(5): 1338–1345.
  • Luo S, Qin P, Shao J, Peng L, Zeng Q, Gu J-D, 2013. Synthesis of Reactive Nanoscale Zero Valent Iron Using Rectorite Supports and Its Application for Orange II Removal. Chemical Engineering Journal, 223: 1–7.
  • Marković S, Stanković A, Lopičić Z, Lazarević S, Stojanović M, Uskoković D, 2015. Application of Raw Peach Shell Particles for Removal of Methylene Blue. Journal of Environmental Chemical Engineering, 3(2): 716–724.
  • Panizza M, Cerisola G, 2009. Electro-Fenton Degradation of Synthetic Dyes, Water Research, 43(2): 339–344.
  • Ponder SM, Darab JG, Mallouk TE, 2000. Remediation of Cr (VI) and Pb (II) Aqueous Solutions Using Supported, Nanoscale Zero-Valent Iron. Environmental Science & Technology, 34(12): 2564–2569.
  • Riera-Torres M, Gutiérrez-Bouzán M, Crespi C, 2010. Combination of Coagulation–Flocculation and Nanofiltration Techniques for Dye Removal and Water Reuse in Textile Effluents. Desalination, 252(1-3): 53–59.
  • Sahinkaya E, Uzal N, Yetis U, Dilek FB, 2008. Biological Treatment and Nanofiltration of Denim Textile Wastewater for Reuse. Journal of Hazardous Materials, 153(3): 1142–1148.
  • Shi L-n, Lin Y-M, Zhang X, Chen Z-l, 2011. Synthesis, Characterization and Kinetics of Bentonite Supported NZVI for the Removal of Cr(VI) from Aqueous Solution. Chemical Engineering Journal, 171(2): 612– 617.
  • Shu H-Y, Chang M-C, Chen C-C, Chen P-E, 2010. Using Resin Supported Nano Zero-Valent Iron Particles for Decoloration of Acid Blue 113 Azo Dye Solution. Journal of Hazardous Materials, 184(1-3): 499–505.
  • Sun Z, Zheng S, Ayoko GA, Frost RL, Xi Y, 2013. Degradation of Simazine From Aqueous Solutions by Diatomite-Supported Nanosized Zero-Valent Iron Composite Materials. Journal of Hazardous Materials, 263(Part 2): 768–777.
  • Tunc O, Tanacı H, Aksu Z, 2009. Potential Use of Cotton Plant Wastes for the Removal of Remazol Black B Reactive Dye. Journal of Hazardous Materials, 163(1): 187–198.
  • Wang X, Wang P, Ma J, Liu H, Ning P, 2015. Synthesis, Characterization, and Reactivity of Cellulose Modified Nano Zero-Valent Iron for Dye Discoloration. Applied Surface Science, 345: 57–66.
  • Xi Y, Megharaj M, Naidu R, 2011. Dispersion of Zerovalent Iron Nanoparticles onto Bentonites and Use of These Catalysts for Orange II Decolourisation. Applied Clay Science, 53(4): 716–722.
  • Zhang X, Lin S, Lu X-Q, Chen Z-l, 2010. Removal of Pb(II) from Water Using Synthesized Kaolin Supported Nanoscale Zero-Valent Iron. Chemical Engineering Journal, 163(3): 243–248.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği / Environment Engineering
Yazarlar

Müslün Sara Tunç 0000-0001-9907-0428

Yayımlanma Tarihi 1 Mart 2020
Gönderilme Tarihi 20 Eylül 2019
Kabul Tarihi 23 Ekim 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 1

Kaynak Göster

APA Tunç, M. S. (2020). Sulu Çözeltiden Remazol Brilliant Blue R Gideriminde Kaolin Destekli Nano Boyutlu Sıfır Değerlikli Demir Kullanımı. Journal of the Institute of Science and Technology, 10(1), 63-72. https://doi.org/10.21597/jist.622811
AMA Tunç MS. Sulu Çözeltiden Remazol Brilliant Blue R Gideriminde Kaolin Destekli Nano Boyutlu Sıfır Değerlikli Demir Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. Mart 2020;10(1):63-72. doi:10.21597/jist.622811
Chicago Tunç, Müslün Sara. “Sulu Çözeltiden Remazol Brilliant Blue R Gideriminde Kaolin Destekli Nano Boyutlu Sıfır Değerlikli Demir Kullanımı”. Journal of the Institute of Science and Technology 10, sy. 1 (Mart 2020): 63-72. https://doi.org/10.21597/jist.622811.
EndNote Tunç MS (01 Mart 2020) Sulu Çözeltiden Remazol Brilliant Blue R Gideriminde Kaolin Destekli Nano Boyutlu Sıfır Değerlikli Demir Kullanımı. Journal of the Institute of Science and Technology 10 1 63–72.
IEEE M. S. Tunç, “Sulu Çözeltiden Remazol Brilliant Blue R Gideriminde Kaolin Destekli Nano Boyutlu Sıfır Değerlikli Demir Kullanımı”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 1, ss. 63–72, 2020, doi: 10.21597/jist.622811.
ISNAD Tunç, Müslün Sara. “Sulu Çözeltiden Remazol Brilliant Blue R Gideriminde Kaolin Destekli Nano Boyutlu Sıfır Değerlikli Demir Kullanımı”. Journal of the Institute of Science and Technology 10/1 (Mart 2020), 63-72. https://doi.org/10.21597/jist.622811.
JAMA Tunç MS. Sulu Çözeltiden Remazol Brilliant Blue R Gideriminde Kaolin Destekli Nano Boyutlu Sıfır Değerlikli Demir Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:63–72.
MLA Tunç, Müslün Sara. “Sulu Çözeltiden Remazol Brilliant Blue R Gideriminde Kaolin Destekli Nano Boyutlu Sıfır Değerlikli Demir Kullanımı”. Journal of the Institute of Science and Technology, c. 10, sy. 1, 2020, ss. 63-72, doi:10.21597/jist.622811.
Vancouver Tunç MS. Sulu Çözeltiden Remazol Brilliant Blue R Gideriminde Kaolin Destekli Nano Boyutlu Sıfır Değerlikli Demir Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(1):63-72.