Araştırma Makalesi
BibTex RIS Kaynak Göster

Zeytin Karasuyunun İleri Oksidasyon Prosesleri İle Arıtımının İncelenmesi

Yıl 2020, Cilt: 10 Sayı: 3, 1597 - 1606, 01.09.2020
https://doi.org/10.21597/jist.687345

Öz

Bu çalışmada, Balıkesir ilinde faaliyet gösteren bir zeytinyağı üretim tesisinden temin edilen zeytin karasuyunun arıtımında ozon (O3), ozon+hidrojen peroksit (O3+H2O2) ve fenton (Fe2++H2O2) proseslerinin etkinlikleri incelenmiştir. İlk olarak %10 kapasite ile O3 jeneratörü çalıştırılmış ve 3 farklı pH (4.75, 10 ve 11) değerinde 6 saat boyunca ozonlama işlemi gerçekleştirilmiş ve maksimum giderim verimi pH değeri 11 olarak ayarlandığında %15.27 olarak hesaplanmıştır. İkinci olarak %10 kapasite ile O3 jeneratörü çalıştırılmış ve ortama 500 mg L-1 H2O2 ilave edilmiştir. 6 saatlik bu deneme sonrasında giderim verimi %9.8 olarak gerçekleşmiştir. Son olarak zeytin karasuyunun arıtımı için farklı Fe2+ (2.014 g L-1 ve 4.028 g L-1) ve H2O2 (19.05, 44.44 ve 80 g L-1) konsantrasyonlarının etkilerinin incelendiği fenton prosesinde Fe2+ ve H2O2 konsantrasyonları arttığında deney sonunda ortamda kalan KOİ konsantrasyonları sürekli azalmıştır. Fe2+ konsantrasyonu 4.029 mg L-1 ve H2O2 konsantrasyonu 80 mg L-1 olarak ayarlanmış ve %81.94 oranında KOİ giderimi sağlanmıştır. Elde edilen sonuçlar fenton prosesinin, diğer proseslerden çok daha fazla etkinliğinin olduğunu ortaya çıkarmıştır.

Destekleyen Kurum

Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

BAP 2012/099

Teşekkür

Bu çalışma Atatürk Üniversitesi Bilimsel Araştırma Projeleri, BAP 2012/099 nolu proje kapsamında desteklenmiş olup çalışmamız için desteklerini esirgemeyen Atatürk Üniversitesi Çevre Mühendisliği Bölümü’nün kıymetli çalışanlarına teşekkür ederiz.

Kaynakça

  • Akdemir, E.O., Ayğan, E., 2019. Pretreatment of olive mill wastewater by ultrafiltration process using chitosan. Desalination and Water Treatment 142, 49-55.
  • Al-Bsoul, A., Al-Shannag, M., Tawalbeh, M., Al-Taani, A.A., Lafi, W.K., Al-Othman, A., Alsheyab, M., 2020. Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes. Science of The Total Environment 700, 134576.
  • Ameta, R., Chohadia, A.K., Jain, A., Punjabi, P.B., 2018. Fenton and photo-fenton processes, Advanced Oxidation Processes for Waste Water Treatment. Elsevier, pp. 49-87.
  • Anonim, 1920. Standard methods for the examination of water and wastewater. American Public Health Association.
  • Anonim, 2004. Su Kirliliği Kontrolü Yönetmeliği, T.C. Çevre ve Şehircilik Bakanlığı, Resmi Gazete, Ankara.
  • Belaid, C., Khadraoui, M., Mseddi, S., Kallel, M., Elleuch, B., Fauvarque, J.F., 2013. Electrochemical treatment of olive mill wastewater: treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools. Journal of Environmental Sciences 25, 220-230.
  • Beltrán, F.J., Garcı́a-Araya, J.F., Frades, J., Alvarez, P., Gimeno, O., 1999. Effects of single and combined ozonation with hydrogen peroxide or UV radiation on the chemical degradation and biodegradability of debittering table olive industrial wastewaters. Water Research 33, 723-732.
  • Cabrera, F., Lopez, R., Martinez-Bordiú, A., de Lome, E.D., Murillo, J., 1996. Land treatment of olive oil mill wastewater. International Biodeterioration & Biodegradation 38, 215-225.
  • Chedeville, O., Debacq, M., Porte, C., 2009. Removal of phenolic compounds present in olive mill wastewaters by ozonation. Desalination 249, 865–869.
  • Coşkun, T., 2010. Zeytin karasularının fizikokimyasal ve membran proseslerle arıtımı, Fen Bilimleri Enstitüsü. Yıldız Teknik Üniversitesi, İstanbul.
  • Dehmani, Y., Ed-Dra, A., Zennouhi, O., Bouymajane, A., Filali, F.R., Nassiri, L., Abouarnadasse, S., 2020. Chemical characterization and adsorption of oil mill wastewater on Moroccan clay in order to be used in the agricultural field. Heliyon 6.
  • Demicheli, M., Bontoux, L., 1997. Novel technologies for olive oil manufacturing and their incidence on the environment. Fresenius Environmental Bulletin 6, 240-247.
  • Drouiche, M., Mignot, V.L., Lounici, H., Belhocine, D., Grib, H., Pauss, A., Mameri, N., 2004. A compact process for the treatment of olive mill wastewater by combining UF and UV/H2O2 techniques. Desalination 169, 81–88.
  • Fenton, H., 1894. LXXIII.—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions 65, 899-910.
  • Günay, A., Çetin, M., 2013. Determination of aerobic biodegradation kinetics of olive oil mill wastewater. International Biodeterioration & Biodegradation 85, 237-242.
  • Hodaifa, G., Gallardo, P.A.R., García, C.A., Kowalska, M., Seyedsalehi, M., 2019. Chemical oxidation methods for treatment of real industrial olive oil mill wastewater. Journal of the Taiwan Institute of Chemical Engineers 97, 247-254.
  • Karpouzas, D.G., Ntougias, S., Iskidou, E., Rousidou, C., Papadopoulou, K.K., Zervakis, G.I., Ehaliotis, C., 2010. Olive mill wastewater affects the structure of soil bacterial communities. Applied soil ecology 45, 101-111.
  • Klassen, N.V., Marchington, D., McGowan, H.C., 1994. H2O2 determination by the I3- method and by KMnO4 titration. Analytical Chemistry 66, 2921-2925.
  • Köseoğlu, O., 2006. The effect of the extraction systems on the quality and bitterness of the olive oil.
  • Kul, S., Boncukcuoğlu, R., Yilmaz, A.E., Fil, B.A., 2015. Treatment of olive mill wastewater with electro-oxidation method. Journal of the Electrochemical Society 162, G41-G47.
  • Kul, S., Nuhoğlu, A., 2020. Removal Kinetics of Olive-Mill Wastewater in a Batch-Operated Aerobic Bioreactor. Journal of Environmental Engineering 146, 04019122.
  • Mantzavinos, D., Kalogerakis, N., 2005. Treatment of olive mill effluents: Part I. Organic matter degradation by chemical and biological processes—an overview. Environment international 31, 289-295.
  • Marmanis, D., Dermentzis, K., Christoforidis, A., Diamantis, V., Ouzounis, K., Agapiou, A., Stylianou, M., 2019. Electrochemical treatment of olive mill waste powered by photovoltaic solar energy. Journal of Power Technologies 98, 377-381.
  • Masghouni, M., Hassairi, M., 2000. Energy applications of olive-oil industry by-products:—I. The exhaust foot cake. Biomass and Bioenergy 18, 257-262.
  • McNamara, C.J., Anastasiou, C.C., O’Flaherty, V., Mitchell, R., 2008. Bioremediation of olive mill wastewater. International Biodeterioration & Biodegradation 61, 127-134.
  • Mert, B.K., Yonar, T., Kiliç, M.Y., Kestioğlu, K., 2010. Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes. Journal of hazardous materials 174, 122-128.
  • Minussi, R.C., Miranda, M.A., Silva, J.A., Ferreira, C.V., Aoyama, H., Marangoni, S., Rotilio, D., Pastore, G.M., Durán, N., 2007. Purification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole. African Journal of Biotechnology 6.
  • Morillo, J., Antizar-Ladislao, B., Monteoliva-Sánchez, M., Ramos-Cormenzana, A., Russell, N., 2009. Bioremediation and biovalorisation of olive-mill wastes. Applied Microbiology and Biotechnology 82, 25.
  • Niaounakis, M., Halvadakis, C.P., 2006. Olive processing waste management: literature review and patent survey. Elsevier.
  • Oktav, E., Çatalkaya, E.Ç., Şengül, F., 2003. Zeytinyağı Endüstrisi Atıksularının Kimyasal Yöntemlerle Arıtımı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 5, 11-21.
  • Paraskeva, P., Diamadopoulos, E., 2006. Technologies for olive mill wastewater (OMW) treatment: a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 81, 1475-1485.
  • Pelillo, M., Rincón, B., Raposo, F., Martín, A., Borja, R., 2006. Mathematical modelling of the aerobic degradation of two-phase olive mill effluents in a batch reactor. Biochemical Engineering Journal 30, 308-315.
  • Sabbah, I., Marsook, T., Basheer, S., 2004. The effect of pretreatment on anaerobic activity of olive mill wastewater using batch and continuous systems. Process Biochemistry 39, 1947-1951.
  • Saez, L., Perez, J., Martinez, J., 1992. Low molecular weight phenolics attenuation during simulated treatment of wastewaters from olive oil mills in evaporation ponds. Water Research 26, 1261-1266.
  • Talinli, I., Anderson, G., 1992. Interference of hydrogen peroxide on the standard COD test. Water Research 26, 107-110.
  • Tufaner, F., 2019. Evaluation of COD and color removals of effluents from UASB reactor treating olive oil mill wastewater by Fenton process. Separation Science and Technology, 1-12.
  • Vlyssides, A.G., Loizides, M., Karlis, P.K., 2004. Integrated strategic approach for reusing olive oil extraction by-products. Journal of Cleaner production 12, 603-611.
  • Zirehpour, A., Jahanshahi, M., Rahimpour, A., 2012. Unique membrane process integration for olive oil mill wastewater purification. Separation and Purification Technology 96, 124-131.

Investigation of Olive Mill Wastewater Treatment with Advanced Oxidation Processes

Yıl 2020, Cilt: 10 Sayı: 3, 1597 - 1606, 01.09.2020
https://doi.org/10.21597/jist.687345

Öz

In this study, the effectiveness of ozone (O3), ozone+hydrogen peroxide (O3+H2O2) and fenton (Fe2++H2O2) processes were investigated in the treatment of olive mill wastewater obtained from an olive oil production facility operating in Balıkesir province. Firstly, the ozone generator was operated with a 10% capacity. Ozonation was performed for 6 hours at three different pH values (4.75, 10 and 11) and the maximum removal efficiency was calculated as 15.27% when the pH value was 11. Secondly, the ozone generator was operated with a 10% capacity and an avarage of 500 mg L-1 H2O2 was added. After this 6 hour experiment, the removal efficiency was obtained as 9.8%. Finally, in the fenton process, where the effects of Fe2+ (2.014 g L-1 and 4.028 g L-1) and H2O2 (19.05, 44.44 and 80 g L-1) concentrations were examined for the treatment of olive mill wastewater, the remained concentrations of COD decreased continuously at the and of the experinent when Fe2+ and H2O2 concentrations increased. The concentrations of Fe2+ and the H2O2 were set at 4.029 mg L-1 and 80 mg L-1 respectively, and COD removal was achieved at the rate of 81.94%. The results obtained from the experiments revealed that the fenton process has much more effeciency than other processes.

Proje Numarası

BAP 2012/099

Kaynakça

  • Akdemir, E.O., Ayğan, E., 2019. Pretreatment of olive mill wastewater by ultrafiltration process using chitosan. Desalination and Water Treatment 142, 49-55.
  • Al-Bsoul, A., Al-Shannag, M., Tawalbeh, M., Al-Taani, A.A., Lafi, W.K., Al-Othman, A., Alsheyab, M., 2020. Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes. Science of The Total Environment 700, 134576.
  • Ameta, R., Chohadia, A.K., Jain, A., Punjabi, P.B., 2018. Fenton and photo-fenton processes, Advanced Oxidation Processes for Waste Water Treatment. Elsevier, pp. 49-87.
  • Anonim, 1920. Standard methods for the examination of water and wastewater. American Public Health Association.
  • Anonim, 2004. Su Kirliliği Kontrolü Yönetmeliği, T.C. Çevre ve Şehircilik Bakanlığı, Resmi Gazete, Ankara.
  • Belaid, C., Khadraoui, M., Mseddi, S., Kallel, M., Elleuch, B., Fauvarque, J.F., 2013. Electrochemical treatment of olive mill wastewater: treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools. Journal of Environmental Sciences 25, 220-230.
  • Beltrán, F.J., Garcı́a-Araya, J.F., Frades, J., Alvarez, P., Gimeno, O., 1999. Effects of single and combined ozonation with hydrogen peroxide or UV radiation on the chemical degradation and biodegradability of debittering table olive industrial wastewaters. Water Research 33, 723-732.
  • Cabrera, F., Lopez, R., Martinez-Bordiú, A., de Lome, E.D., Murillo, J., 1996. Land treatment of olive oil mill wastewater. International Biodeterioration & Biodegradation 38, 215-225.
  • Chedeville, O., Debacq, M., Porte, C., 2009. Removal of phenolic compounds present in olive mill wastewaters by ozonation. Desalination 249, 865–869.
  • Coşkun, T., 2010. Zeytin karasularının fizikokimyasal ve membran proseslerle arıtımı, Fen Bilimleri Enstitüsü. Yıldız Teknik Üniversitesi, İstanbul.
  • Dehmani, Y., Ed-Dra, A., Zennouhi, O., Bouymajane, A., Filali, F.R., Nassiri, L., Abouarnadasse, S., 2020. Chemical characterization and adsorption of oil mill wastewater on Moroccan clay in order to be used in the agricultural field. Heliyon 6.
  • Demicheli, M., Bontoux, L., 1997. Novel technologies for olive oil manufacturing and their incidence on the environment. Fresenius Environmental Bulletin 6, 240-247.
  • Drouiche, M., Mignot, V.L., Lounici, H., Belhocine, D., Grib, H., Pauss, A., Mameri, N., 2004. A compact process for the treatment of olive mill wastewater by combining UF and UV/H2O2 techniques. Desalination 169, 81–88.
  • Fenton, H., 1894. LXXIII.—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions 65, 899-910.
  • Günay, A., Çetin, M., 2013. Determination of aerobic biodegradation kinetics of olive oil mill wastewater. International Biodeterioration & Biodegradation 85, 237-242.
  • Hodaifa, G., Gallardo, P.A.R., García, C.A., Kowalska, M., Seyedsalehi, M., 2019. Chemical oxidation methods for treatment of real industrial olive oil mill wastewater. Journal of the Taiwan Institute of Chemical Engineers 97, 247-254.
  • Karpouzas, D.G., Ntougias, S., Iskidou, E., Rousidou, C., Papadopoulou, K.K., Zervakis, G.I., Ehaliotis, C., 2010. Olive mill wastewater affects the structure of soil bacterial communities. Applied soil ecology 45, 101-111.
  • Klassen, N.V., Marchington, D., McGowan, H.C., 1994. H2O2 determination by the I3- method and by KMnO4 titration. Analytical Chemistry 66, 2921-2925.
  • Köseoğlu, O., 2006. The effect of the extraction systems on the quality and bitterness of the olive oil.
  • Kul, S., Boncukcuoğlu, R., Yilmaz, A.E., Fil, B.A., 2015. Treatment of olive mill wastewater with electro-oxidation method. Journal of the Electrochemical Society 162, G41-G47.
  • Kul, S., Nuhoğlu, A., 2020. Removal Kinetics of Olive-Mill Wastewater in a Batch-Operated Aerobic Bioreactor. Journal of Environmental Engineering 146, 04019122.
  • Mantzavinos, D., Kalogerakis, N., 2005. Treatment of olive mill effluents: Part I. Organic matter degradation by chemical and biological processes—an overview. Environment international 31, 289-295.
  • Marmanis, D., Dermentzis, K., Christoforidis, A., Diamantis, V., Ouzounis, K., Agapiou, A., Stylianou, M., 2019. Electrochemical treatment of olive mill waste powered by photovoltaic solar energy. Journal of Power Technologies 98, 377-381.
  • Masghouni, M., Hassairi, M., 2000. Energy applications of olive-oil industry by-products:—I. The exhaust foot cake. Biomass and Bioenergy 18, 257-262.
  • McNamara, C.J., Anastasiou, C.C., O’Flaherty, V., Mitchell, R., 2008. Bioremediation of olive mill wastewater. International Biodeterioration & Biodegradation 61, 127-134.
  • Mert, B.K., Yonar, T., Kiliç, M.Y., Kestioğlu, K., 2010. Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes. Journal of hazardous materials 174, 122-128.
  • Minussi, R.C., Miranda, M.A., Silva, J.A., Ferreira, C.V., Aoyama, H., Marangoni, S., Rotilio, D., Pastore, G.M., Durán, N., 2007. Purification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole. African Journal of Biotechnology 6.
  • Morillo, J., Antizar-Ladislao, B., Monteoliva-Sánchez, M., Ramos-Cormenzana, A., Russell, N., 2009. Bioremediation and biovalorisation of olive-mill wastes. Applied Microbiology and Biotechnology 82, 25.
  • Niaounakis, M., Halvadakis, C.P., 2006. Olive processing waste management: literature review and patent survey. Elsevier.
  • Oktav, E., Çatalkaya, E.Ç., Şengül, F., 2003. Zeytinyağı Endüstrisi Atıksularının Kimyasal Yöntemlerle Arıtımı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 5, 11-21.
  • Paraskeva, P., Diamadopoulos, E., 2006. Technologies for olive mill wastewater (OMW) treatment: a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 81, 1475-1485.
  • Pelillo, M., Rincón, B., Raposo, F., Martín, A., Borja, R., 2006. Mathematical modelling of the aerobic degradation of two-phase olive mill effluents in a batch reactor. Biochemical Engineering Journal 30, 308-315.
  • Sabbah, I., Marsook, T., Basheer, S., 2004. The effect of pretreatment on anaerobic activity of olive mill wastewater using batch and continuous systems. Process Biochemistry 39, 1947-1951.
  • Saez, L., Perez, J., Martinez, J., 1992. Low molecular weight phenolics attenuation during simulated treatment of wastewaters from olive oil mills in evaporation ponds. Water Research 26, 1261-1266.
  • Talinli, I., Anderson, G., 1992. Interference of hydrogen peroxide on the standard COD test. Water Research 26, 107-110.
  • Tufaner, F., 2019. Evaluation of COD and color removals of effluents from UASB reactor treating olive oil mill wastewater by Fenton process. Separation Science and Technology, 1-12.
  • Vlyssides, A.G., Loizides, M., Karlis, P.K., 2004. Integrated strategic approach for reusing olive oil extraction by-products. Journal of Cleaner production 12, 603-611.
  • Zirehpour, A., Jahanshahi, M., Rahimpour, A., 2012. Unique membrane process integration for olive oil mill wastewater purification. Separation and Purification Technology 96, 124-131.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği / Environment Engineering
Yazarlar

Fatma Ekmekyapar Torun 0000-0002-2289-176X

İbrahim Cengiz 0000-0003-3171-6629

Sinan Kul 0000-0002-7824-756X

Proje Numarası BAP 2012/099
Yayımlanma Tarihi 1 Eylül 2020
Gönderilme Tarihi 10 Şubat 2020
Kabul Tarihi 6 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 3

Kaynak Göster

APA Ekmekyapar Torun, F., Cengiz, İ., & Kul, S. (2020). Zeytin Karasuyunun İleri Oksidasyon Prosesleri İle Arıtımının İncelenmesi. Journal of the Institute of Science and Technology, 10(3), 1597-1606. https://doi.org/10.21597/jist.687345
AMA Ekmekyapar Torun F, Cengiz İ, Kul S. Zeytin Karasuyunun İleri Oksidasyon Prosesleri İle Arıtımının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2020;10(3):1597-1606. doi:10.21597/jist.687345
Chicago Ekmekyapar Torun, Fatma, İbrahim Cengiz, ve Sinan Kul. “Zeytin Karasuyunun İleri Oksidasyon Prosesleri İle Arıtımının İncelenmesi”. Journal of the Institute of Science and Technology 10, sy. 3 (Eylül 2020): 1597-1606. https://doi.org/10.21597/jist.687345.
EndNote Ekmekyapar Torun F, Cengiz İ, Kul S (01 Eylül 2020) Zeytin Karasuyunun İleri Oksidasyon Prosesleri İle Arıtımının İncelenmesi. Journal of the Institute of Science and Technology 10 3 1597–1606.
IEEE F. Ekmekyapar Torun, İ. Cengiz, ve S. Kul, “Zeytin Karasuyunun İleri Oksidasyon Prosesleri İle Arıtımının İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 3, ss. 1597–1606, 2020, doi: 10.21597/jist.687345.
ISNAD Ekmekyapar Torun, Fatma vd. “Zeytin Karasuyunun İleri Oksidasyon Prosesleri İle Arıtımının İncelenmesi”. Journal of the Institute of Science and Technology 10/3 (Eylül 2020), 1597-1606. https://doi.org/10.21597/jist.687345.
JAMA Ekmekyapar Torun F, Cengiz İ, Kul S. Zeytin Karasuyunun İleri Oksidasyon Prosesleri İle Arıtımının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:1597–1606.
MLA Ekmekyapar Torun, Fatma vd. “Zeytin Karasuyunun İleri Oksidasyon Prosesleri İle Arıtımının İncelenmesi”. Journal of the Institute of Science and Technology, c. 10, sy. 3, 2020, ss. 1597-06, doi:10.21597/jist.687345.
Vancouver Ekmekyapar Torun F, Cengiz İ, Kul S. Zeytin Karasuyunun İleri Oksidasyon Prosesleri İle Arıtımının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(3):1597-606.