Araştırma Makalesi
BibTex RIS Kaynak Göster

4-İzopropil-N, N-Bis (4-Azidofenil) Anilin molekülünün (IPAPA) Spektroskopik Karşılaştırması: DFT ve MEP Analizi

Yıl 2020, Cilt: 10 Sayı: 3, 1799 - 1810, 01.09.2020
https://doi.org/10.21597/jist.687723

Öz

4-izopropil-N,N-Bis (4-Azidofenil) Anilin (IPAPA) için nükleer manyetik rezonans, titreşimsel, yapısal ve elektronik özellikler DFT yönteminin kuantum kimyasal hesaplamaları ile belirlenmiştir. Sonuçlar deneysel 1H-NMR spektral verileri ile karşılaştırıldı. Teorik kimyasal hesaplamalar ve deneysel değerler uyum içindeydi. HOMO ve LUMO'nun bant boşluğu, IPAPA molekülünün kimyasal olarak aktif olduğunu ve monomerde yük transferine sahip olduğunu gösterir. Ek olarak, moleküler elektrostatik potansiyel (MEPS) haritaları IPAPA molekülünün reaktif bölgelerini tanımlamak için çizildi. Yoğunluk fonksiyonel teorisinin (DFT), CAM-B3LYP metotları olarak adlandırılan hibrid fonksiyonel B3LYP ve hibrid değişim-korelasyon fonksiyonu çalışma yöntemi olarak seçilmiştir. Her iki yöntemde de, moleküler optimizasyon ve elektronik özellikler 6-311 ++ G (d, p) baz seti kullanılarak elde edildi. Ek olarak, HOMO ve LUMO enerjileri küresel reaktiviteyi tanımlamak ve kimyasal kararlılığı belirlemek için kullanılmıştır.

Kaynakça

  • Bourass M, El Alamy, A, & Bouachrine, M. (2019). Structural and photophysical studies of triphenylamine-based nonlinear optical dyes: effects of π-linker moieties on the D-π-A structure. Comptes Rendus Chimie, 22(5), 373-385.
  • Boxi S, Jana, D, & Ghorai, BK. (2019). Synthesis and optical properties of bipolar quinoxaline-triphenylamine based stilbene compounds. Optical Materials: X, 1, 100013.
  • Boyd RJ. (2019). Theoretical and Computational Chemistry. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering: Elsevier.
  • Damaceanu M-D, Constantin, C-P, Bruma, M, & Begunov, RS. (2018). The photo-optical and electrochemical activity promoted by trifluoromethyl-substituted and ortho-catenated triphenylamine core in poly(ether-imide)s. Polymer, 151, 34-46.
  • Duan L, Chen, Y, Zong, X, Liu, R, Sun, Z, Liang, M, Wu, Q, & Xue, S. (2019). Facile synthesis of triphenylamine-based hole-transporting materials for planar perovskite solar cells. Journal of Power Sources, 435, 226767.
  • Dwivedi A, Srivastava, AK, & Bajpai, A. (2015). Vibrational spectra, HOMO, LUMO, MESP surfaces and reactivity descriptors of amylamine and its isomers: A DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 343-351.
  • Gu D, Yang, G, He, Y, Qi, B, Wang, G, & Su, Z. (2009). Triphenylamine-based pH chemosensor: Synthesis, crystal structure, photophysical properties and computational studies. Synthetic Metals, 159(23), 2497-2501.
  • Jayashree A, Narayana, B, Kumar, SM, Raghi, KR, Sarojini, BK, & Kumar, TKM. (2019). Synthesis, X-ray crystal structure, Hirshfeld surface analysis, DFT, MESP and molecular docking studies of 2-(4-bromophenyl)-1-(3-fluoro-4-methylphenyl)-4,5-diphenyl-1H-imidazole. Chemical Data Collections, 21, 100237.
  • Najare MS, Patil, MK, Nadaf, AA, Mantur, S, Inamdar, SR, & Khazi, IAM. (2019). Synthesis, characterization and photophysical properties of a new class of pyrene substituted 1,3,4-oxadiazole derivatives. Optical Materials, 88, 256-265.
  • Priya MK, Revathi, BK, Renuka, V, Sathya, S, & Asirvatham, PS. (2019). Molecular Structure, Spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) Analysis, HOMO-LUMO Energies, Mulliken, MEP and Thermal Properties of New Chalcone Derivative by DFT Calculation. Materials Today: Proceedings, 8, 37-46.
  • Priyatha E, Sathishkumar, C, Palanisami, N, Venkatachalam, S, & Venkateswaran, R. (2019). Conjugated hole-transport molecules based on triphenylamine and aminoflourene: Synthesis, structural, solvatochromic and electrochemical properties. Journal of Molecular Structure, 1179, 145-153.
  • Qian X, Lan, X, Yan, R, He, Y, Huang, J, & Hou, L. (2017). T-shaped (D)2–A–π–A type sensitizers incorporating indoloquinoxaline and triphenylamine for organic dye-sensitized solar cells. Electrochimica Acta, 232, 377-386.
  • Sęk D, Kotowicz, S, Kula, S, Siwy, M, Szłapa-Kula, A, Małecki, JG, Maćkowski, S, & Schab-Balcerzak, E. (2019). Thermal, spectroscopic, electrochemical, and electroluminescent characterization of malononitrile derivatives with triphenylamine structure. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 210, 136-147.
  • Srivastava AK, Pandey, AK, Jain, S, & Misra, N. (2015). FT-IR spectroscopy, intra-molecular C−H⋯O interactions, HOMO, LUMO, MESP analysis and biological activity of two natural products, triclisine and rufescine: DFT and QTAIM approaches. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 682-689.
  • Steponaitis M, Komskis, R, Kamarauskas, E, Malinauskas, T, Jursenas, S, & Getautis, V. (2019). Investigation of photophysical properties of triphenylamine phenylethenyl derivatives containing tertiary amine groups. Dyes and Pigments, 166, 122-129.
  • Téllez Soto CA, Costa, AC, Ramos, JM, Vieira, LS, Rost, NCV, Versiane, O, Rangel, JL, Mondragón, MA, Raniero, L, & Martin, AA. (2013). Surface enhanced Raman scattering, electronic spectrum, natural bond orbital, and mulliken charge distribution in the normal modes of diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 546-555.
  • Weng D, Shi, Y, Zheng, J, & Xu, C. (2016). High performance black-to-transmissive electrochromic device with panchromatic absorption based on TiO2-supported viologen and triphenylamine derivatives. Organic Electronics, 34, 139-145.
  • Yadav SB, Kothavale, S, & Sekar, N. (2019). Triphenylamine and N-phenyl carbazole-based coumarin derivatives: Synthesis, solvatochromism, acidochromism, linear and nonlinear optical properties. Journal of Photochemistry and Photobiology A: Chemistry, 382, 111937.
  • Yadav SB, Sonvane, SS, & Sekar, N. (2020). Novel blue-green emitting NLOphoric triphenylamine-imidazole based donor-π-acceptor compound: Solvatochromism, DFT, TD-DFT and non-linear optical studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, 117421.
  • Yoosuf M, Pradhan, SC, Soman, S, & Gopidas, KR. (2019). Triple bond rigidified anthracene-triphenylamine sensitizers for dye-sensitized solar cells. Solar Energy, 188, 55-65.

Spectroscopic Comparison of 4-Isopropyl-N, N-Bis (4-Azidophenyl) Aniline molecule (IPAPA): DFT and MEP Analysis

Yıl 2020, Cilt: 10 Sayı: 3, 1799 - 1810, 01.09.2020
https://doi.org/10.21597/jist.687723

Öz

Nuclear magnetic resonance, vibrational, structural and electronic properties for 4-isopropyl-N, N-Bis (4-azidophenyl) aniline (IPAPA) were determined by quantum chemical calculations of the DFT method. The results were compared with experimental 1H-NMR spectral data. Theoretical chemical calculations and experimental values were in harmony. The band gap of HOMO - LUMO indicates that the IPAPA molecule is chemically active and has charge transfer in the monomer. In addition, molecular electrostatic potential (MEPS) maps were drawn to identify the reactive regions of the IPAPA molecule. Hybrid functional B3LYP and hybrid exchange–correlation functional named CAM-B3LYP methods of density functional theory (DFT) were selected as the study method. In both methods, molecular optimization and electronic properties were obtained by using 6-311 ++ G (d, p) base set. In addition, HOMO and LUMO energies have been used to identify spherical reactivity and to determine chemical stability.

Kaynakça

  • Bourass M, El Alamy, A, & Bouachrine, M. (2019). Structural and photophysical studies of triphenylamine-based nonlinear optical dyes: effects of π-linker moieties on the D-π-A structure. Comptes Rendus Chimie, 22(5), 373-385.
  • Boxi S, Jana, D, & Ghorai, BK. (2019). Synthesis and optical properties of bipolar quinoxaline-triphenylamine based stilbene compounds. Optical Materials: X, 1, 100013.
  • Boyd RJ. (2019). Theoretical and Computational Chemistry. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering: Elsevier.
  • Damaceanu M-D, Constantin, C-P, Bruma, M, & Begunov, RS. (2018). The photo-optical and electrochemical activity promoted by trifluoromethyl-substituted and ortho-catenated triphenylamine core in poly(ether-imide)s. Polymer, 151, 34-46.
  • Duan L, Chen, Y, Zong, X, Liu, R, Sun, Z, Liang, M, Wu, Q, & Xue, S. (2019). Facile synthesis of triphenylamine-based hole-transporting materials for planar perovskite solar cells. Journal of Power Sources, 435, 226767.
  • Dwivedi A, Srivastava, AK, & Bajpai, A. (2015). Vibrational spectra, HOMO, LUMO, MESP surfaces and reactivity descriptors of amylamine and its isomers: A DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 343-351.
  • Gu D, Yang, G, He, Y, Qi, B, Wang, G, & Su, Z. (2009). Triphenylamine-based pH chemosensor: Synthesis, crystal structure, photophysical properties and computational studies. Synthetic Metals, 159(23), 2497-2501.
  • Jayashree A, Narayana, B, Kumar, SM, Raghi, KR, Sarojini, BK, & Kumar, TKM. (2019). Synthesis, X-ray crystal structure, Hirshfeld surface analysis, DFT, MESP and molecular docking studies of 2-(4-bromophenyl)-1-(3-fluoro-4-methylphenyl)-4,5-diphenyl-1H-imidazole. Chemical Data Collections, 21, 100237.
  • Najare MS, Patil, MK, Nadaf, AA, Mantur, S, Inamdar, SR, & Khazi, IAM. (2019). Synthesis, characterization and photophysical properties of a new class of pyrene substituted 1,3,4-oxadiazole derivatives. Optical Materials, 88, 256-265.
  • Priya MK, Revathi, BK, Renuka, V, Sathya, S, & Asirvatham, PS. (2019). Molecular Structure, Spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) Analysis, HOMO-LUMO Energies, Mulliken, MEP and Thermal Properties of New Chalcone Derivative by DFT Calculation. Materials Today: Proceedings, 8, 37-46.
  • Priyatha E, Sathishkumar, C, Palanisami, N, Venkatachalam, S, & Venkateswaran, R. (2019). Conjugated hole-transport molecules based on triphenylamine and aminoflourene: Synthesis, structural, solvatochromic and electrochemical properties. Journal of Molecular Structure, 1179, 145-153.
  • Qian X, Lan, X, Yan, R, He, Y, Huang, J, & Hou, L. (2017). T-shaped (D)2–A–π–A type sensitizers incorporating indoloquinoxaline and triphenylamine for organic dye-sensitized solar cells. Electrochimica Acta, 232, 377-386.
  • Sęk D, Kotowicz, S, Kula, S, Siwy, M, Szłapa-Kula, A, Małecki, JG, Maćkowski, S, & Schab-Balcerzak, E. (2019). Thermal, spectroscopic, electrochemical, and electroluminescent characterization of malononitrile derivatives with triphenylamine structure. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 210, 136-147.
  • Srivastava AK, Pandey, AK, Jain, S, & Misra, N. (2015). FT-IR spectroscopy, intra-molecular C−H⋯O interactions, HOMO, LUMO, MESP analysis and biological activity of two natural products, triclisine and rufescine: DFT and QTAIM approaches. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 682-689.
  • Steponaitis M, Komskis, R, Kamarauskas, E, Malinauskas, T, Jursenas, S, & Getautis, V. (2019). Investigation of photophysical properties of triphenylamine phenylethenyl derivatives containing tertiary amine groups. Dyes and Pigments, 166, 122-129.
  • Téllez Soto CA, Costa, AC, Ramos, JM, Vieira, LS, Rost, NCV, Versiane, O, Rangel, JL, Mondragón, MA, Raniero, L, & Martin, AA. (2013). Surface enhanced Raman scattering, electronic spectrum, natural bond orbital, and mulliken charge distribution in the normal modes of diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 546-555.
  • Weng D, Shi, Y, Zheng, J, & Xu, C. (2016). High performance black-to-transmissive electrochromic device with panchromatic absorption based on TiO2-supported viologen and triphenylamine derivatives. Organic Electronics, 34, 139-145.
  • Yadav SB, Kothavale, S, & Sekar, N. (2019). Triphenylamine and N-phenyl carbazole-based coumarin derivatives: Synthesis, solvatochromism, acidochromism, linear and nonlinear optical properties. Journal of Photochemistry and Photobiology A: Chemistry, 382, 111937.
  • Yadav SB, Sonvane, SS, & Sekar, N. (2020). Novel blue-green emitting NLOphoric triphenylamine-imidazole based donor-π-acceptor compound: Solvatochromism, DFT, TD-DFT and non-linear optical studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, 117421.
  • Yoosuf M, Pradhan, SC, Soman, S, & Gopidas, KR. (2019). Triple bond rigidified anthracene-triphenylamine sensitizers for dye-sensitized solar cells. Solar Energy, 188, 55-65.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Ertuğrul Çiftci Bu kişi benim 0000-0001-5866-8597

Ahmet Çağrı Ata 0000-0002-2296-2265

Ümit Yıldıko 0000-0001-8627-9038

İsmail Çakmak 0000-0002-3191-7570

Yayımlanma Tarihi 1 Eylül 2020
Gönderilme Tarihi 11 Şubat 2020
Kabul Tarihi 28 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 3

Kaynak Göster

APA Çiftci, E., Ata, A. Ç., Yıldıko, Ü., Çakmak, İ. (2020). Spectroscopic Comparison of 4-Isopropyl-N, N-Bis (4-Azidophenyl) Aniline molecule (IPAPA): DFT and MEP Analysis. Journal of the Institute of Science and Technology, 10(3), 1799-1810. https://doi.org/10.21597/jist.687723
AMA Çiftci E, Ata AÇ, Yıldıko Ü, Çakmak İ. Spectroscopic Comparison of 4-Isopropyl-N, N-Bis (4-Azidophenyl) Aniline molecule (IPAPA): DFT and MEP Analysis. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2020;10(3):1799-1810. doi:10.21597/jist.687723
Chicago Çiftci, Ertuğrul, Ahmet Çağrı Ata, Ümit Yıldıko, ve İsmail Çakmak. “Spectroscopic Comparison of 4-Isopropyl-N, N-Bis (4-Azidophenyl) Aniline Molecule (IPAPA): DFT and MEP Analysis”. Journal of the Institute of Science and Technology 10, sy. 3 (Eylül 2020): 1799-1810. https://doi.org/10.21597/jist.687723.
EndNote Çiftci E, Ata AÇ, Yıldıko Ü, Çakmak İ (01 Eylül 2020) Spectroscopic Comparison of 4-Isopropyl-N, N-Bis (4-Azidophenyl) Aniline molecule (IPAPA): DFT and MEP Analysis. Journal of the Institute of Science and Technology 10 3 1799–1810.
IEEE E. Çiftci, A. Ç. Ata, Ü. Yıldıko, ve İ. Çakmak, “Spectroscopic Comparison of 4-Isopropyl-N, N-Bis (4-Azidophenyl) Aniline molecule (IPAPA): DFT and MEP Analysis”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 3, ss. 1799–1810, 2020, doi: 10.21597/jist.687723.
ISNAD Çiftci, Ertuğrul vd. “Spectroscopic Comparison of 4-Isopropyl-N, N-Bis (4-Azidophenyl) Aniline Molecule (IPAPA): DFT and MEP Analysis”. Journal of the Institute of Science and Technology 10/3 (Eylül 2020), 1799-1810. https://doi.org/10.21597/jist.687723.
JAMA Çiftci E, Ata AÇ, Yıldıko Ü, Çakmak İ. Spectroscopic Comparison of 4-Isopropyl-N, N-Bis (4-Azidophenyl) Aniline molecule (IPAPA): DFT and MEP Analysis. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:1799–1810.
MLA Çiftci, Ertuğrul vd. “Spectroscopic Comparison of 4-Isopropyl-N, N-Bis (4-Azidophenyl) Aniline Molecule (IPAPA): DFT and MEP Analysis”. Journal of the Institute of Science and Technology, c. 10, sy. 3, 2020, ss. 1799-10, doi:10.21597/jist.687723.
Vancouver Çiftci E, Ata AÇ, Yıldıko Ü, Çakmak İ. Spectroscopic Comparison of 4-Isopropyl-N, N-Bis (4-Azidophenyl) Aniline molecule (IPAPA): DFT and MEP Analysis. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(3):1799-810.