Araştırma Makalesi
BibTex RIS Kaynak Göster

The Protective Effect of Zingeron Against Salt Stress in Barley

Yıl 2020, Cilt: 10 Sayı: 4, 2932 - 2942, 15.12.2020
https://doi.org/10.21597/jist.686577

Öz

Among the abiotic stresses, drought is the most restrictive factor in the production of agricultural products. And the salinity comes after drought as a second major factor. It is foreseen that this problem will get worse as an increase in the salinity of the soil is predicted due to climatic changes. Environmental stress factors cause a decrease in the defense system activities of organisms and an increase in the reactive oxygen species (ROS). The increasing ROSs cause DNA and RNA damage. In this study, it is aimed to determine the protective effect of zingeron in Hordeum vulgare L. seeds exposed to salt stress in these 5 different doses (50, 100, 150, 200 ve 250 mM). IRAP (Inter Retrotransposon Amplified Polymorphism) technique has been used to determine the values of GTS (Genomic Template Stability) and polymorphisms constituted of the retrotransposon mobility triggered by the salinity stress. According to the results of IRAP analysis, polymorphism values of barley samples exposed to salt stress vary between 40.74% and 18.51% and the average is 28.88%. GTS value varies between 81.49% and 59.26% and its average is 71.12%. In addition to salt stress, the value of polymorphism decreased in the range of 14.81% to 33.33% in barley samples where zingeron was applied, and the average decreased to 24.43%. GTS value increased from 66.67% to 85.19%, and its average increased to 75.57%. It was determined from the study results that zingeron alleviates salt stress and reduces retrotansposon mobility.

Kaynakça

  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W, 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in plant science, 7: 1-11.
  • Angers B, Castonguay E, Massicotte R, 2010. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol. Eco., 19:1283-1295.
  • Atienzar FA, Conradi M, Evenden AJ, Jha AN and Depledge MH, 1999. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environmental Toxicology Chemster, 18, 2275-2282.
  • Bacilioa, M., Morenoa, M., Bashana, Y., 2016. Mitigation of negative effects of progressive soil salinity gradients by application of humic asits ve inoculation with Pseudomonas stutzeri in a salttolerant ve a salt-susceptible pepper. Applied Soil Ecology, 107: 394-404.
  • Bennetzen, J.L., 2000. Transposable elements contributions to plant gene and genome evolution. Plant Molecular Biology, 42:251-269.
  • Bilkis, A., Islam, M.R., Hafiz, M.H.R., Hasan, M.A., 2016. Effect of NaCl induced salinity on some physiological ve agronomic traits of wheat. Pakistan Journal of Botany, 48 (2): 455-460.
  • Breusegem FV, Vranová E, Dat J, Inz D, 2001. The Role of Active Oxygen Species in Plant Signal Transduction. Plant Science, 161: 405-414.
  • Chaparzadeh N, D'Amico ML, Khavari-Nejad RA, Izzo R, Navari-Izzo F, 2004. Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol Biochem, 42: 695-701.
  • Colmer TD, Munns R, Flowers TJ, 2005. Improving salt tolerance of wheat and barley: future prospects. Australian Journal of Experimental Agriculture, 45: 1425–1443.
  • Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, 2017. Epigenetic regulation of antagonistic receptors gives rice burst resistance with yield balance. Science, 355:962 – 965.
  • Dorri M, Hashemitabar S, Hosseinzadeh H, 2018. Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities. a review. Drug and chemical toxicology, 41 (3): 338-351.
  • Ekmekçi E, Apan M, Kara T, 2005. Tuzluluğun bitki gelişimine etkisi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(3): 118-125.
  • Fanoudi S, Alavi MS, Karimi G, Hosseinzadeh H, 2018. Milk thistle (Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chemster Toxicology, 1-15.
  • Federoff, N., 2000. Transposons and Genome Evolutions in Plants. Proceedings of the National Academy of Sciences, 97 (13):7002-7007.
  • Food and Agriculture Organization [FAO]. (2018). Erişim Tarihi: 12 Aralık 2019, http://faostat3.fao.org
  • Friedli, M. and Trono, D., 2015. The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol., 31:429-51. doi: 10.1146/annurev-cellbio-100814-125514.
  • Guahk G, Sang K H, Hyuk-Sang J, Chulhun K, Chang-Hyu K, Yoon B K, Sun Y K, 2010. Zingiber officinale Protects HaCaT cells and C57BL/6 Mice from Ultraviolet B-Induced Inflammation, Journal of Medicinal Food, 13(3):673-680.
  • Gupta M, Abu Ghannam N, Gallaghar E. 2010. Barley for brewing: characteristic changes during malting, brewing and applications of its by products. Comprehensive reviews in food science and food safety, 9 (3):318-328.
  • Hamad-Mecbur, H. Yilmaz, S. Temel, A., Sahin, K., Gozukirmizi, N., 2014. Effects of epirubicin on barley seedlings. Toxicology Indiana Health, 30:52-59.
  • He P, Ma Y, Dai HY, Li LG, Liu YX, Li H, Zhao GL, Zhang ZH, 2012. Characterization of the hormone and stress-induced expression of FaRE1 retrotransposon promoter in strawberry. Journal of Plant Biology, 55(1): 1-7.
  • Hosseini, H. and Hosseinzadeh, H. 2018. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: a review Biomed Pharmacother, 99: 411-421.
  • ISTA (International Seed Testing Association), 2013. International Rules for Seed Testing Edition, Zurich, Switzerland.
  • Ito H, Gaubert EB, Mirouze M, Vaillant I, Paszkowski J, 2011. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 472:115-119.
  • Joshi D, Srivastav S, Belemkar S, Dixit V A, 2017. Zingiber officinale and 6-gingerol alleviate liver and kidney dysfunctions and oxidative stress induced by mercuric chloride in male rats: A protective approach. Biomedicine & Pharmacotherapy. Volume 91:645-655.
  • Kamel A, Bourguignon L, Marcos M, Ducher M, Goutelle S, 2017. Is Trough Concentration of Vancomycin Predictive of the Area Under the Curve? A Clinical Study in Elderly Patients. Therapeutic drug monitoring, 39(1):83-87.
  • Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Ese G, 2019. Protective effects of zingerone on cisplatin-induced nephrotoxicity in female rats. Environmental science and pollution research international, 26(22):22562-22574.
  • Kendirli B, Çakmak B, Uçar Y, 2005. Salinity in the Southeastern Anatolia Project (GAP). Turkey: Issues and Options. İrrigation and Drainage, 54 (1): 115-122.
  • Kim MK, Chung SW, Kim DH, Kim JM, Lee EK, Kim JY, Ha YM, Kim YH, No JK, Chung HS, Park KY, Rhee SH, Choi JS, Yu BP, Yokozawa T, Kim YJ, Chung HY, 2010. Modulation of age-related NF-kappa B activation by dietary zingerone via MAPK pathway, Experimental gerontology, 45:419–426.
  • Lee J, Oh SW, Shin SW, Lee KW, Cho JY, Lee J, 2018. Zingerone protects keratinocyte stem cells from UVB-induced damage, Chemico-biological interactions, 279: 27-33.
  • Lerat E, 2009. Identifying repeats and transposable elements in sequenced genomes: How to find your way through the dense forest of programs. Heredity, 104: 520-523.
  • Liu L, Wang YX, Zhou J, Long F, Sun HW, Liu Y, Chen YZ, Jiang CL, 2005. Rapid non-genomic inhibitory effects of glucocorticoids on human neutrophil degranulation. Inflammation research, 54(1):37-41.
  • Ma X, Dong H, Li W, 2011. Genetic improvement of cotton tolerance to salinity stress. Afr. J. Agric. Res., 6 6798-6803, 10.5897/AJARX11.052.
  • Mahmood K, 2011. Salinity tolerance in barley (Hordeum vulgare L.): Effects of varying NaCl, K+/Na+and NaHCO3 levels on cultivars differing in tolerance. Pakistan Journal of Botany, 43 (3): 1651–1654.
  • Ekmekçi, E., Apan, M., Kara, T., (2005). Tuzluluğun bitki gelişimine etkisi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(3): 118-125.
  • Manan, A., Ayyub, C.M., Pervez, M.A., Ahmad, R., 2016. Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical ve physiological processes. Pakistan Journal of Agricultural Science, 53(1): 35-41.
  • Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA, 2011a. Over-expression of a Na+- and K+-permeable HKT transporter in barley improves salt tolerance. The Plant journal : for cell and molecular biology, 68 (3): 468–479.
  • Mian A, Senadheera P, Maathuis, FJ, 2011b. Improving crop salt tolerance: anion and Cation Transporters as genetic engineering targets. Plant Stress, 5: 64–72.
  • Mittler R, 2002. Oxidative Stress, Antioxidants and Stress Tolerance. Trends in Plant Science, 7: 405-410.
  • Mohammadzadeh N, Mehri S, Hosseinzadeh H, 2017. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. Iranian journal of basic medical sciences, 20 (5): 538-551.
  • Munns R, Tester M, 2008. Mechanisms of salinity tolerance. Annual review of plant biology, 59: 651-681.
  • Na J-Y, Song K, Lee J-W, Kim S, Kwon J. 2016. Pretreatment of 6-shogaol attenuates oxidative stress and inflammation in middle cerebral artery occlusion-induced mice. European Journal of PharmacologyVolume 7885 October 2016Pages 241-247.
  • Othman Y, Al-Karaki G, Al-Tawaha AR, Al-Horani A. 2006. Variation in germination and ion uptake in barley genotypes under salinity conditions. World journal of agricultural sciences, 2:11-15.
  • Peng XX, Tang XK, Zhou PL, Hu YJ, Deng XB, He Y, Wang HH. 2011. Isolation and Expression Patterns of Rice WRKY82 Transcription Factor Gene Responsive to Both Biotic and Abiotic Stresses. Agricultural Sciences, 10(6):893-901.
  • Roberts AP, Chandler M, Courvalın P, Guédo, G, Mullany P, Pembroke T, Rood JI, Smith J, Summers AO, Tsuda M, Berg DE, 2008. Revised Nomenclature for Transposable Genetic Elements. Plasmid, 60: 167-173.
  • Roy SJ, Negrão S, Tester M, 2014. Salt tolerant crop plants. Current Opinion in Biotechnology 26, 115–124.
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW, 1984. Ribosomal DNAsepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population Dynamics. Proceedings of the National Academy Sciences, 81: 8014-8019.
  • Sikder, M.U., Asadul Haque, M., Jodder, R., Kumar, T., Mondal, D., 2016. Polythene mulch ve ırrigation for mitigation of salinity effects on maize (Zea mays L.). The Agriculturists, 14 (2): 01-13.
  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J, 2011. Identification of a functional transposon insertion in the maize domestication gene tb1. Nature genetics, 43: 1160 – 1163.
  • Sun ZX, Wang YN, Mou FP, Tian YP, Chen L, Zhang SL, Jiang Q, Li X, 2016. Genome-wide small RNA analysis of soybean reveals auxin-responsive microRNAs that are differentially expressed in response to salt stress in root apex. Frontiers in plant science, 18;6:1273
  • Tavakkoli A, Ahmadi A, Razavi BM, Hosseinzadeh H, 2017. Black seed (Nigella sativa) and its constituent thymoquinone as an antidote or a protective agent against natural or chemical toxicities Iran. Iranian journal of pharmaceutical research: IJPR, 16: 2-23.
  • Temel, A., Gözükirmizi, N., 2013. Analysis of retrotransposition and DNA methylation in barley callus culture. Acta Biologica Hungarica, 64 (1):86-95.
  • Thongrakard Rossella Visa, Titone Carlo F, Ciro I, 2014. Turmeric Toxicity in A431 Epidermoid Cancer Cells Associates with Autophagy Degradation of Anti-apoptotic and Anti-autophagic p53 Mutant. Phytotherapy research: PTR, 28(12):1761-1790.
  • TÜİK (Türkiye İstatistik Kurumu). 2019. http://www.tuik.gov.tr /UstMenu. do?metod =temelist. Son Erişim: 12.11.2019.
  • Vipin A.V., Raksha Rao K., Nawneet Kumar K., Anu Appaiah K.A., Venkateswaran G. 2017. Protective effects of phenolics rich extract of ginger against Aflatoxin B1-induced oxidative stress and hepatotoxicity. Biomedicine & pharmacotherapy. 91:415-424. doi: 10.1016/j.biopha.2017.04.107
  • Voronova A, Belevich V, Rungis D, Jansons A, 2014. Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genetics Genomes, 10: 937-951.
  • Wessler SR, 2009. Eukaryotic transposable elements: teaching old genomes new tricks’’, http://www.plantbio. uga. edu/ wesslerlab/The_Implicit_Genome.pdf, Son Erişim Tarihi: 10.03.2017.
  • Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., et al., 2007. A Unified Classification System for Eukaryotic Transposable Elements. Nature Genetics, 8:973-982.
  • Yağcı, S., 2015. Tuzluluk Stresinin Buğdayda (Triticum aestivum L.) Meydana Getirmiş Olduğu Retrotranspozon Polimorfizmi Üzerine Β-Östradiol’ün Etkisinin Belirlenmesi. Yayımlanmamış Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, 31-34.
  • Yang P, Chen Y, Wu H, Fang W, Liang Q, Zheng Y, Olsson S, Zhang D, Zhou J, Wang Z, Zheng W, 2018. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Current genetics, 64(1):285-301.
  • Yigider, E., Taspinar, M.S., Sigmaz, B., Aydin, M., Agar, G., 2016. Humic acids protective activity against manganese induced LTR (long terminal repeat) retrotransposon polymorphism and genomic instability effects in Zea mays. Plant Gene, 6:13-17.

Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi

Yıl 2020, Cilt: 10 Sayı: 4, 2932 - 2942, 15.12.2020
https://doi.org/10.21597/jist.686577

Öz

Abiyotik stresler içerisinde tarım ürünlerinin üretimini en çok sınırlayan kuraklık olup, bunu tuzluluk faktörü takip etmektedir. İklimsel değişikler nedeniyle toprağın tuzluluk oranında artış beklendiği için bu sorunun daha da kötüleşeceği öngörülmektedir. Çevresel stres faktörleri, organizmaların savunma sistem aktivitelerinin azalmasına ve reaktif oksijen türlerinin (ROT) artmasına neden olmaktadır. Artan ROT’ lar ise DNA ve RNA hasarına neden olurlar. Bu çalışmada 5 farklı dozda (50, 100, 150, 200 ve 250 mM) tuz stresine maruz bırakılan Hordeum vulgare L. tohumlarında zingeronun koruyucu etkisinin tespiti amaçlanmıştır. Tuz stresinin tetiklediği retrotranspozonların hareketliliği ile oluşan polimorfizm ve GTS (Genomic Template Stability) seviyelerinin tespiti için IRAP (Inter Retrotransposon Amplified Polymorphism) tekniği kullanılmıştır. IRAP analizi sonuçlarından, tuz stresine maruz kalan arpa örneklerinin polimorfizm değerleri %18.51 ile %40.74 arasında değişiklik göstermekte olup ortalaması % 28.88’ dir. GTS değeri ise % 59.26 ile % 81.49 arasında değişiklik göstermekte ve ortalaması % 71.12’ dir. Tuz stresinin yanı sıra zingeron uygulanan arpa örneklerinde ise polimorfizm değeri azalarak % 14.81 ile % 33.33 aralığında elde edilmiş ve ortalaması ise % 24.43’e düşmüştür. GTS değeri % 66.67 ile % 85. 19 aralığına yükselmiş, ortalaması ise % 75.57’ ye çıkmıştır. Çalışma sonuçlarından zingeronun tuz stresini hafiflettiği ve retrotanspozon hareketliliğini azalttığı saptanmıştır.

Kaynakça

  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W, 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in plant science, 7: 1-11.
  • Angers B, Castonguay E, Massicotte R, 2010. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol. Eco., 19:1283-1295.
  • Atienzar FA, Conradi M, Evenden AJ, Jha AN and Depledge MH, 1999. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environmental Toxicology Chemster, 18, 2275-2282.
  • Bacilioa, M., Morenoa, M., Bashana, Y., 2016. Mitigation of negative effects of progressive soil salinity gradients by application of humic asits ve inoculation with Pseudomonas stutzeri in a salttolerant ve a salt-susceptible pepper. Applied Soil Ecology, 107: 394-404.
  • Bennetzen, J.L., 2000. Transposable elements contributions to plant gene and genome evolution. Plant Molecular Biology, 42:251-269.
  • Bilkis, A., Islam, M.R., Hafiz, M.H.R., Hasan, M.A., 2016. Effect of NaCl induced salinity on some physiological ve agronomic traits of wheat. Pakistan Journal of Botany, 48 (2): 455-460.
  • Breusegem FV, Vranová E, Dat J, Inz D, 2001. The Role of Active Oxygen Species in Plant Signal Transduction. Plant Science, 161: 405-414.
  • Chaparzadeh N, D'Amico ML, Khavari-Nejad RA, Izzo R, Navari-Izzo F, 2004. Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol Biochem, 42: 695-701.
  • Colmer TD, Munns R, Flowers TJ, 2005. Improving salt tolerance of wheat and barley: future prospects. Australian Journal of Experimental Agriculture, 45: 1425–1443.
  • Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, 2017. Epigenetic regulation of antagonistic receptors gives rice burst resistance with yield balance. Science, 355:962 – 965.
  • Dorri M, Hashemitabar S, Hosseinzadeh H, 2018. Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities. a review. Drug and chemical toxicology, 41 (3): 338-351.
  • Ekmekçi E, Apan M, Kara T, 2005. Tuzluluğun bitki gelişimine etkisi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(3): 118-125.
  • Fanoudi S, Alavi MS, Karimi G, Hosseinzadeh H, 2018. Milk thistle (Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chemster Toxicology, 1-15.
  • Federoff, N., 2000. Transposons and Genome Evolutions in Plants. Proceedings of the National Academy of Sciences, 97 (13):7002-7007.
  • Food and Agriculture Organization [FAO]. (2018). Erişim Tarihi: 12 Aralık 2019, http://faostat3.fao.org
  • Friedli, M. and Trono, D., 2015. The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol., 31:429-51. doi: 10.1146/annurev-cellbio-100814-125514.
  • Guahk G, Sang K H, Hyuk-Sang J, Chulhun K, Chang-Hyu K, Yoon B K, Sun Y K, 2010. Zingiber officinale Protects HaCaT cells and C57BL/6 Mice from Ultraviolet B-Induced Inflammation, Journal of Medicinal Food, 13(3):673-680.
  • Gupta M, Abu Ghannam N, Gallaghar E. 2010. Barley for brewing: characteristic changes during malting, brewing and applications of its by products. Comprehensive reviews in food science and food safety, 9 (3):318-328.
  • Hamad-Mecbur, H. Yilmaz, S. Temel, A., Sahin, K., Gozukirmizi, N., 2014. Effects of epirubicin on barley seedlings. Toxicology Indiana Health, 30:52-59.
  • He P, Ma Y, Dai HY, Li LG, Liu YX, Li H, Zhao GL, Zhang ZH, 2012. Characterization of the hormone and stress-induced expression of FaRE1 retrotransposon promoter in strawberry. Journal of Plant Biology, 55(1): 1-7.
  • Hosseini, H. and Hosseinzadeh, H. 2018. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: a review Biomed Pharmacother, 99: 411-421.
  • ISTA (International Seed Testing Association), 2013. International Rules for Seed Testing Edition, Zurich, Switzerland.
  • Ito H, Gaubert EB, Mirouze M, Vaillant I, Paszkowski J, 2011. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 472:115-119.
  • Joshi D, Srivastav S, Belemkar S, Dixit V A, 2017. Zingiber officinale and 6-gingerol alleviate liver and kidney dysfunctions and oxidative stress induced by mercuric chloride in male rats: A protective approach. Biomedicine & Pharmacotherapy. Volume 91:645-655.
  • Kamel A, Bourguignon L, Marcos M, Ducher M, Goutelle S, 2017. Is Trough Concentration of Vancomycin Predictive of the Area Under the Curve? A Clinical Study in Elderly Patients. Therapeutic drug monitoring, 39(1):83-87.
  • Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Ese G, 2019. Protective effects of zingerone on cisplatin-induced nephrotoxicity in female rats. Environmental science and pollution research international, 26(22):22562-22574.
  • Kendirli B, Çakmak B, Uçar Y, 2005. Salinity in the Southeastern Anatolia Project (GAP). Turkey: Issues and Options. İrrigation and Drainage, 54 (1): 115-122.
  • Kim MK, Chung SW, Kim DH, Kim JM, Lee EK, Kim JY, Ha YM, Kim YH, No JK, Chung HS, Park KY, Rhee SH, Choi JS, Yu BP, Yokozawa T, Kim YJ, Chung HY, 2010. Modulation of age-related NF-kappa B activation by dietary zingerone via MAPK pathway, Experimental gerontology, 45:419–426.
  • Lee J, Oh SW, Shin SW, Lee KW, Cho JY, Lee J, 2018. Zingerone protects keratinocyte stem cells from UVB-induced damage, Chemico-biological interactions, 279: 27-33.
  • Lerat E, 2009. Identifying repeats and transposable elements in sequenced genomes: How to find your way through the dense forest of programs. Heredity, 104: 520-523.
  • Liu L, Wang YX, Zhou J, Long F, Sun HW, Liu Y, Chen YZ, Jiang CL, 2005. Rapid non-genomic inhibitory effects of glucocorticoids on human neutrophil degranulation. Inflammation research, 54(1):37-41.
  • Ma X, Dong H, Li W, 2011. Genetic improvement of cotton tolerance to salinity stress. Afr. J. Agric. Res., 6 6798-6803, 10.5897/AJARX11.052.
  • Mahmood K, 2011. Salinity tolerance in barley (Hordeum vulgare L.): Effects of varying NaCl, K+/Na+and NaHCO3 levels on cultivars differing in tolerance. Pakistan Journal of Botany, 43 (3): 1651–1654.
  • Ekmekçi, E., Apan, M., Kara, T., (2005). Tuzluluğun bitki gelişimine etkisi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(3): 118-125.
  • Manan, A., Ayyub, C.M., Pervez, M.A., Ahmad, R., 2016. Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical ve physiological processes. Pakistan Journal of Agricultural Science, 53(1): 35-41.
  • Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA, 2011a. Over-expression of a Na+- and K+-permeable HKT transporter in barley improves salt tolerance. The Plant journal : for cell and molecular biology, 68 (3): 468–479.
  • Mian A, Senadheera P, Maathuis, FJ, 2011b. Improving crop salt tolerance: anion and Cation Transporters as genetic engineering targets. Plant Stress, 5: 64–72.
  • Mittler R, 2002. Oxidative Stress, Antioxidants and Stress Tolerance. Trends in Plant Science, 7: 405-410.
  • Mohammadzadeh N, Mehri S, Hosseinzadeh H, 2017. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. Iranian journal of basic medical sciences, 20 (5): 538-551.
  • Munns R, Tester M, 2008. Mechanisms of salinity tolerance. Annual review of plant biology, 59: 651-681.
  • Na J-Y, Song K, Lee J-W, Kim S, Kwon J. 2016. Pretreatment of 6-shogaol attenuates oxidative stress and inflammation in middle cerebral artery occlusion-induced mice. European Journal of PharmacologyVolume 7885 October 2016Pages 241-247.
  • Othman Y, Al-Karaki G, Al-Tawaha AR, Al-Horani A. 2006. Variation in germination and ion uptake in barley genotypes under salinity conditions. World journal of agricultural sciences, 2:11-15.
  • Peng XX, Tang XK, Zhou PL, Hu YJ, Deng XB, He Y, Wang HH. 2011. Isolation and Expression Patterns of Rice WRKY82 Transcription Factor Gene Responsive to Both Biotic and Abiotic Stresses. Agricultural Sciences, 10(6):893-901.
  • Roberts AP, Chandler M, Courvalın P, Guédo, G, Mullany P, Pembroke T, Rood JI, Smith J, Summers AO, Tsuda M, Berg DE, 2008. Revised Nomenclature for Transposable Genetic Elements. Plasmid, 60: 167-173.
  • Roy SJ, Negrão S, Tester M, 2014. Salt tolerant crop plants. Current Opinion in Biotechnology 26, 115–124.
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW, 1984. Ribosomal DNAsepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population Dynamics. Proceedings of the National Academy Sciences, 81: 8014-8019.
  • Sikder, M.U., Asadul Haque, M., Jodder, R., Kumar, T., Mondal, D., 2016. Polythene mulch ve ırrigation for mitigation of salinity effects on maize (Zea mays L.). The Agriculturists, 14 (2): 01-13.
  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J, 2011. Identification of a functional transposon insertion in the maize domestication gene tb1. Nature genetics, 43: 1160 – 1163.
  • Sun ZX, Wang YN, Mou FP, Tian YP, Chen L, Zhang SL, Jiang Q, Li X, 2016. Genome-wide small RNA analysis of soybean reveals auxin-responsive microRNAs that are differentially expressed in response to salt stress in root apex. Frontiers in plant science, 18;6:1273
  • Tavakkoli A, Ahmadi A, Razavi BM, Hosseinzadeh H, 2017. Black seed (Nigella sativa) and its constituent thymoquinone as an antidote or a protective agent against natural or chemical toxicities Iran. Iranian journal of pharmaceutical research: IJPR, 16: 2-23.
  • Temel, A., Gözükirmizi, N., 2013. Analysis of retrotransposition and DNA methylation in barley callus culture. Acta Biologica Hungarica, 64 (1):86-95.
  • Thongrakard Rossella Visa, Titone Carlo F, Ciro I, 2014. Turmeric Toxicity in A431 Epidermoid Cancer Cells Associates with Autophagy Degradation of Anti-apoptotic and Anti-autophagic p53 Mutant. Phytotherapy research: PTR, 28(12):1761-1790.
  • TÜİK (Türkiye İstatistik Kurumu). 2019. http://www.tuik.gov.tr /UstMenu. do?metod =temelist. Son Erişim: 12.11.2019.
  • Vipin A.V., Raksha Rao K., Nawneet Kumar K., Anu Appaiah K.A., Venkateswaran G. 2017. Protective effects of phenolics rich extract of ginger against Aflatoxin B1-induced oxidative stress and hepatotoxicity. Biomedicine & pharmacotherapy. 91:415-424. doi: 10.1016/j.biopha.2017.04.107
  • Voronova A, Belevich V, Rungis D, Jansons A, 2014. Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genetics Genomes, 10: 937-951.
  • Wessler SR, 2009. Eukaryotic transposable elements: teaching old genomes new tricks’’, http://www.plantbio. uga. edu/ wesslerlab/The_Implicit_Genome.pdf, Son Erişim Tarihi: 10.03.2017.
  • Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., et al., 2007. A Unified Classification System for Eukaryotic Transposable Elements. Nature Genetics, 8:973-982.
  • Yağcı, S., 2015. Tuzluluk Stresinin Buğdayda (Triticum aestivum L.) Meydana Getirmiş Olduğu Retrotranspozon Polimorfizmi Üzerine Β-Östradiol’ün Etkisinin Belirlenmesi. Yayımlanmamış Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, 31-34.
  • Yang P, Chen Y, Wu H, Fang W, Liang Q, Zheng Y, Olsson S, Zhang D, Zhou J, Wang Z, Zheng W, 2018. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Current genetics, 64(1):285-301.
  • Yigider, E., Taspinar, M.S., Sigmaz, B., Aydin, M., Agar, G., 2016. Humic acids protective activity against manganese induced LTR (long terminal repeat) retrotransposon polymorphism and genomic instability effects in Zea mays. Plant Gene, 6:13-17.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Moleküler Biyoloji ve Genetik / Moleculer Biology and Genetic
Yazarlar

Hüseyin Bulut 0000-0003-3424-7012

Yayımlanma Tarihi 15 Aralık 2020
Gönderilme Tarihi 8 Şubat 2020
Kabul Tarihi 14 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 4

Kaynak Göster

APA Bulut, H. (2020). Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi. Journal of the Institute of Science and Technology, 10(4), 2932-2942. https://doi.org/10.21597/jist.686577
AMA Bulut H. Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2020;10(4):2932-2942. doi:10.21597/jist.686577
Chicago Bulut, Hüseyin. “Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi”. Journal of the Institute of Science and Technology 10, sy. 4 (Aralık 2020): 2932-42. https://doi.org/10.21597/jist.686577.
EndNote Bulut H (01 Aralık 2020) Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi. Journal of the Institute of Science and Technology 10 4 2932–2942.
IEEE H. Bulut, “Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 4, ss. 2932–2942, 2020, doi: 10.21597/jist.686577.
ISNAD Bulut, Hüseyin. “Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi”. Journal of the Institute of Science and Technology 10/4 (Aralık 2020), 2932-2942. https://doi.org/10.21597/jist.686577.
JAMA Bulut H. Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:2932–2942.
MLA Bulut, Hüseyin. “Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi”. Journal of the Institute of Science and Technology, c. 10, sy. 4, 2020, ss. 2932-4, doi:10.21597/jist.686577.
Vancouver Bulut H. Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(4):2932-4.