Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Effect of Abamectin on Microbial Community and Biogas Production in Anaerobic Treatment

Yıl 2021, Cilt: 11 Sayı: 3, 1854 - 1865, 01.09.2021
https://doi.org/10.21597/jist.813237

Öz

Abamectin is a widely used pesticide in agriculture and animal husbandry and can cause multiple toxic effects on organisms. However, the mechanism of this toxic effect has not been completely elucidated yet. The continuous accumulation of abamectin in environmental environments can pose potential ecological risks, especially in aquatic environments. In this study, the effect of abamectin at different concentrations (0.25-5 mg L-1) on microorganisms and biogas production in anaerobic treatment was investigated in detail. The results showed that biogas production significantly reduced at abamectin concentrations above 2 mg L-1 because of the inhibition of microbial community. The amount of biogas significantly reduced due to the increase in abamectin concentration and it decreased at the percentage of 97% in the reactor containing 5 mg L-1 abamectin as compared to the control reactor. The CH4 content of biogas in control reactor was approximately 50% during the highest biogas production, while it decreased significantly due to the increase in abamectin concentration, and CH4 was not detected in biogas produced in the reactor fed 5 mg L-1 abamectin. Additionally, the viability of bacteria in the reactor significantly reduced with the increase in abamectin concentration. In conclusion, it has been determined that abamectin has a toxic effect on anaerobic microorganisms, and thus, the biodegradation process in the reactor is negatively affected from toxicity of abamectin. The data obtained as a result of this study can contribute significantly to the literature on the treatment of wastewater containing abamectin by anaerobic processes.

Kaynakça

  • Al Ghais SM, Varadharajulu S, Kumbhar P, 2019. Effects of Abamectin on Tilapia mossambica peters changes in reduced glutathione (GSH) and protein content. International Journal of Fisheries and Aquatic Studies, 7(4): 280-284.
  • Ali I, Singh P, Rawat M, Badoni A, 2008. Analysis of organochlorine pesticides in the Hindon river water, India. Journal of Environmental Protection Science, 2: 47-53.
  • Amann RI, Krumholz L, Stahl DA, 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology, 172(2): 762-770.
  • Angelidaki I, Karakashev D, Batstone D, Plugge C, Stams A, 2011. Biomethanation and Its Potential In: Methods in Enzymology, Academic Press, San Diego, USA.
  • Baczynski TP, Grotenhuis T, Knipscheer P, 2004. The dechlorination of cyclodiene pesticides by methanogenic granular sludge. Chemosphere, 55(5): 653-659.
  • Campbell W, 1989. Ivermectin and abamectin. Springer Verlag, New York (1989).
  • Celis E, Elefsiniotis P, Singhal N, 2008. Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic or anaerobic conditions. Water Research, 42(12): 3218-3224.
  • Chung K, Ro K, Roy D, 1996. Fate and enhancement of atrazine biotransformation in anaerobic wetland sediment. Water Research, 30(2): 341-346.
  • de Oliveira Ferreira F, Porto RS, Rath S, 2019. Aerobic dissipation of avermectins and moxidectin in subtropical soils and dissipation of abamectin in a field study. Ecotoxicology and environmental safety, 183: 109489.
  • De Vrieze J, Hennebel T, Boon N, Verstraete W, 2012. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresource Technology, 112: 1-9.
  • El-Saber Batiha G, Alqahtani A, Ilesanmi OB, Saati AA, El-Mleeh A, Hetta HF, Magdy Beshbishy A, 2020. Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects. Pharmaceuticals, 13(8): 196.
  • El-Shenawy NS, 2010. Effects of insecticides fenitrothion, endosulfan and abamectin on antioxidant parameters of isolated rat hepatocytes. Toxicology in Vitro, 24(4): 1148-1157.
  • Errami M, Salghi R, Ebenso EE, Messali M, Al-Deyab S, Hammouti B, 2014. Anodic destruction of abamectin acaricide solution by BDD-anodic oxidation. International Journal of Electrochemical Science, 9: 5467-5478.
  • García-Mancha N, Monsalvo V, Puyol D, Rodriguez J, Mohedano A, 2017. Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions. Journal of Hazardous Materials, 339: 320-329.
  • Gavrilescu M, 2008. Biomass power for energy and sustainable development. Environmental Engineering & Management Journal (EEMJ), 7(5): 617-640.
  • Ghalwa A, Nasser M, Farhat N, 2015. Removal of abamectin pesticide by electrocoagulation process using stainless steel and iron electrodes. International Journal of Environmental Analytical Chemistry, 2 (3): 134.
  • González S, Müller J, Petrovic M, Barceló D, Knepper TP, 2006. Biodegradation studies of selected priority acidic pesticides and diclofenac in different bioreactors. Environmental Pollution, 144(3): 926-932.
  • Goodenough AE, Webb JC, Yardley J, 2019. Environmentally-realistic concentrations of anthelmintic drugs affect survival and motility in the cosmopolitan earthworm Lumbricus terrestris (Linnaeus, 1758). Applied Soil Ecology, 137: 87-95.
  • Gupta P, Ahammad S, Sreekrishnan T, 2016. Improving the cyanide toxicity tolerance of anaerobic reactor: microbial interactions and toxin reduction. Journal of Hazardous Materials, 315: 52-60.
  • Hamed N, Abdel-Razik R, 2015. Biochemical alterations induced by abamectin in albino rats, Rattus norvegicus. Agricultural Research Center (ARC), Alexandria, Egypt, 36: 267-272.
  • Harmsen H, Kengen H, Akkermans A, Stams A, De Vos W, 1996. Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Applied and Environmental Microbiology, 62(5): 1656-1663.
  • Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D, 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2): 334-342.
  • Huang Y, Hong Y, Huang Z, He H, 2020. Cytotoxicity induced by abamectin exposure in haemocytes of Chinese mitten crab, Eriocheir sinensis. Environmental Toxicology and Pharmacology, 77: 103384.
  • Jodeh S, Khalaf O, Obaid AA, Hammouti B, Hadda TB, Jodeh W, Haddad M, Warad I, 2014. Adsorption and kinetics study of abamectin and imidacloprid in greenhouse soil in Palestine. Journal of Materials and Environmental Science, 5(2): 571-80.
  • Karunatilake H, Amarasinghe S, Dassanayake S, Saparamadu T, Weerasinghe S, 2012. Partial ptosis, dilated pupils and ataxia following abamectin poisoning. Ceylon Medical Journal, 57(3): 125-126.
  • Kolukirik M, Ince O, Cetecioglu Z, Celikkol S, Ince B, 2011. Spatial and temporal changes in microbial diversity of the Marmara Sea Sediments. Marine Pollution Bulletin, 62(11): 2384-2394.
  • Kushwaha S, Anerao I, Rajput S, Bhagriya P, Roy H, 2020. Evaluation of abamectin induced hepatotoxicity in Oreochromis mossambicus. Cogent Biology, 6(1): 1761277.
  • Lankas G, Gordon L, 1989. Toxicology. Ivermectin and Abamectin. WC Campbell. Springer‐Verlag Inc., New York 1989; 89–112.
  • Lema J, Omil F, 2001. Anaerobic treatment: a key technology for a sustainable management of wastes in Europe. Water Science and Technology, 44(8): 133-140.
  • Lopez J, Monsalvo V, Puyol D, Mohedano A, Rodriguez J, 2013. Low-temperature anaerobic treatment of low-strength pentachlorophenol-bearing wastewater. Bioresource Technology, 140: 349-356.
  • Lotfalipour MR, Falahi MA, Ashena M, 2010. Economic growth, CO2 emissions, and fossil fuels consumption in Iran. Energy, 35(12): 5115-5120.
  • Matos TAdF, Dias ALN, Reis ADP, Silva MRAd, Kondo MM, 2012. Degradation of abamectin using the photo-fenton process. International Journal of Chemical Engineering, 2012.
  • Novelli A, Vieira BH, Braun AS, Mendes LB, Daam MA, Espíndola ELG, 2016. Impact of runoff water from an experimental agricultural field applied with Vertimec® 18EC (abamectin) on the survival, growth and gill morphology of zebrafish juveniles. Chemosphere, 144: 1408-1414.
  • Omura S, 2008. Ivermectin: 25 years and still going strong. International Journal of Antimicrobial Agents, 31(2): 91-98.
  • Pace NR, Stahl DA, Lane DJ, Olsen GJ, 1986. The analysis of natural microbial populations by ribosomal RNA sequences. in: Advances in Microbial Ecology, Springer, pp. 1-55.
  • Pan ZZ, Xu L, Zheng YS, Niu LY, Liu B, Fu NY, Shi Y, Chen QX, Zhu YJ, Guan X, 2019. Synthesis and Characterization of Cry2Ab–AVM Bioconjugate: Enhanced Affinity to Binding Proteins and Insecticidal Activity. Toxins, 11(9): 497.
  • Sanchis S, Polo AM, Tobajas M, Rodriguez JJ, Mohedano AF, 2013. Degradation of chlorophenoxy herbicides by coupled Fenton and biological oxidation. Chemosphere, 93(1): 115-122.
  • Sarraute S, Husson P, Gomes M, 2019. Effect of the diffusivity on the transport and fate of pesticides in water. International Journal of Environmental Science and Technology, 16(4): 1857-1872.
  • Sharma NK, Philip L, 2014. Effect of cyanide on phenolics and aromatic hydrocarbons biodegradation under anaerobic and anoxic conditions. Chemical Engineering Journal, 256: 255-267.
  • Siampiringue M, Wong Wah Chung P, Koriko M, Tchangbedji G, Sarakha M, 2014. Clay and soil photolysis of the pesticides mesotrione and metsulfuron methyl. Applied and Environmental Soil Science, 2014.
  • Stuckey DC, Oh S, 2018. Effect of ciprofloxacin on methane production and anaerobic microbial community. Bioresource Technology, 261: 240-248.
  • Taşkan B, 2020. Increased power generation from a new sandwich-type microbial fuel cell (ST-MFC) with a membrane-aerated cathode. Biomass and Bioenergy, 142: 105781.
  • Taşkan B, Taşkan E, Hasar H, 2020. Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti–TiO2 electrode. Environmental Progress & Sustainable Energy, e13407.
  • Tišler T, Eržen, NK, 2006. Abamectin in the aquatic environment. Ecotoxicology, 15(6): 495-502.
  • Turner J, Schaeffer M, 1989. Mode of action of ivermectin. In: Campbell WC, editor. Ivermectin and Abamectin, New York: Springer Verlag.
  • Uçar D, 2018. Biyokütleden Elde Edilebilinen Biyoenerji Türevleri: Biyogaz, Biyodizel, Biyoetanol Ve Biyohidrojen. in: Şırnak Enerji ve Maden Potansiyeli, pp. 143.
  • Völker J, Vogt T, Castronovo S, Wick A, Ternes TA, Joss A, Oehlmann J, Wagner M, 2017. Extended anaerobic conditions in the biological wastewater treatment: Higher reduction of toxicity compared to target organic micropollutants. Water Research, 116: 220-230.
  • Wang X, Xing H, Li X, Xu S, Wang X, 2011. Effects of atrazine and chlorpyrifos on the mRNA levels of IL-1 and IFN-γ2b in immune organs of common carp. Fish & Shellfish Immunology, 31(1): 126-133.
  • Wei G, Sun CJ, Qi L, Cui HX, 2009. Adsorption of avermectins on activated carbon: Equilibrium, kinetics, and UV-shielding. Transactions of Nonferrous Metals Society of China, 19: 845-850.
  • Zhang Y, Wu J, Xu W, Gao J, Cao H, Yang M, Wang B, Hao Y, Tao L, 2017. Cytotoxic effects of Avermectin on human HepG2 cells in vitro bioassays. Environmental Pollution, 220: 1127-1137.

Abamektin Pestisitinin Anaerobik Arıtma Sisteminde Mikrobiyal Komunite ve Biyogaz Üretimi Üzerindeki Etkisinin Araştırılması

Yıl 2021, Cilt: 11 Sayı: 3, 1854 - 1865, 01.09.2021
https://doi.org/10.21597/jist.813237

Öz

Abamektin tarım ve hayvancılıkta yaygın olarak kullanılan bir pestisit olup organizmalar üzerinde çoklu toksik etkilere neden olabilmektedir. Ancak söz konusu toksik etkinin mekanizması hala tam olarak aydınlatılamamıştır. Abamektinin çevresel ortamlarda sürekli olarak birikmesi, özellikle su ortamlarında potansiyel ekolojik riskler oluşturabilmektedir. Bu çalışmada, farklı konsantrasyonlarda (0.25-5 mg L-1) abamektinin anaerobik bir arıtma sisteminde mikroorganizmalar ve biyogaz üretimi üzerindeki etkisi detaylı bir şekilde araştırılmıştır. Çalışma sonucunda elde edilen veriler, 2 mg L-1’nin üzerindeki abamektin konsantrasyonlarının mikrobiyal ekolojiyi inhibe ederek biyogaz üretimini önemli ölçüde azalttığını göstermiştir. Üretilen biyogaz miktarı, abamektin konsantrasyonunun artışına bağlı olarak belirgin bir şekilde azalmış ve kontrol reaktörüne kıyasla 5 mg L-1 abamektin içeren reaktörde üretilen biyogaz %97 oranında düşmüştür. Biyogaz üretiminin en yüksek olduğu süreçte kontrol reaktöründeki biyogazın metan (CH4) içeriği ise yaklaşık olarak %50 iken bu oran abamektin konsantrasyonunun artışına bağlı olarak önemli oranda azalmıştır ve 5 mg L-1 abamektin beslemesi yapılan reaktörde üretilen biyogazın bileşiminde CH4 bileşiğine rastlanmamıştır. Ayrıca, abamektin konsantrasyonunun artışı ile reaktör içeriğindeki bakteri canlılık oranının önemli ölçüde azaldığı gözlemlenmiştir. Sonuç olarak, abamektin pestisitinin anaerobik mikroorganizmalar üzerinde toksik etki yaptığı ve buna bağlı olarak reaktör içerisindeki biyodegradasyon sürecinin olumsuz bir şekilde etkilendiği tespit edilmiştir. Bu çalışma sonucunda elde edilen veriler, abamektin içeren atıksuların anaerobik prosesler ile arıtımı üzerine literatüre önemli ölçüde katkı sağlayabilir.

Kaynakça

  • Al Ghais SM, Varadharajulu S, Kumbhar P, 2019. Effects of Abamectin on Tilapia mossambica peters changes in reduced glutathione (GSH) and protein content. International Journal of Fisheries and Aquatic Studies, 7(4): 280-284.
  • Ali I, Singh P, Rawat M, Badoni A, 2008. Analysis of organochlorine pesticides in the Hindon river water, India. Journal of Environmental Protection Science, 2: 47-53.
  • Amann RI, Krumholz L, Stahl DA, 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology, 172(2): 762-770.
  • Angelidaki I, Karakashev D, Batstone D, Plugge C, Stams A, 2011. Biomethanation and Its Potential In: Methods in Enzymology, Academic Press, San Diego, USA.
  • Baczynski TP, Grotenhuis T, Knipscheer P, 2004. The dechlorination of cyclodiene pesticides by methanogenic granular sludge. Chemosphere, 55(5): 653-659.
  • Campbell W, 1989. Ivermectin and abamectin. Springer Verlag, New York (1989).
  • Celis E, Elefsiniotis P, Singhal N, 2008. Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic or anaerobic conditions. Water Research, 42(12): 3218-3224.
  • Chung K, Ro K, Roy D, 1996. Fate and enhancement of atrazine biotransformation in anaerobic wetland sediment. Water Research, 30(2): 341-346.
  • de Oliveira Ferreira F, Porto RS, Rath S, 2019. Aerobic dissipation of avermectins and moxidectin in subtropical soils and dissipation of abamectin in a field study. Ecotoxicology and environmental safety, 183: 109489.
  • De Vrieze J, Hennebel T, Boon N, Verstraete W, 2012. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresource Technology, 112: 1-9.
  • El-Saber Batiha G, Alqahtani A, Ilesanmi OB, Saati AA, El-Mleeh A, Hetta HF, Magdy Beshbishy A, 2020. Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects. Pharmaceuticals, 13(8): 196.
  • El-Shenawy NS, 2010. Effects of insecticides fenitrothion, endosulfan and abamectin on antioxidant parameters of isolated rat hepatocytes. Toxicology in Vitro, 24(4): 1148-1157.
  • Errami M, Salghi R, Ebenso EE, Messali M, Al-Deyab S, Hammouti B, 2014. Anodic destruction of abamectin acaricide solution by BDD-anodic oxidation. International Journal of Electrochemical Science, 9: 5467-5478.
  • García-Mancha N, Monsalvo V, Puyol D, Rodriguez J, Mohedano A, 2017. Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions. Journal of Hazardous Materials, 339: 320-329.
  • Gavrilescu M, 2008. Biomass power for energy and sustainable development. Environmental Engineering & Management Journal (EEMJ), 7(5): 617-640.
  • Ghalwa A, Nasser M, Farhat N, 2015. Removal of abamectin pesticide by electrocoagulation process using stainless steel and iron electrodes. International Journal of Environmental Analytical Chemistry, 2 (3): 134.
  • González S, Müller J, Petrovic M, Barceló D, Knepper TP, 2006. Biodegradation studies of selected priority acidic pesticides and diclofenac in different bioreactors. Environmental Pollution, 144(3): 926-932.
  • Goodenough AE, Webb JC, Yardley J, 2019. Environmentally-realistic concentrations of anthelmintic drugs affect survival and motility in the cosmopolitan earthworm Lumbricus terrestris (Linnaeus, 1758). Applied Soil Ecology, 137: 87-95.
  • Gupta P, Ahammad S, Sreekrishnan T, 2016. Improving the cyanide toxicity tolerance of anaerobic reactor: microbial interactions and toxin reduction. Journal of Hazardous Materials, 315: 52-60.
  • Hamed N, Abdel-Razik R, 2015. Biochemical alterations induced by abamectin in albino rats, Rattus norvegicus. Agricultural Research Center (ARC), Alexandria, Egypt, 36: 267-272.
  • Harmsen H, Kengen H, Akkermans A, Stams A, De Vos W, 1996. Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Applied and Environmental Microbiology, 62(5): 1656-1663.
  • Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D, 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2): 334-342.
  • Huang Y, Hong Y, Huang Z, He H, 2020. Cytotoxicity induced by abamectin exposure in haemocytes of Chinese mitten crab, Eriocheir sinensis. Environmental Toxicology and Pharmacology, 77: 103384.
  • Jodeh S, Khalaf O, Obaid AA, Hammouti B, Hadda TB, Jodeh W, Haddad M, Warad I, 2014. Adsorption and kinetics study of abamectin and imidacloprid in greenhouse soil in Palestine. Journal of Materials and Environmental Science, 5(2): 571-80.
  • Karunatilake H, Amarasinghe S, Dassanayake S, Saparamadu T, Weerasinghe S, 2012. Partial ptosis, dilated pupils and ataxia following abamectin poisoning. Ceylon Medical Journal, 57(3): 125-126.
  • Kolukirik M, Ince O, Cetecioglu Z, Celikkol S, Ince B, 2011. Spatial and temporal changes in microbial diversity of the Marmara Sea Sediments. Marine Pollution Bulletin, 62(11): 2384-2394.
  • Kushwaha S, Anerao I, Rajput S, Bhagriya P, Roy H, 2020. Evaluation of abamectin induced hepatotoxicity in Oreochromis mossambicus. Cogent Biology, 6(1): 1761277.
  • Lankas G, Gordon L, 1989. Toxicology. Ivermectin and Abamectin. WC Campbell. Springer‐Verlag Inc., New York 1989; 89–112.
  • Lema J, Omil F, 2001. Anaerobic treatment: a key technology for a sustainable management of wastes in Europe. Water Science and Technology, 44(8): 133-140.
  • Lopez J, Monsalvo V, Puyol D, Mohedano A, Rodriguez J, 2013. Low-temperature anaerobic treatment of low-strength pentachlorophenol-bearing wastewater. Bioresource Technology, 140: 349-356.
  • Lotfalipour MR, Falahi MA, Ashena M, 2010. Economic growth, CO2 emissions, and fossil fuels consumption in Iran. Energy, 35(12): 5115-5120.
  • Matos TAdF, Dias ALN, Reis ADP, Silva MRAd, Kondo MM, 2012. Degradation of abamectin using the photo-fenton process. International Journal of Chemical Engineering, 2012.
  • Novelli A, Vieira BH, Braun AS, Mendes LB, Daam MA, Espíndola ELG, 2016. Impact of runoff water from an experimental agricultural field applied with Vertimec® 18EC (abamectin) on the survival, growth and gill morphology of zebrafish juveniles. Chemosphere, 144: 1408-1414.
  • Omura S, 2008. Ivermectin: 25 years and still going strong. International Journal of Antimicrobial Agents, 31(2): 91-98.
  • Pace NR, Stahl DA, Lane DJ, Olsen GJ, 1986. The analysis of natural microbial populations by ribosomal RNA sequences. in: Advances in Microbial Ecology, Springer, pp. 1-55.
  • Pan ZZ, Xu L, Zheng YS, Niu LY, Liu B, Fu NY, Shi Y, Chen QX, Zhu YJ, Guan X, 2019. Synthesis and Characterization of Cry2Ab–AVM Bioconjugate: Enhanced Affinity to Binding Proteins and Insecticidal Activity. Toxins, 11(9): 497.
  • Sanchis S, Polo AM, Tobajas M, Rodriguez JJ, Mohedano AF, 2013. Degradation of chlorophenoxy herbicides by coupled Fenton and biological oxidation. Chemosphere, 93(1): 115-122.
  • Sarraute S, Husson P, Gomes M, 2019. Effect of the diffusivity on the transport and fate of pesticides in water. International Journal of Environmental Science and Technology, 16(4): 1857-1872.
  • Sharma NK, Philip L, 2014. Effect of cyanide on phenolics and aromatic hydrocarbons biodegradation under anaerobic and anoxic conditions. Chemical Engineering Journal, 256: 255-267.
  • Siampiringue M, Wong Wah Chung P, Koriko M, Tchangbedji G, Sarakha M, 2014. Clay and soil photolysis of the pesticides mesotrione and metsulfuron methyl. Applied and Environmental Soil Science, 2014.
  • Stuckey DC, Oh S, 2018. Effect of ciprofloxacin on methane production and anaerobic microbial community. Bioresource Technology, 261: 240-248.
  • Taşkan B, 2020. Increased power generation from a new sandwich-type microbial fuel cell (ST-MFC) with a membrane-aerated cathode. Biomass and Bioenergy, 142: 105781.
  • Taşkan B, Taşkan E, Hasar H, 2020. Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti–TiO2 electrode. Environmental Progress & Sustainable Energy, e13407.
  • Tišler T, Eržen, NK, 2006. Abamectin in the aquatic environment. Ecotoxicology, 15(6): 495-502.
  • Turner J, Schaeffer M, 1989. Mode of action of ivermectin. In: Campbell WC, editor. Ivermectin and Abamectin, New York: Springer Verlag.
  • Uçar D, 2018. Biyokütleden Elde Edilebilinen Biyoenerji Türevleri: Biyogaz, Biyodizel, Biyoetanol Ve Biyohidrojen. in: Şırnak Enerji ve Maden Potansiyeli, pp. 143.
  • Völker J, Vogt T, Castronovo S, Wick A, Ternes TA, Joss A, Oehlmann J, Wagner M, 2017. Extended anaerobic conditions in the biological wastewater treatment: Higher reduction of toxicity compared to target organic micropollutants. Water Research, 116: 220-230.
  • Wang X, Xing H, Li X, Xu S, Wang X, 2011. Effects of atrazine and chlorpyrifos on the mRNA levels of IL-1 and IFN-γ2b in immune organs of common carp. Fish & Shellfish Immunology, 31(1): 126-133.
  • Wei G, Sun CJ, Qi L, Cui HX, 2009. Adsorption of avermectins on activated carbon: Equilibrium, kinetics, and UV-shielding. Transactions of Nonferrous Metals Society of China, 19: 845-850.
  • Zhang Y, Wu J, Xu W, Gao J, Cao H, Yang M, Wang B, Hao Y, Tao L, 2017. Cytotoxic effects of Avermectin on human HepG2 cells in vitro bioassays. Environmental Pollution, 220: 1127-1137.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği / Environment Engineering
Yazarlar

Banu Taşkan 0000-0001-7751-1165

Yayımlanma Tarihi 1 Eylül 2021
Gönderilme Tarihi 20 Ekim 2020
Kabul Tarihi 7 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 3

Kaynak Göster

APA Taşkan, B. (2021). Abamektin Pestisitinin Anaerobik Arıtma Sisteminde Mikrobiyal Komunite ve Biyogaz Üretimi Üzerindeki Etkisinin Araştırılması. Journal of the Institute of Science and Technology, 11(3), 1854-1865. https://doi.org/10.21597/jist.813237
AMA Taşkan B. Abamektin Pestisitinin Anaerobik Arıtma Sisteminde Mikrobiyal Komunite ve Biyogaz Üretimi Üzerindeki Etkisinin Araştırılması. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2021;11(3):1854-1865. doi:10.21597/jist.813237
Chicago Taşkan, Banu. “Abamektin Pestisitinin Anaerobik Arıtma Sisteminde Mikrobiyal Komunite Ve Biyogaz Üretimi Üzerindeki Etkisinin Araştırılması”. Journal of the Institute of Science and Technology 11, sy. 3 (Eylül 2021): 1854-65. https://doi.org/10.21597/jist.813237.
EndNote Taşkan B (01 Eylül 2021) Abamektin Pestisitinin Anaerobik Arıtma Sisteminde Mikrobiyal Komunite ve Biyogaz Üretimi Üzerindeki Etkisinin Araştırılması. Journal of the Institute of Science and Technology 11 3 1854–1865.
IEEE B. Taşkan, “Abamektin Pestisitinin Anaerobik Arıtma Sisteminde Mikrobiyal Komunite ve Biyogaz Üretimi Üzerindeki Etkisinin Araştırılması”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 3, ss. 1854–1865, 2021, doi: 10.21597/jist.813237.
ISNAD Taşkan, Banu. “Abamektin Pestisitinin Anaerobik Arıtma Sisteminde Mikrobiyal Komunite Ve Biyogaz Üretimi Üzerindeki Etkisinin Araştırılması”. Journal of the Institute of Science and Technology 11/3 (Eylül 2021), 1854-1865. https://doi.org/10.21597/jist.813237.
JAMA Taşkan B. Abamektin Pestisitinin Anaerobik Arıtma Sisteminde Mikrobiyal Komunite ve Biyogaz Üretimi Üzerindeki Etkisinin Araştırılması. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:1854–1865.
MLA Taşkan, Banu. “Abamektin Pestisitinin Anaerobik Arıtma Sisteminde Mikrobiyal Komunite Ve Biyogaz Üretimi Üzerindeki Etkisinin Araştırılması”. Journal of the Institute of Science and Technology, c. 11, sy. 3, 2021, ss. 1854-65, doi:10.21597/jist.813237.
Vancouver Taşkan B. Abamektin Pestisitinin Anaerobik Arıtma Sisteminde Mikrobiyal Komunite ve Biyogaz Üretimi Üzerindeki Etkisinin Araştırılması. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(3):1854-65.