Araştırma Makalesi
BibTex RIS Kaynak Göster

New Compound of Pyridine-4-Boronic Acid Cation and Pt(CN)4 Anion Salt: Synthesis, Structural Properties, Hirshfeld Surface Analysis and Density Functional Theory Calculations

Yıl 2021, Cilt: 11 Sayı: 3, 1990 - 2000, 01.09.2021
https://doi.org/10.21597/jist.859627

Öz

In this work, the novel compound [HNC5H4B(OH)2-4][Pt(CN)4] (1) has been synthesized and structurally characterized. The compound (1) crystallizes in monoclinic, space group P21/c, a=5.6159(11) Å, b=14.656(3) Å, c=11.619(2) Å, 𝛼=90, β= 110.35(3), γ=90, V= 896.6(3) Å3, Z=2. The optimum molecular geometry parameters have been investigated with the DFT/B3LYP method. All geometric parameters are found in good agreement with crystallographic and computational results. Contributions of fragments molecular orbitals (HOFO-LUFO) to frontier molecular orbitals (HOMOLUMO) are calculated charge transferred from Pt moiety to other fragments.

Destekleyen Kurum

Balikesir University

Proje Numarası

BAP-2013/23

Teşekkür

The authors thank to University of Balikesir (BAP-2013/23) for financial support, as well as Professor Guy Orpen (School of Chemistry, Bristol University, England) for the use of the X-ray diffractometer.

Kaynakça

  • Becke AD, 1988. Density-functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38: 3098–3100.
  • Becke AD, 1993. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Physical Chemistry 98: 5648–5652.
  • Bondi A, 1964. Van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68: 441–451.
  • Campos-Gaxiola JJ, Vega-Paz A, Román-Bravo P, Höpfl H, Sánchez-Vázquez M, 2010. Pyridineboronic Acids as Useful Building Blocks in Combination with Perchloroplatinate(II) and -(IV) Salts: 1D, 2D, and 3D Hydrogen-Bonded Networks Containing X-H···Cl2Pt− (X=C,N+), B(OH)2···Cl2Pt-, and B(OH)2···(HO)2B Synthons. Crystal Growth and Design, 10: 3182–3190.
  • Carvajal N, Uribe E, Sepu´lveda M, Mendoza C, Fuentealba B, Salas M, 1996. Chemical Modification of Semele Solida Arginase by Diethyl Pyrocarbonate: Evidence for A Critical Histidine Residue. Comparative Biochemistry Physiology Part B: Biochemisty and Molecular Biology, 114: 367–370.
  • Coban MB, Erkarslan U, Oylumluoglu G, Aygun M and Kara H, 2016. Hydrothermal synthesis, crystal structure and Photoluminescent properties; 3D Holmium(III) coordination polymer. Inorganica Chimica Acta, 447: 87–91.
  • Crystal Explorer 3.0, Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA, 2013.
  • Deagostino A, Protti N, Alberti D, Boggio P, Bortolussi S, Altieri S, Crich SG, 2016. Insights Into The Use of Gadolinium and Gadolinium/Boron-Based Agents in Imaging-Guided Neutron Capture Therapy Applications. Future Medicinal Chemisty, 8: 899–917.
  • Deng Q, Zheng Q, Zuo B, Tu T, 2020. Robust NHC-Palladacycles-Catalyzed Suzuki−Miyaura Cross-Coupling of Amides Via C-N Activation. Green Synthesis and Catalysis, 1: 75–78.
  • Diccianni JB, Diao T, 2019. Mechanisms of Nickel-Catalyzed Cross-Coupling Reactions. Trends in Chemistry, 1: 830–844.
  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, 2009. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. Journal of Applied Crystallography, 42: 339–341.
  • Ejsmont K, Zaleski J, Sporzyński A, Lewandowski M, 2003. 5-Formyl-2-Furanboronic Acid at 100 K. Acta Crystallographica Section E: Structure Reports Online, 59: o1324–o1326.
  • Erkarslan U, Oylumluoglu G, Coban MB, Ozturk E and Kara H, 2016. Cyanide-bridged trinuclear MnIII–FeIII assembly: Crystal structure, magnetic and photoluminescence behavior. Inorganica Chimica Acta, 445: 57–61.
  • Erkarslan U, Donmez A, Kara H, Aygun M and Coban MB, 2018. Synthesis, Structure and Photoluminescence Performance of a New Er3+ Cluster-Based 2D Coordination Polymer. Journal of Cluster Science, 29: 1177–1183.
  • Gaussian 09w, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Willia FD, 2009.
  • Glendening ED, Reed AE, Carpenter, JE, Weinhold F, 2003. NBO Version 3.1. Gaussian Inc., Pittsburgh.
  • Gorelsky SI, Ghosh S, Solomon EI, 2006. Mechanism of N2O Reduction by the μ4-S Tetranuclear CuZ Cluster of Nitrous Oxide Reductase. Journal of the American Chemical Society, 128: 278–290.
  • Hall DG, 2011. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, (Volume 1 and 2).
  • Hehre WJ, Ditchfield R, Pople JA, 1972. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. Journal of Chemical Physics, 56: 2257–2261.
  • Kara H, Adams CJ, Orpen, AG, Podesta TJ, 2006. Pyridinium Boronic Acid Salts in Crystal Synthesis. New Journal of Chemisty, 30: 1461–1469.
  • Khangulov SV, Pessiki, PJ, Barynin VV, Ash DE, Dismukes GC, 1995. Determination of the Metal Ion Separation and Energies of the Three Lowest Electronic States of Dimanganese(II,II) Complexes and Enzymes: Catalase and Liver Arginase. Biochemistry, 34: 2015–2025.
  • Kocak C, Oylumluoglu G, Donmez A, Coban MB, Erkarslan U, Aygun M and Kara H, 2017. Crystal structure and photoluminescence properties of a new monomeric copper (II) complex: bis (3-{[(3-hydroxypropyl) imino] methyl}-4-nitrophenolato-κ3O,N,O′) copper (II). Acta Crystallographica Section C: Structural Chemistry, 73: 414–419.
  • Krishnan R, Binkley JS, Seeger R, Pople JA, 1980. Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. Journal of Chemical Physics, 72: 650–654.
  • Kumar M, Jha A, Dr M, Mishra B, 2020. Targeted Drug Nanocrystals for Pulmonary Delivery: A Potential Strategy for Lung Cancer Therapy. Expert Opinion on Drug Delivery, 1–14.
  • Li B, Li T, Aliyu MA, Li ZH, Tang W, 2019. Enantioselective Palladium‐Catalyzed Cross‐Coupling of α‐Bromo Carboxamides and Aryl Boronic Acids. Angewandte Chemie, 201905174.
  • Miyaura N, Suzuki A, 1995. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 95: 2457–2483.
  • Mohammadi M, Ghorbani-Choghamarani A, 2020. l-Methionine–Pd Complex Supported on Hercynite As A Highly Efficient and Reusable Nanocatalyst for C–C Cross-Coupling Reactions. New Journal of Chemistry, 44: 2919–2929.
  • Parry PR, Wang C, Batsanov AS, Bryce MR, Tarbit B, 2002. Functionalized Pyridylboronic Acids and Their Suzuki Cross-Coupling Reactions to Yield Novel Heteroarylpyridines. Journal of Organic Chemistry, 67: 7541–7543.
  • Roughley SD, Jordan AM, 2011. The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. Journal of Medicinal Chemistry, 54: 3451–3479.
  • SeethaLekshmi N, Pedireddi VR, 2007. Solid-State Structures of 4-Carboxyphenylboronic Acid and Its Hydrates. Crystal Growth and Design, 7: 944–949.
  • Sheldrick GM, 2008. A Short History of SHELX. Acta Crystallographica, A64: 112–122.
  • Spackman MA, Jayatilaka D, 2009. Hirshfeld Surface Analysis. CrystEngComm, 11: 19–32.
  • Suzuki A, Diederich F, Stang PJ, 1998. Metal-catalyzed Cross-coupling Reactions Wiley-VCH, Weinheim, Germany, Chapter 2.
  • Torborg C, Beller M, 2009. Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical and Fine Chemical Industries. Advanced Synthesis Catalysis, 351: 3027–3043.
  • SAINT V7.60A, Bruker-AXS 2008. Inc. Madison, Wisconsin, USA.
  • Varughese S, Sinha, SB, Desiraju GR, 2011. Phenylboronic Acids in Crystal Engineering: Utility of The Energetically Unfavorable Syn,Syn-Conformation in Co-Crystal Design. Science China Chemisty, 54: 1909–1919.
  • Yahsi Y, Gungor E, Kara H, 2015. Chlorometallate-Pyridinium Boronic Acid Salts for Crystal Engineering: Synthesis of One-, Two- and Three-Dimensional Hydrogen Bond Networks. Crystal Growth and Design, 15: 2652–2660.
  • Yang W, Gao X, Springsteen G, Wang B, 2002. Catechol Pendant Polystyrene for Solid-Phase Synthesis. Tetrahedron Letter, 43: 6339–6342.
  • Yang W, Gao X, Wang B, 2003. Boronic Acid Compounds as Potential Pharmaceutical Agents. Medical Research Reviews, 23: 346–368.
  • Zhu Q, Saeed M, Song R, Sun T, Jiang C, Yu H, 2020. Dynamic Covalent Chemistry-Regulated Stimuli-Activatable Drug Delivery Systems for Improved Cancer Therapy. Chinese Chemical Letter, 31: 1051–1059.
Yıl 2021, Cilt: 11 Sayı: 3, 1990 - 2000, 01.09.2021
https://doi.org/10.21597/jist.859627

Öz

Proje Numarası

BAP-2013/23

Kaynakça

  • Becke AD, 1988. Density-functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38: 3098–3100.
  • Becke AD, 1993. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Physical Chemistry 98: 5648–5652.
  • Bondi A, 1964. Van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68: 441–451.
  • Campos-Gaxiola JJ, Vega-Paz A, Román-Bravo P, Höpfl H, Sánchez-Vázquez M, 2010. Pyridineboronic Acids as Useful Building Blocks in Combination with Perchloroplatinate(II) and -(IV) Salts: 1D, 2D, and 3D Hydrogen-Bonded Networks Containing X-H···Cl2Pt− (X=C,N+), B(OH)2···Cl2Pt-, and B(OH)2···(HO)2B Synthons. Crystal Growth and Design, 10: 3182–3190.
  • Carvajal N, Uribe E, Sepu´lveda M, Mendoza C, Fuentealba B, Salas M, 1996. Chemical Modification of Semele Solida Arginase by Diethyl Pyrocarbonate: Evidence for A Critical Histidine Residue. Comparative Biochemistry Physiology Part B: Biochemisty and Molecular Biology, 114: 367–370.
  • Coban MB, Erkarslan U, Oylumluoglu G, Aygun M and Kara H, 2016. Hydrothermal synthesis, crystal structure and Photoluminescent properties; 3D Holmium(III) coordination polymer. Inorganica Chimica Acta, 447: 87–91.
  • Crystal Explorer 3.0, Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA, 2013.
  • Deagostino A, Protti N, Alberti D, Boggio P, Bortolussi S, Altieri S, Crich SG, 2016. Insights Into The Use of Gadolinium and Gadolinium/Boron-Based Agents in Imaging-Guided Neutron Capture Therapy Applications. Future Medicinal Chemisty, 8: 899–917.
  • Deng Q, Zheng Q, Zuo B, Tu T, 2020. Robust NHC-Palladacycles-Catalyzed Suzuki−Miyaura Cross-Coupling of Amides Via C-N Activation. Green Synthesis and Catalysis, 1: 75–78.
  • Diccianni JB, Diao T, 2019. Mechanisms of Nickel-Catalyzed Cross-Coupling Reactions. Trends in Chemistry, 1: 830–844.
  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, 2009. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. Journal of Applied Crystallography, 42: 339–341.
  • Ejsmont K, Zaleski J, Sporzyński A, Lewandowski M, 2003. 5-Formyl-2-Furanboronic Acid at 100 K. Acta Crystallographica Section E: Structure Reports Online, 59: o1324–o1326.
  • Erkarslan U, Oylumluoglu G, Coban MB, Ozturk E and Kara H, 2016. Cyanide-bridged trinuclear MnIII–FeIII assembly: Crystal structure, magnetic and photoluminescence behavior. Inorganica Chimica Acta, 445: 57–61.
  • Erkarslan U, Donmez A, Kara H, Aygun M and Coban MB, 2018. Synthesis, Structure and Photoluminescence Performance of a New Er3+ Cluster-Based 2D Coordination Polymer. Journal of Cluster Science, 29: 1177–1183.
  • Gaussian 09w, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Willia FD, 2009.
  • Glendening ED, Reed AE, Carpenter, JE, Weinhold F, 2003. NBO Version 3.1. Gaussian Inc., Pittsburgh.
  • Gorelsky SI, Ghosh S, Solomon EI, 2006. Mechanism of N2O Reduction by the μ4-S Tetranuclear CuZ Cluster of Nitrous Oxide Reductase. Journal of the American Chemical Society, 128: 278–290.
  • Hall DG, 2011. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, (Volume 1 and 2).
  • Hehre WJ, Ditchfield R, Pople JA, 1972. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. Journal of Chemical Physics, 56: 2257–2261.
  • Kara H, Adams CJ, Orpen, AG, Podesta TJ, 2006. Pyridinium Boronic Acid Salts in Crystal Synthesis. New Journal of Chemisty, 30: 1461–1469.
  • Khangulov SV, Pessiki, PJ, Barynin VV, Ash DE, Dismukes GC, 1995. Determination of the Metal Ion Separation and Energies of the Three Lowest Electronic States of Dimanganese(II,II) Complexes and Enzymes: Catalase and Liver Arginase. Biochemistry, 34: 2015–2025.
  • Kocak C, Oylumluoglu G, Donmez A, Coban MB, Erkarslan U, Aygun M and Kara H, 2017. Crystal structure and photoluminescence properties of a new monomeric copper (II) complex: bis (3-{[(3-hydroxypropyl) imino] methyl}-4-nitrophenolato-κ3O,N,O′) copper (II). Acta Crystallographica Section C: Structural Chemistry, 73: 414–419.
  • Krishnan R, Binkley JS, Seeger R, Pople JA, 1980. Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. Journal of Chemical Physics, 72: 650–654.
  • Kumar M, Jha A, Dr M, Mishra B, 2020. Targeted Drug Nanocrystals for Pulmonary Delivery: A Potential Strategy for Lung Cancer Therapy. Expert Opinion on Drug Delivery, 1–14.
  • Li B, Li T, Aliyu MA, Li ZH, Tang W, 2019. Enantioselective Palladium‐Catalyzed Cross‐Coupling of α‐Bromo Carboxamides and Aryl Boronic Acids. Angewandte Chemie, 201905174.
  • Miyaura N, Suzuki A, 1995. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 95: 2457–2483.
  • Mohammadi M, Ghorbani-Choghamarani A, 2020. l-Methionine–Pd Complex Supported on Hercynite As A Highly Efficient and Reusable Nanocatalyst for C–C Cross-Coupling Reactions. New Journal of Chemistry, 44: 2919–2929.
  • Parry PR, Wang C, Batsanov AS, Bryce MR, Tarbit B, 2002. Functionalized Pyridylboronic Acids and Their Suzuki Cross-Coupling Reactions to Yield Novel Heteroarylpyridines. Journal of Organic Chemistry, 67: 7541–7543.
  • Roughley SD, Jordan AM, 2011. The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. Journal of Medicinal Chemistry, 54: 3451–3479.
  • SeethaLekshmi N, Pedireddi VR, 2007. Solid-State Structures of 4-Carboxyphenylboronic Acid and Its Hydrates. Crystal Growth and Design, 7: 944–949.
  • Sheldrick GM, 2008. A Short History of SHELX. Acta Crystallographica, A64: 112–122.
  • Spackman MA, Jayatilaka D, 2009. Hirshfeld Surface Analysis. CrystEngComm, 11: 19–32.
  • Suzuki A, Diederich F, Stang PJ, 1998. Metal-catalyzed Cross-coupling Reactions Wiley-VCH, Weinheim, Germany, Chapter 2.
  • Torborg C, Beller M, 2009. Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical and Fine Chemical Industries. Advanced Synthesis Catalysis, 351: 3027–3043.
  • SAINT V7.60A, Bruker-AXS 2008. Inc. Madison, Wisconsin, USA.
  • Varughese S, Sinha, SB, Desiraju GR, 2011. Phenylboronic Acids in Crystal Engineering: Utility of The Energetically Unfavorable Syn,Syn-Conformation in Co-Crystal Design. Science China Chemisty, 54: 1909–1919.
  • Yahsi Y, Gungor E, Kara H, 2015. Chlorometallate-Pyridinium Boronic Acid Salts for Crystal Engineering: Synthesis of One-, Two- and Three-Dimensional Hydrogen Bond Networks. Crystal Growth and Design, 15: 2652–2660.
  • Yang W, Gao X, Springsteen G, Wang B, 2002. Catechol Pendant Polystyrene for Solid-Phase Synthesis. Tetrahedron Letter, 43: 6339–6342.
  • Yang W, Gao X, Wang B, 2003. Boronic Acid Compounds as Potential Pharmaceutical Agents. Medical Research Reviews, 23: 346–368.
  • Zhu Q, Saeed M, Song R, Sun T, Jiang C, Yu H, 2020. Dynamic Covalent Chemistry-Regulated Stimuli-Activatable Drug Delivery Systems for Improved Cancer Therapy. Chinese Chemical Letter, 31: 1051–1059.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Elif Güngör 0000-0002-7158-9604

Resul Sevinçek 0000-0001-6859-0287

Hülya Kara Subasat 0000-0002-2032-8930

Proje Numarası BAP-2013/23
Yayımlanma Tarihi 1 Eylül 2021
Gönderilme Tarihi 12 Ocak 2021
Kabul Tarihi 11 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 3

Kaynak Göster

APA Güngör, E., Sevinçek, R., & Kara Subasat, H. (2021). New Compound of Pyridine-4-Boronic Acid Cation and Pt(CN)4 Anion Salt: Synthesis, Structural Properties, Hirshfeld Surface Analysis and Density Functional Theory Calculations. Journal of the Institute of Science and Technology, 11(3), 1990-2000. https://doi.org/10.21597/jist.859627
AMA Güngör E, Sevinçek R, Kara Subasat H. New Compound of Pyridine-4-Boronic Acid Cation and Pt(CN)4 Anion Salt: Synthesis, Structural Properties, Hirshfeld Surface Analysis and Density Functional Theory Calculations. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2021;11(3):1990-2000. doi:10.21597/jist.859627
Chicago Güngör, Elif, Resul Sevinçek, ve Hülya Kara Subasat. “New Compound of Pyridine-4-Boronic Acid Cation and Pt(CN)4 Anion Salt: Synthesis, Structural Properties, Hirshfeld Surface Analysis and Density Functional Theory Calculations”. Journal of the Institute of Science and Technology 11, sy. 3 (Eylül 2021): 1990-2000. https://doi.org/10.21597/jist.859627.
EndNote Güngör E, Sevinçek R, Kara Subasat H (01 Eylül 2021) New Compound of Pyridine-4-Boronic Acid Cation and Pt(CN)4 Anion Salt: Synthesis, Structural Properties, Hirshfeld Surface Analysis and Density Functional Theory Calculations. Journal of the Institute of Science and Technology 11 3 1990–2000.
IEEE E. Güngör, R. Sevinçek, ve H. Kara Subasat, “New Compound of Pyridine-4-Boronic Acid Cation and Pt(CN)4 Anion Salt: Synthesis, Structural Properties, Hirshfeld Surface Analysis and Density Functional Theory Calculations”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 3, ss. 1990–2000, 2021, doi: 10.21597/jist.859627.
ISNAD Güngör, Elif vd. “New Compound of Pyridine-4-Boronic Acid Cation and Pt(CN)4 Anion Salt: Synthesis, Structural Properties, Hirshfeld Surface Analysis and Density Functional Theory Calculations”. Journal of the Institute of Science and Technology 11/3 (Eylül 2021), 1990-2000. https://doi.org/10.21597/jist.859627.
JAMA Güngör E, Sevinçek R, Kara Subasat H. New Compound of Pyridine-4-Boronic Acid Cation and Pt(CN)4 Anion Salt: Synthesis, Structural Properties, Hirshfeld Surface Analysis and Density Functional Theory Calculations. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:1990–2000.
MLA Güngör, Elif vd. “New Compound of Pyridine-4-Boronic Acid Cation and Pt(CN)4 Anion Salt: Synthesis, Structural Properties, Hirshfeld Surface Analysis and Density Functional Theory Calculations”. Journal of the Institute of Science and Technology, c. 11, sy. 3, 2021, ss. 1990-0, doi:10.21597/jist.859627.
Vancouver Güngör E, Sevinçek R, Kara Subasat H. New Compound of Pyridine-4-Boronic Acid Cation and Pt(CN)4 Anion Salt: Synthesis, Structural Properties, Hirshfeld Surface Analysis and Density Functional Theory Calculations. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(3):1990-200.