Araştırma Makalesi
BibTex RIS Kaynak Göster

İkinci Mertebeden Fark Denklemlerin Hem Schur Kararlılığı Hem Salınımlılığı

Yıl 2021, Cilt: 11 Sayı: 4, 3098 - 3110, 15.12.2021
https://doi.org/10.21597/jist.902856

Öz

Bu çalışmada, ikinci mertebeden fark denklemlerinin çözümlerinin davranışı üzerine sonuçlar incelenmiştir. Çözümün hangi pertürbeler altında karakteristik özelliklerini koruduğunu belirleyen sonuçlar verildi. Elde edilen sonuçlar nümerik örnekler ile incelendi.

Kaynakça

  • Agarwal RP, 2000. Difference equations and inequalities. Marcel Dekker. New York.
  • Akın Ö, Bulgak H, 1998. Linear difference equations and stability theory. Selçuk University Research Centre of Applied Mathhematics. Konya. (Turkish).
  • Asteris PG, Chatzarakis GE, 2017. Oscillation tests for difference equations with non-monotone arguments. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 24(4): 287−302.
  • Braverman E, Karpuz B, 2011. On oscillation of differential and difference equations with non-monotone delays. Appl. Math. Comput. 218: 3880– 3887.
  • Chatzarakis GE, Shaikhet L, 2017. Oscillation criteria for difference equations with non-monotone arguments. Adv. Difference Equ. 62: 16pages.
  • Daganzo CF, 1994. The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B. 28(4): 269-287.
  • Duman A, Aydın K, 2011. Sensitivity of Schur stability of monodromy matrix. Applied Mathematics and Computation 217: 6663–6670.
  • Duman A, Aydın K, 2011. Sensitivity of Schur stability of systems of linear difference equations with constant coefficients. Scientific Research and Essays 6(28): 5846–5854.
  • Duman A, Aydın K, 2014. Some results on the sensitivity of Schur stability of linear difference equations with constant coefficients. Konuralp Journal of Mathematics 2(2): 22–34.
  • Duman A, Çelik GK, Aydın K, 2016. Sensitivity of Schur stability of systems of linear difference equations with periodic coefficients. New Trends in Mathematical Sciences 4(2): 159-173.
  • Duman A, Çelik GK, Aydın K, 2018. Sensitivity of Schur Stability of the k-th Order difference Equation System . Konuralp Journal of Mathematics 6(1): 7-13.
  • Elaydi SN, Sacker RJ, 2005. Global stability of periodic orbits of non-autonomous difference equations and population biology. Journal of Differential Equations 208(1): 258–273.
  • Elaydi SN, 2005. An introduction to difference equations. Springer. New York.
  • Györi I, Ladas G, 1991. Oscillation theory of delay differential equations. Clarendon press. Oxford.
  • Neusser K, 2019. Difference equations for economist. http://neusser.ch/downloads/Difference Equations.pdf. (Accessed 11 November 2020)

On Schur Stability and Oscillation of Second Order Difference Equations

Yıl 2021, Cilt: 11 Sayı: 4, 3098 - 3110, 15.12.2021
https://doi.org/10.21597/jist.902856

Öz

In this study, the results on the behavior of the solutions of second order difference equations are examined. The results determining under which perturbation the solutions retain their characteristics are given. The obtained results are analyzed with numerical examples.

Kaynakça

  • Agarwal RP, 2000. Difference equations and inequalities. Marcel Dekker. New York.
  • Akın Ö, Bulgak H, 1998. Linear difference equations and stability theory. Selçuk University Research Centre of Applied Mathhematics. Konya. (Turkish).
  • Asteris PG, Chatzarakis GE, 2017. Oscillation tests for difference equations with non-monotone arguments. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 24(4): 287−302.
  • Braverman E, Karpuz B, 2011. On oscillation of differential and difference equations with non-monotone delays. Appl. Math. Comput. 218: 3880– 3887.
  • Chatzarakis GE, Shaikhet L, 2017. Oscillation criteria for difference equations with non-monotone arguments. Adv. Difference Equ. 62: 16pages.
  • Daganzo CF, 1994. The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B. 28(4): 269-287.
  • Duman A, Aydın K, 2011. Sensitivity of Schur stability of monodromy matrix. Applied Mathematics and Computation 217: 6663–6670.
  • Duman A, Aydın K, 2011. Sensitivity of Schur stability of systems of linear difference equations with constant coefficients. Scientific Research and Essays 6(28): 5846–5854.
  • Duman A, Aydın K, 2014. Some results on the sensitivity of Schur stability of linear difference equations with constant coefficients. Konuralp Journal of Mathematics 2(2): 22–34.
  • Duman A, Çelik GK, Aydın K, 2016. Sensitivity of Schur stability of systems of linear difference equations with periodic coefficients. New Trends in Mathematical Sciences 4(2): 159-173.
  • Duman A, Çelik GK, Aydın K, 2018. Sensitivity of Schur Stability of the k-th Order difference Equation System . Konuralp Journal of Mathematics 6(1): 7-13.
  • Elaydi SN, Sacker RJ, 2005. Global stability of periodic orbits of non-autonomous difference equations and population biology. Journal of Differential Equations 208(1): 258–273.
  • Elaydi SN, 2005. An introduction to difference equations. Springer. New York.
  • Györi I, Ladas G, 1991. Oscillation theory of delay differential equations. Clarendon press. Oxford.
  • Neusser K, 2019. Difference equations for economist. http://neusser.ch/downloads/Difference Equations.pdf. (Accessed 11 November 2020)
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik / Mathematics
Yazarlar

Ramazan Çakıroğlu Bu kişi benim 0000-0001-9242-9784

Ahmet Duman 0000-0002-4022-5285

Kemal Aydın 0000-0002-5843-3058

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 25 Mart 2021
Kabul Tarihi 3 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 4

Kaynak Göster

APA Çakıroğlu, R., Duman, A., & Aydın, K. (2021). On Schur Stability and Oscillation of Second Order Difference Equations. Journal of the Institute of Science and Technology, 11(4), 3098-3110. https://doi.org/10.21597/jist.902856
AMA Çakıroğlu R, Duman A, Aydın K. On Schur Stability and Oscillation of Second Order Difference Equations. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2021;11(4):3098-3110. doi:10.21597/jist.902856
Chicago Çakıroğlu, Ramazan, Ahmet Duman, ve Kemal Aydın. “On Schur Stability and Oscillation of Second Order Difference Equations”. Journal of the Institute of Science and Technology 11, sy. 4 (Aralık 2021): 3098-3110. https://doi.org/10.21597/jist.902856.
EndNote Çakıroğlu R, Duman A, Aydın K (01 Aralık 2021) On Schur Stability and Oscillation of Second Order Difference Equations. Journal of the Institute of Science and Technology 11 4 3098–3110.
IEEE R. Çakıroğlu, A. Duman, ve K. Aydın, “On Schur Stability and Oscillation of Second Order Difference Equations”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 4, ss. 3098–3110, 2021, doi: 10.21597/jist.902856.
ISNAD Çakıroğlu, Ramazan vd. “On Schur Stability and Oscillation of Second Order Difference Equations”. Journal of the Institute of Science and Technology 11/4 (Aralık 2021), 3098-3110. https://doi.org/10.21597/jist.902856.
JAMA Çakıroğlu R, Duman A, Aydın K. On Schur Stability and Oscillation of Second Order Difference Equations. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:3098–3110.
MLA Çakıroğlu, Ramazan vd. “On Schur Stability and Oscillation of Second Order Difference Equations”. Journal of the Institute of Science and Technology, c. 11, sy. 4, 2021, ss. 3098-10, doi:10.21597/jist.902856.
Vancouver Çakıroğlu R, Duman A, Aydın K. On Schur Stability and Oscillation of Second Order Difference Equations. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):3098-110.