Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Mechanical Properties of Niobium Nanowire Under Applied Tension Deformation by Molecular Dynamics Simulation

Yıl 2021, Cilt: 11 Sayı: 4, 2758 - 2771, 15.12.2021
https://doi.org/10.21597/jist.953218

Öz

In this study, the effect of tensile deformation applied along the [100] direction at different temperatures and strain rates on the mechanical properties of Nb nanowire was investigated using the Molecular Dynamics (MD) simulation method. Under uniaxial tensile deformation applied to the model system, the stressstrain curve, modulus of elasticity, yielding strength, position ratio and the resulting plastic deformation were determined. The forces between atoms were obtained by the Embedded Atom Method (EAM), which includes many-body interactions. It was determined that temperature and strain rate were effective on the mechanical behavior of Nb nanowire. It was determined that the modulus of elasticity was independent of the strain rate at low temperatures, but decreased with the increase in temperature, and the yielding strength decreased with increasing temperature and decreasing strain rate. Using the Adaptive Common Neighbor Analysis (aCNA) method, it was observed that the movement of twinnings corresponding to plastic deformation and, as a result, the reorientation of regional crystal structures.

Kaynakça

  • Abdeslam S, Chihi T, 2018. Molecular dynamics study of size and cooling rate effects on physical properties of Niobium nanoclusters. Chinese Journal of Physics, 56: 2710–2717.
  • Arnold MS, Avouris P, Pan ZW, Wang ZL, 2003. Field-effect transistors based on single semiconducting oxide nanobelts. Journal of Physical Chemistry B, 107(3): 659-663.
  • Bañuelos EU, Aburto CC, Arce AM, 2016. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics, 144: 094504.
  • Cai J, Ye YY, 1996. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Physical Review B, 54: 8398.
  • Changwook K, Wenhua G, Martha B, Ian MR, Hyungsoo C, Kyekyoon K, 2008. Copper Nanowires with a Five‐Twinned Structure Grown by Chemical Vapor Deposition. Advanced Materials, 20: 1859–1863.
  • da Silva EZ, Novaes FD, da Silva AJR, 2004. Theoretical study of the formation, evolution, and breaking of gold nanowires. Physical Review B, 69: 115411.
  • Davoodi J, Ahmadi M, 2012. Molecular Dynamics simulation of elastic properties of CuPd nanowire. Composites: Part B, 43: 10-14.
  • Divya S, Avinash P, 2018. Effect of symmetric and asymmetric tilt grain boundaries on the tensile behaviour of bcc-Niobium. Computational Materials Science, 143: 126-132.
  • Fanga R, Wanga W, Guoa L, Zhanga K, Zhanga X, Lib H, 2020. Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. Journal of Crystal Growth, 532: 125382.
  • Fellinger MR, Park H, Wilkins JW, 2010. Force-matched embedded-atom method potential for niobium. Physical Review B, 81: 144119.
  • Finnis MW, Sinclair JE, 1984. A simple empirical N-body potential for transition metals. Philosophical Magazine, 50: 45-55.
  • Gan Y, Chen JK, 2009. Molecular dynamics study of size, temperature and rate dependent thermomechanical properties of copper nanofilms. Mechanics Research Communications, 36: 838-844.
  • Gao Y, Sun Y, Yang X, Sun Q, Zhao J, 2016. Investigation on the mechanical behaviour of faceted Ag nanowires. Molecular Simulation, 42(3): 220-228.
  • Godet J, Pizzagalli L, Guillotte M, 2019. Molecular dynamics study of mechanical behavior of gold-silicon core-shell nanowires under cyclic loading. Acta Materialia, 5: 100204.
  • Grill R, Gnadenberger A, 2006. Niobium as mint metal: Production-properties-processing. International Journal of Refractory Metals and Hard Materials, 24(4): 275-282.
  • Güder V, Çeltek M, 2020. CuTi nanotellerinin germe oranı ve boyuta bağlı mekanik davranışı. Türk Doğa ve Fen Dergisi, 9(2): 24-34.
  • Horstemeyer MF, Baskes MI, Plimpton SJ, 2001. Length scale and time scale effects on the plastic flow of fcc metals. Acta Materialia, 49: 4363-4374.
  • Huang MH, Mao S, 2001. Room-temperature ultraviolet nanowire nanolasers. Science, 292: 5523.
  • Ikeda H, Qi Y, Çagin T, Samwer K, Johnson WL, Goddard WA, 1999. Strain rate induced amorphization in metallic nanowires. Physıcal Revıew Letters, 82: 2900-2903.
  • Ishikawa T, Paradis PF, Itami T, Yoda S, 2003, Non-contact thermophysical property measurements of refractory metals using an electrostatic levitator. The Journal of Chemical Physics, 118: 7912–7920.
  • Jacobus K, Sehitoglu H, Balzer M, 1996. Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A, 27(A): 3066-3073.
  • Jing Y, Meng Q, Zhao W, 2009. Molecular dynamics simulations of the tensile and melting behaviours of silicon nanowires. Physica E, 41: 685-689.
  • Karimi M, Stapay G, Kaplan T, Mostoller M, 1997. Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties. Modelling and Simulation in Materials Science and Engineering, 5: 337.
  • Koh SJA, Lee HP, Lu C, Cheng QH, 2005. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Physical Review B, 72: 085414.
  • Krüger D, Fuchs H, Rousseau R, Marx D, Parrinello M, 2002. Pulling Monatomic Gold Wires with Single Molecules: An Ab Initio Simulation. Physical Review Letters, 89: 186402.
  • LAMMPS, http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.04.2021).
  • Landman U, Luedtke WD, Salisbury BE, Whetten RL, 1996. Reversible Manipulations of Room Temperature Mechanical and Quantum Transport Properties in Nanowire Junctions. Physical Review Letters, 77: 1362.
  • Lee K, Wu Z, Chen Z, Ren F, Pearton SJ, Rinzler AG, 2004. Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diodes. Nano Letters, 4: 911-914.
  • Legoas SB, Galvao DS, Rodrigues V, Ugarte D, 2002. Origin of Anomalously Long Interatomic Distances in Suspended Gold Chains. Physical Review Letters, 88: 076105.
  • Li H, Pederiva F, Wang BL, Wang JL, Wang GH, 2005. How does the nickel nanowire melt? Applied Physics Letters, 86: 011913.
  • Li J, Hu L, Wang L, Zhou Y, Gruner G, Marks TJ, 2006. Organic light-emitting diodes having carbon nanotube anodes. Nano Letters, 6: 2472-2477.
  • Li S, Ding X, Deng J, 2010. Superelasticity in bcc nanowires by a reversible twinning mechanism. Physical Review B, 82: 205435.
  • Liang WW, Zhou M, 2003. Size and strain rate effects in tensile deformation of Cu nanowires. Nanotechnology, 2: 452-455.
  • Locharoenrat K, Sano H, Mizutani G, 2007. Phenomenological studies of optical properties of Cu nanowires. Science and Technology of Advanced Materials, 8: 277-281.
  • Malins A, Williams SR, Eggers J, Royall CP, 2013. Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics, 139: 234506.
  • Marszalek PE, Greenleaf WJ, Li HB, Oberhauser AF, Fernandez JM, 2000. Atomic force microscopy captures quantized plastic deformation in gold nanowires. PNAS, 97: 6282-6286.
  • Park HS, Gall K, Zimmerman JA, 2005. Shape Memory and Pseudoelasticity in Metal Nanowires. Physical Review Letters, 95: 255504.
  • Park HS, Ji C, 2006. On the thermomechanical deformation of silver shape memory nanowires. Acta Materialia, 54: 2645.
  • Park HS, Zimmerman JA, 2005. Modeling inelasticity and failure in gold nanowires. Physical Review B, 72: 054106.
  • Parrinello M, Rahman A, 1980. Crystal structure and pair potentials: a molecular-dynamics study. Physical Review Letters, 45(11): 1196.
  • Parrinello M, Rahman A, 1981. Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics, 52(12): 7182-7190.
  • Pasquier A, Unalan HE, Kanwal A, Miller S, Chhowalla M, 2005. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Applied Physics Letters, 87: 203511.
  • Pullini D, Innocenti G, Busquets D, Ruotolo A, 2007. Investigation of multilayer local tilt within long portion of single Co/Cu nanowires. Applied Physics Letters, 90: 133106.
  • Rawat S, Mitra N, 2020. Twinning, phase transformation and dislocation evolution in single crystal titanium under uniaxial strain conditions: A molecular dynamics study. Computational Materials Science, 172: 109325.
  • Saha S, Motalab M, Mahboob M, 2017. Investigation on mechanical properties of polycrystalline W nanowire. Computational Materials Science, 136: 52-59.
  • Sainath G, Choudhary BK, 2016. Orientation dependent deformation behavior of bcc iron nanowires. Computational Materials Science, 111: 406–415.
  • Saitoh KI, Liu WK, 2009. Molecular dynamics study of surface effect on martensitic cubic-to-tetragonal transformation in Ni-Al alloy. Computational Materials Science, 46: 531-544.
  • Salehinia I, Bahr DF, 2014. Crystal orientation effect on dislocation nucleation and multiplication in fcc single crystal under uniaxial loading. International Journal of Plasticity, 52: 133-146.
  • Schiotz J, Tolla FDD, Jacobsen KW, 1998. Softening of nanocrystalline metals at very small grain sizes. Nature, 391: 561-563.
  • Singh D, Sharma P, Jindal S, Kumar P, Kumar P, Parashar A, 2019. Atomistic simulations to study crack tip behaviour in single crystal of bcc niobium and hcp zirconium. Current Applied Physics, 19:37-43.
  • Singh D, Sharma P, Parashar A, 2020. Atomistic simulations to study point defect dynamics in bi-crystalline niobium. Materials Chemistry and Physics, 255: 123628.
  • Stukowski A, 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1): 015012.
  • Stukowski A, 2012. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20: 045021.
  • Suresh S, Li J, 2008. Deformation of the ultra-strong. Nature, 456: 716–717.
  • Sutton AP, Chen J, 1990. Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 61: 139-146.
  • Voter AF, Chen SP, 1987. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Materials Research Society Symposium Proceedings, 82: 175.
  • Wang BL, Wang GH, Chen XS, Zhao JJ, 2003. Melting behavior of ultrathin titanium nanowires. Physical Review B, 67: 193403.
  • Wang J, Huang QA, Yu H, 2008. Size and temperature dependence of Young's modulus of a silicon nano-plate. Journal of Physics D, 41: 165406.
  • Wen YH, Zhang Y, Wang Q, Zheng JC, Zhu ZZ, 2010. Orientation- dependent mechanical properties of Au nanowires under uniaxial loading. Computational Materials Science, 48: 513-519.
  • Wen YH, Zhu ZZ, Zhu RZ, 2008. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects. Computational Materials Science, 41: 553-560.
  • Yang C, Qi L, 2019. Modified embedded-atom method potential of niobium for studies on mechanical properties. Computational Materials Science, 161: 351-363.
  • Yang XY, Wu D, 2010. The melting behaviors of the Nb(1 1 0) nanofilm: a molecular dynamics study. Applied Surface Science, 256: 3197-3203.
  • Yang Z, Yang Q, Zhang G, 2017. Poisson’s ratio and Young’s modulus in single-crystal copper nanorods under uniaxial tensile loading by molecular Dynamics. Physics Letters A, 381: 280-283.
  • Yıldız YO, 2021. Ni nanoteller için mühendislik parametreleri ölçeklendirme kuralı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(1): 315-324.
  • Zhang L, Lu C, Tieu AK, 2018. Nonlinear elastic response of single crystal Cu under uniaxial loading by molecular dynamics study. Materials Letters, 227: 236-239.
  • Zhanga L, Lua C, Tieua K, Sua L, Zhaoa X, Peib L, 2017. Stacking fault tetrahedron induced plasticity in copper single crystal. Materials Science and Engineering A, 680: 27-38.
  • Zhu J, Shi D, 2011. Reorientation mechanisms and pseudoelasticity in iron nanowires. Journal of Physics D, 44: 055404.

Uygulanan Çekme Deformasyonu Altında Niyobyum Nano Telinin Mekanik Özelliklerinin Moleküler Dinamik Benzetimi ile İncelenmesi

Yıl 2021, Cilt: 11 Sayı: 4, 2758 - 2771, 15.12.2021
https://doi.org/10.21597/jist.953218

Öz

Bu çalışmada farklı sıcaklık ve zorlanma oranlarında [100] doğrultusu boyunca uygulanan çekme deformasyonunun Nb nano telinin mekanik özellikleri üzerindeki etkisi Moleküler Dinamik (MD) benzetim yöntemi kullanılarak incelendi. Model sisteme uygulanan tek eksenli çekme zorlanması altında zor-zorlanma eğrisi, elastiklik modülü, akma zorlanması, poisson oranı ve oluşan plastik deformasyon belirlendi. Atomlar arasındaki kuvvetler çok cisim etkileşmelerini içeren Gömülmüş Atom Metodu (GAM) ile elde edildi. Sıcaklık ve zorlanma oranının Nb nano telinin mekanik davranışları üzerinde etkili olduğu tespit edildi. Elastiklik modülünün düşük sıcaklıklarda zorlanma oranından bağımsız olduğu, buna karşılık sıcaklık artışıyla azaldığı, ayrıca akma zorunun, sıcaklığın artmasıyla ve zorlanma oranının azalmasıyla azaldığı belirlendi. Uyarlanabilir genel komşu analiz (Adaptive Common Neighbor Analysis-aCNA) yöntemi kullanılarak plastik deformasyona karşılık gelen ikizlenmelerin hareketi ve bunun sonucu olarak bölgesel kristal yapıların yeniden yönelim aldığı
gözlemlendi.

Kaynakça

  • Abdeslam S, Chihi T, 2018. Molecular dynamics study of size and cooling rate effects on physical properties of Niobium nanoclusters. Chinese Journal of Physics, 56: 2710–2717.
  • Arnold MS, Avouris P, Pan ZW, Wang ZL, 2003. Field-effect transistors based on single semiconducting oxide nanobelts. Journal of Physical Chemistry B, 107(3): 659-663.
  • Bañuelos EU, Aburto CC, Arce AM, 2016. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics, 144: 094504.
  • Cai J, Ye YY, 1996. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Physical Review B, 54: 8398.
  • Changwook K, Wenhua G, Martha B, Ian MR, Hyungsoo C, Kyekyoon K, 2008. Copper Nanowires with a Five‐Twinned Structure Grown by Chemical Vapor Deposition. Advanced Materials, 20: 1859–1863.
  • da Silva EZ, Novaes FD, da Silva AJR, 2004. Theoretical study of the formation, evolution, and breaking of gold nanowires. Physical Review B, 69: 115411.
  • Davoodi J, Ahmadi M, 2012. Molecular Dynamics simulation of elastic properties of CuPd nanowire. Composites: Part B, 43: 10-14.
  • Divya S, Avinash P, 2018. Effect of symmetric and asymmetric tilt grain boundaries on the tensile behaviour of bcc-Niobium. Computational Materials Science, 143: 126-132.
  • Fanga R, Wanga W, Guoa L, Zhanga K, Zhanga X, Lib H, 2020. Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. Journal of Crystal Growth, 532: 125382.
  • Fellinger MR, Park H, Wilkins JW, 2010. Force-matched embedded-atom method potential for niobium. Physical Review B, 81: 144119.
  • Finnis MW, Sinclair JE, 1984. A simple empirical N-body potential for transition metals. Philosophical Magazine, 50: 45-55.
  • Gan Y, Chen JK, 2009. Molecular dynamics study of size, temperature and rate dependent thermomechanical properties of copper nanofilms. Mechanics Research Communications, 36: 838-844.
  • Gao Y, Sun Y, Yang X, Sun Q, Zhao J, 2016. Investigation on the mechanical behaviour of faceted Ag nanowires. Molecular Simulation, 42(3): 220-228.
  • Godet J, Pizzagalli L, Guillotte M, 2019. Molecular dynamics study of mechanical behavior of gold-silicon core-shell nanowires under cyclic loading. Acta Materialia, 5: 100204.
  • Grill R, Gnadenberger A, 2006. Niobium as mint metal: Production-properties-processing. International Journal of Refractory Metals and Hard Materials, 24(4): 275-282.
  • Güder V, Çeltek M, 2020. CuTi nanotellerinin germe oranı ve boyuta bağlı mekanik davranışı. Türk Doğa ve Fen Dergisi, 9(2): 24-34.
  • Horstemeyer MF, Baskes MI, Plimpton SJ, 2001. Length scale and time scale effects on the plastic flow of fcc metals. Acta Materialia, 49: 4363-4374.
  • Huang MH, Mao S, 2001. Room-temperature ultraviolet nanowire nanolasers. Science, 292: 5523.
  • Ikeda H, Qi Y, Çagin T, Samwer K, Johnson WL, Goddard WA, 1999. Strain rate induced amorphization in metallic nanowires. Physıcal Revıew Letters, 82: 2900-2903.
  • Ishikawa T, Paradis PF, Itami T, Yoda S, 2003, Non-contact thermophysical property measurements of refractory metals using an electrostatic levitator. The Journal of Chemical Physics, 118: 7912–7920.
  • Jacobus K, Sehitoglu H, Balzer M, 1996. Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A, 27(A): 3066-3073.
  • Jing Y, Meng Q, Zhao W, 2009. Molecular dynamics simulations of the tensile and melting behaviours of silicon nanowires. Physica E, 41: 685-689.
  • Karimi M, Stapay G, Kaplan T, Mostoller M, 1997. Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties. Modelling and Simulation in Materials Science and Engineering, 5: 337.
  • Koh SJA, Lee HP, Lu C, Cheng QH, 2005. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Physical Review B, 72: 085414.
  • Krüger D, Fuchs H, Rousseau R, Marx D, Parrinello M, 2002. Pulling Monatomic Gold Wires with Single Molecules: An Ab Initio Simulation. Physical Review Letters, 89: 186402.
  • LAMMPS, http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.04.2021).
  • Landman U, Luedtke WD, Salisbury BE, Whetten RL, 1996. Reversible Manipulations of Room Temperature Mechanical and Quantum Transport Properties in Nanowire Junctions. Physical Review Letters, 77: 1362.
  • Lee K, Wu Z, Chen Z, Ren F, Pearton SJ, Rinzler AG, 2004. Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diodes. Nano Letters, 4: 911-914.
  • Legoas SB, Galvao DS, Rodrigues V, Ugarte D, 2002. Origin of Anomalously Long Interatomic Distances in Suspended Gold Chains. Physical Review Letters, 88: 076105.
  • Li H, Pederiva F, Wang BL, Wang JL, Wang GH, 2005. How does the nickel nanowire melt? Applied Physics Letters, 86: 011913.
  • Li J, Hu L, Wang L, Zhou Y, Gruner G, Marks TJ, 2006. Organic light-emitting diodes having carbon nanotube anodes. Nano Letters, 6: 2472-2477.
  • Li S, Ding X, Deng J, 2010. Superelasticity in bcc nanowires by a reversible twinning mechanism. Physical Review B, 82: 205435.
  • Liang WW, Zhou M, 2003. Size and strain rate effects in tensile deformation of Cu nanowires. Nanotechnology, 2: 452-455.
  • Locharoenrat K, Sano H, Mizutani G, 2007. Phenomenological studies of optical properties of Cu nanowires. Science and Technology of Advanced Materials, 8: 277-281.
  • Malins A, Williams SR, Eggers J, Royall CP, 2013. Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics, 139: 234506.
  • Marszalek PE, Greenleaf WJ, Li HB, Oberhauser AF, Fernandez JM, 2000. Atomic force microscopy captures quantized plastic deformation in gold nanowires. PNAS, 97: 6282-6286.
  • Park HS, Gall K, Zimmerman JA, 2005. Shape Memory and Pseudoelasticity in Metal Nanowires. Physical Review Letters, 95: 255504.
  • Park HS, Ji C, 2006. On the thermomechanical deformation of silver shape memory nanowires. Acta Materialia, 54: 2645.
  • Park HS, Zimmerman JA, 2005. Modeling inelasticity and failure in gold nanowires. Physical Review B, 72: 054106.
  • Parrinello M, Rahman A, 1980. Crystal structure and pair potentials: a molecular-dynamics study. Physical Review Letters, 45(11): 1196.
  • Parrinello M, Rahman A, 1981. Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics, 52(12): 7182-7190.
  • Pasquier A, Unalan HE, Kanwal A, Miller S, Chhowalla M, 2005. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Applied Physics Letters, 87: 203511.
  • Pullini D, Innocenti G, Busquets D, Ruotolo A, 2007. Investigation of multilayer local tilt within long portion of single Co/Cu nanowires. Applied Physics Letters, 90: 133106.
  • Rawat S, Mitra N, 2020. Twinning, phase transformation and dislocation evolution in single crystal titanium under uniaxial strain conditions: A molecular dynamics study. Computational Materials Science, 172: 109325.
  • Saha S, Motalab M, Mahboob M, 2017. Investigation on mechanical properties of polycrystalline W nanowire. Computational Materials Science, 136: 52-59.
  • Sainath G, Choudhary BK, 2016. Orientation dependent deformation behavior of bcc iron nanowires. Computational Materials Science, 111: 406–415.
  • Saitoh KI, Liu WK, 2009. Molecular dynamics study of surface effect on martensitic cubic-to-tetragonal transformation in Ni-Al alloy. Computational Materials Science, 46: 531-544.
  • Salehinia I, Bahr DF, 2014. Crystal orientation effect on dislocation nucleation and multiplication in fcc single crystal under uniaxial loading. International Journal of Plasticity, 52: 133-146.
  • Schiotz J, Tolla FDD, Jacobsen KW, 1998. Softening of nanocrystalline metals at very small grain sizes. Nature, 391: 561-563.
  • Singh D, Sharma P, Jindal S, Kumar P, Kumar P, Parashar A, 2019. Atomistic simulations to study crack tip behaviour in single crystal of bcc niobium and hcp zirconium. Current Applied Physics, 19:37-43.
  • Singh D, Sharma P, Parashar A, 2020. Atomistic simulations to study point defect dynamics in bi-crystalline niobium. Materials Chemistry and Physics, 255: 123628.
  • Stukowski A, 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1): 015012.
  • Stukowski A, 2012. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20: 045021.
  • Suresh S, Li J, 2008. Deformation of the ultra-strong. Nature, 456: 716–717.
  • Sutton AP, Chen J, 1990. Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 61: 139-146.
  • Voter AF, Chen SP, 1987. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Materials Research Society Symposium Proceedings, 82: 175.
  • Wang BL, Wang GH, Chen XS, Zhao JJ, 2003. Melting behavior of ultrathin titanium nanowires. Physical Review B, 67: 193403.
  • Wang J, Huang QA, Yu H, 2008. Size and temperature dependence of Young's modulus of a silicon nano-plate. Journal of Physics D, 41: 165406.
  • Wen YH, Zhang Y, Wang Q, Zheng JC, Zhu ZZ, 2010. Orientation- dependent mechanical properties of Au nanowires under uniaxial loading. Computational Materials Science, 48: 513-519.
  • Wen YH, Zhu ZZ, Zhu RZ, 2008. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects. Computational Materials Science, 41: 553-560.
  • Yang C, Qi L, 2019. Modified embedded-atom method potential of niobium for studies on mechanical properties. Computational Materials Science, 161: 351-363.
  • Yang XY, Wu D, 2010. The melting behaviors of the Nb(1 1 0) nanofilm: a molecular dynamics study. Applied Surface Science, 256: 3197-3203.
  • Yang Z, Yang Q, Zhang G, 2017. Poisson’s ratio and Young’s modulus in single-crystal copper nanorods under uniaxial tensile loading by molecular Dynamics. Physics Letters A, 381: 280-283.
  • Yıldız YO, 2021. Ni nanoteller için mühendislik parametreleri ölçeklendirme kuralı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(1): 315-324.
  • Zhang L, Lu C, Tieu AK, 2018. Nonlinear elastic response of single crystal Cu under uniaxial loading by molecular dynamics study. Materials Letters, 227: 236-239.
  • Zhanga L, Lua C, Tieua K, Sua L, Zhaoa X, Peib L, 2017. Stacking fault tetrahedron induced plasticity in copper single crystal. Materials Science and Engineering A, 680: 27-38.
  • Zhu J, Shi D, 2011. Reorientation mechanisms and pseudoelasticity in iron nanowires. Journal of Physics D, 44: 055404.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Sefa Kazanç 0000-0002-8896-8571

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 16 Haziran 2021
Kabul Tarihi 9 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 4

Kaynak Göster

APA Kazanç, S. (2021). Uygulanan Çekme Deformasyonu Altında Niyobyum Nano Telinin Mekanik Özelliklerinin Moleküler Dinamik Benzetimi ile İncelenmesi. Journal of the Institute of Science and Technology, 11(4), 2758-2771. https://doi.org/10.21597/jist.953218
AMA Kazanç S. Uygulanan Çekme Deformasyonu Altında Niyobyum Nano Telinin Mekanik Özelliklerinin Moleküler Dinamik Benzetimi ile İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2021;11(4):2758-2771. doi:10.21597/jist.953218
Chicago Kazanç, Sefa. “Uygulanan Çekme Deformasyonu Altında Niyobyum Nano Telinin Mekanik Özelliklerinin Moleküler Dinamik Benzetimi Ile İncelenmesi”. Journal of the Institute of Science and Technology 11, sy. 4 (Aralık 2021): 2758-71. https://doi.org/10.21597/jist.953218.
EndNote Kazanç S (01 Aralık 2021) Uygulanan Çekme Deformasyonu Altında Niyobyum Nano Telinin Mekanik Özelliklerinin Moleküler Dinamik Benzetimi ile İncelenmesi. Journal of the Institute of Science and Technology 11 4 2758–2771.
IEEE S. Kazanç, “Uygulanan Çekme Deformasyonu Altında Niyobyum Nano Telinin Mekanik Özelliklerinin Moleküler Dinamik Benzetimi ile İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 4, ss. 2758–2771, 2021, doi: 10.21597/jist.953218.
ISNAD Kazanç, Sefa. “Uygulanan Çekme Deformasyonu Altında Niyobyum Nano Telinin Mekanik Özelliklerinin Moleküler Dinamik Benzetimi Ile İncelenmesi”. Journal of the Institute of Science and Technology 11/4 (Aralık 2021), 2758-2771. https://doi.org/10.21597/jist.953218.
JAMA Kazanç S. Uygulanan Çekme Deformasyonu Altında Niyobyum Nano Telinin Mekanik Özelliklerinin Moleküler Dinamik Benzetimi ile İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:2758–2771.
MLA Kazanç, Sefa. “Uygulanan Çekme Deformasyonu Altında Niyobyum Nano Telinin Mekanik Özelliklerinin Moleküler Dinamik Benzetimi Ile İncelenmesi”. Journal of the Institute of Science and Technology, c. 11, sy. 4, 2021, ss. 2758-71, doi:10.21597/jist.953218.
Vancouver Kazanç S. Uygulanan Çekme Deformasyonu Altında Niyobyum Nano Telinin Mekanik Özelliklerinin Moleküler Dinamik Benzetimi ile İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):2758-71.