Araştırma Makalesi
BibTex RIS Kaynak Göster

THBF Bileşiğinin Insiliko Moleküler Yerleştirme Çalışmaları: TD-DFT Simülasyonları ve İlaç Tasarımı

Yıl 2021, Cilt: 11 Sayı: 4, 2955 - 2966, 15.12.2021
https://doi.org/10.21597/jist.953803

Öz

Bu çalışmada, 4 - ((2R, 3S) -2, 3, 4-trihidroksibutoksi) ftalonitrilin geometrik yapılarının B3LYP / 6-311G (d, p) ve elektronik özelliklerine dayalı detaylı bir TD-DFT çalışması sunuyoruz. Çalışma, enerji boşluğu (Δ), İyonlaşma potansiyeli (I), Elektron Afinitesi (A), Global Sertlik (η), Kimyasal Potansiyel (μ), Global Elektrofilik (ω), Elektronejisite (ε) hesaplamak için HOMO-LUMO analizine genişletildi. Hesaplanan HOMO ve LUMO enerjisi, molekül içinde meydana gelen yük transferlerini ortaya çıkarır. Sonuçlar grafikler, tablolar ve şekiller ile gösterildi. Bileşiğin doğrusal olmayan özellikleri belirlendi. Ligand-protein etkileşimlerinin tam bağlanma bölgesini ve bağlanma mekanizmasını araştırmak için moleküler yerleştirme sağlandı.

Kaynakça

  • Ağırtaş MS, Cabir B, Gonca S and Ozdemir S, 2021. Antioxidant, Antimicrobial, DNA Cleavage, Fluorescence Properties and Synthesis of 4-(3, 4, 5-Trimethoxybenzyloxy) Phenoxy) Substituted Zinc Phthalocyanine. Polycyclic Aromatic Compounds, 1-15.
  • Ağirtaş MS, Solğun DG, Yildiko Ü, Özkartal A, 2020. Design of novel substituted phthalocyanines; synthesis and fluorescence, DFT, photovoltaic properties. Turkish Journal of Chemistry, 44 (6):1574-1586.
  • Arivazhagan R, Sridevi C, Prakasam A, 2021. Exploring molecular structure, spectral features, electronic properties and molecular docking of a novel biologically active heterocyclic compound 4-phenylthiosemicarbazide. Journal of Molecular Structure, 1232: 129956.
  • Cabir B, Yildiko U, Ağirtaş MS, 2019. Synthesis, DFT analysis, and electronic properties of new phthalocyanines bearing ETAEO substituents on peripheral position. Journal of Coordination Chemistry, 72 (17):2997-3011.
  • Cabir B, Yildiko U, Ağırtaş MS, Horoz S, 2020. Computational DFT calculations, photovoltaic properties and synthesis of (2R, 3S)-2, 3, 4-trihydroxybutoxy substituted phthalocyanines. Inorganic and Nano-Metal Chemistry, 50 (9):816-827.
  • CagriAta A, Yildiko Ü, Cakmak İ, Tanriverdi AA, 2021. Synthesis and characterization of polyvinyl alcohol-g-polystyrene copolymers via MADIX polymerization technique. Iranian Polymer Journal. 10.1007/s13726-021-00940-x.
  • Claessens CG, Hahn U and Torres T, 2008. Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record, 8 (2):75-97.
  • De La Torre G, Nicolau M, Torres T, 2001. In Supramolecular photosensitive and electroactive materials. Elsevier, pp. 1-111.
  • George L, 2018. Light-Activated Antimicrobial Materials Based on Perylene Imides and Phthalocyanines. http://urn.fi/URN:ISBN:978-952-15-4159-9.
  • Gerlits O, Ho K-Y, Cheng X, Blumenthal D, Taylor P, Kovalevsky A, Radić Z, 2019. A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chemico-Biological Interactions, 309: 108698.
  • Gregory P, 2003. Metal complexes as speciality dyes and pigments.
  • Güngördü Solğun D, Salihağırtaş M and Yildiko U, 2019. Synthesis and structural characterization of HMBOS; A comparative MP2 and DFT study.10.13140/RG.2.2.25747.22566.
  • Isago H, 2015. Optical spectra of phthalocyanines and related compounds. Springer, pp. 21-40.
  • Košak U, Strašek N, Knez D, Jukič M, Žakelj S, Zahirović A, Pišlar A, Brazzolotto X, Nachon F, Kos J, Gobec S, 2020. N-alkylpiperidine carbamates as potential anti-Alzheimer’s agents. European Journal of Medicinal Chemistry, 197: 112282.
  • Kumari V, Dyba MA, Holland RJ, Liang Y-H, Singh SV, Ji X, 2016. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical. PLOS ONE, 11 (9):e0163821.
  • Leznoff C, Lever A, Properties and Applications, (VCH, New York, 1989).
  • Lo P-C, Rodríguez-Morgade MS, Pandey RK, Ng DK, Torres T, Dumoulin F, 2020. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chemical Society Reviews, 49 (4):1041-1056.
  • McKeown NB, 1998. Phthalocyanine materials: synthesis, structure and function. Cambridge university press. Okura I, 2017. Photosensitization of porphyrins and phthalocyanines. CRC Press.
  • Solğun D, Yıldıko Ü, Ağırtaş M, 2021. Synthesis, DFT calculations, photophysical, photochemical properties of peripherally metallophthalocyanines bearing (2-(benzo [d][1, 3] dioxol-5-ylmethoxy) phenoxy) substituents. Polycyclic Aromatic Compounds, 1-19.
  • Solğun DG, Keskin MS and Ağırtaş MS, 2020. DFT analysis and electronic properties, and synthesis of tetra (9-phenyl-9H-xanthen-9-yl) oxy peripheral-substituted zinc phthalocyanine. Chemical Papers, 1-13.
  • Urbani M, de la Torre G, Nazeeruddin MK, Torres T, 2019. Phthalocyanines and porphyrinoid analogues as hole-and electron-transporting materials for perovskite solar cells. Chemical Society Reviews, 48 (10):2738-2766.
  • Urbani M, Ragoussi M-E, Nazeeruddin MK, Torres T, 2019. Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews, 381: 1-64.
  • Vanasundari K, Balachandran V, Kavimani M and Narayana B, 2017. Spectroscopic investigation, vibrational assignments, Fukui functions, HOMO-LUMO, MEP and molecular docking evaluation of 4–[(3, 4–dichlorophenyl) amino] 2–methylidene 4–oxo butanoic acid by DFT method. Journal of Molecular Structure, 1147: 136-147.
  • Wang G, Liu W, Gong Z, Huang Y, Li Y and Peng Z, 2020. Design, synthesis, biological evaluation and molecular docking studies of new chalcone derivatives containing diaryl ether moiety as potential anticancer agents and tubulin polymerization inhibitors. Bioorganic Chemistry, 95: 103565.
  • Yildiko Ü, Ata AÇ, Tanriverdİ AA and Çakmak İ, 2021. Investigation of novel diethanolamine dithiocarbamate agent for RAFT polymerization: DFT computational study of the oligomer molecules. Bulletin of Materials Science, 44 (3):186.
  • Zafar I, Arfan M, Nasir R, Shaikh A, 2016. Aluminum phthalocyanine derivatives: potential in antimicrobial PDT and photodiagnosis. Austin Biomolecules: Open Access, 1 (2):1-7.
  • Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F, 2010. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coordination Chemistry Reviews, 254 (23-24):2755-2791.
  • Zhang Y, Cai X, Bian Y, Jiang J, 2010. Organic semiconductors of phthalocyanine compounds for field effect transistors (FETs). Functional Phthalocyanine Molecular Materials, 275-321.

Insilico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design

Yıl 2021, Cilt: 11 Sayı: 4, 2955 - 2966, 15.12.2021
https://doi.org/10.21597/jist.953803

Öz

In this study, we present a detailed TD-DFT study based on the B3LYP / 6-311G (d, p) and electronic properties of geometric structures of 4 - ((2R, 3S) -2, 3, 4-trihydroxybutoxy) phthalonitrile. The study was expanded to HOMO-LUMO analysis to calculate energy gap (Δ), Ionization potential (I), Electron Affinity (A), Global Hardness (η), Chemical Potential (μ), Global Electrophilicity (ω), Electronegicity (ε). Calculated HOMO and LUMO energy reveal charge transfers that occur within the molecule. The results were shown with graphs, tables, and figures. Nonlinear properties of the compound have been determined. Molecular docking was achieved to probe the complete binding site and binding mechanism of the ligand-protein interactions.

Kaynakça

  • Ağırtaş MS, Cabir B, Gonca S and Ozdemir S, 2021. Antioxidant, Antimicrobial, DNA Cleavage, Fluorescence Properties and Synthesis of 4-(3, 4, 5-Trimethoxybenzyloxy) Phenoxy) Substituted Zinc Phthalocyanine. Polycyclic Aromatic Compounds, 1-15.
  • Ağirtaş MS, Solğun DG, Yildiko Ü, Özkartal A, 2020. Design of novel substituted phthalocyanines; synthesis and fluorescence, DFT, photovoltaic properties. Turkish Journal of Chemistry, 44 (6):1574-1586.
  • Arivazhagan R, Sridevi C, Prakasam A, 2021. Exploring molecular structure, spectral features, electronic properties and molecular docking of a novel biologically active heterocyclic compound 4-phenylthiosemicarbazide. Journal of Molecular Structure, 1232: 129956.
  • Cabir B, Yildiko U, Ağirtaş MS, 2019. Synthesis, DFT analysis, and electronic properties of new phthalocyanines bearing ETAEO substituents on peripheral position. Journal of Coordination Chemistry, 72 (17):2997-3011.
  • Cabir B, Yildiko U, Ağırtaş MS, Horoz S, 2020. Computational DFT calculations, photovoltaic properties and synthesis of (2R, 3S)-2, 3, 4-trihydroxybutoxy substituted phthalocyanines. Inorganic and Nano-Metal Chemistry, 50 (9):816-827.
  • CagriAta A, Yildiko Ü, Cakmak İ, Tanriverdi AA, 2021. Synthesis and characterization of polyvinyl alcohol-g-polystyrene copolymers via MADIX polymerization technique. Iranian Polymer Journal. 10.1007/s13726-021-00940-x.
  • Claessens CG, Hahn U and Torres T, 2008. Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record, 8 (2):75-97.
  • De La Torre G, Nicolau M, Torres T, 2001. In Supramolecular photosensitive and electroactive materials. Elsevier, pp. 1-111.
  • George L, 2018. Light-Activated Antimicrobial Materials Based on Perylene Imides and Phthalocyanines. http://urn.fi/URN:ISBN:978-952-15-4159-9.
  • Gerlits O, Ho K-Y, Cheng X, Blumenthal D, Taylor P, Kovalevsky A, Radić Z, 2019. A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chemico-Biological Interactions, 309: 108698.
  • Gregory P, 2003. Metal complexes as speciality dyes and pigments.
  • Güngördü Solğun D, Salihağırtaş M and Yildiko U, 2019. Synthesis and structural characterization of HMBOS; A comparative MP2 and DFT study.10.13140/RG.2.2.25747.22566.
  • Isago H, 2015. Optical spectra of phthalocyanines and related compounds. Springer, pp. 21-40.
  • Košak U, Strašek N, Knez D, Jukič M, Žakelj S, Zahirović A, Pišlar A, Brazzolotto X, Nachon F, Kos J, Gobec S, 2020. N-alkylpiperidine carbamates as potential anti-Alzheimer’s agents. European Journal of Medicinal Chemistry, 197: 112282.
  • Kumari V, Dyba MA, Holland RJ, Liang Y-H, Singh SV, Ji X, 2016. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical. PLOS ONE, 11 (9):e0163821.
  • Leznoff C, Lever A, Properties and Applications, (VCH, New York, 1989).
  • Lo P-C, Rodríguez-Morgade MS, Pandey RK, Ng DK, Torres T, Dumoulin F, 2020. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chemical Society Reviews, 49 (4):1041-1056.
  • McKeown NB, 1998. Phthalocyanine materials: synthesis, structure and function. Cambridge university press. Okura I, 2017. Photosensitization of porphyrins and phthalocyanines. CRC Press.
  • Solğun D, Yıldıko Ü, Ağırtaş M, 2021. Synthesis, DFT calculations, photophysical, photochemical properties of peripherally metallophthalocyanines bearing (2-(benzo [d][1, 3] dioxol-5-ylmethoxy) phenoxy) substituents. Polycyclic Aromatic Compounds, 1-19.
  • Solğun DG, Keskin MS and Ağırtaş MS, 2020. DFT analysis and electronic properties, and synthesis of tetra (9-phenyl-9H-xanthen-9-yl) oxy peripheral-substituted zinc phthalocyanine. Chemical Papers, 1-13.
  • Urbani M, de la Torre G, Nazeeruddin MK, Torres T, 2019. Phthalocyanines and porphyrinoid analogues as hole-and electron-transporting materials for perovskite solar cells. Chemical Society Reviews, 48 (10):2738-2766.
  • Urbani M, Ragoussi M-E, Nazeeruddin MK, Torres T, 2019. Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews, 381: 1-64.
  • Vanasundari K, Balachandran V, Kavimani M and Narayana B, 2017. Spectroscopic investigation, vibrational assignments, Fukui functions, HOMO-LUMO, MEP and molecular docking evaluation of 4–[(3, 4–dichlorophenyl) amino] 2–methylidene 4–oxo butanoic acid by DFT method. Journal of Molecular Structure, 1147: 136-147.
  • Wang G, Liu W, Gong Z, Huang Y, Li Y and Peng Z, 2020. Design, synthesis, biological evaluation and molecular docking studies of new chalcone derivatives containing diaryl ether moiety as potential anticancer agents and tubulin polymerization inhibitors. Bioorganic Chemistry, 95: 103565.
  • Yildiko Ü, Ata AÇ, Tanriverdİ AA and Çakmak İ, 2021. Investigation of novel diethanolamine dithiocarbamate agent for RAFT polymerization: DFT computational study of the oligomer molecules. Bulletin of Materials Science, 44 (3):186.
  • Zafar I, Arfan M, Nasir R, Shaikh A, 2016. Aluminum phthalocyanine derivatives: potential in antimicrobial PDT and photodiagnosis. Austin Biomolecules: Open Access, 1 (2):1-7.
  • Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F, 2010. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coordination Chemistry Reviews, 254 (23-24):2755-2791.
  • Zhang Y, Cai X, Bian Y, Jiang J, 2010. Organic semiconductors of phthalocyanine compounds for field effect transistors (FETs). Functional Phthalocyanine Molecular Materials, 275-321.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Ahmet Turan Tekeş 0000-0002-9942-7367

Ahmet Çağrı Ata 0000-0002-2296-2265

Aslıhan Aycan Tanrıverdi 0000-0001-5811-8253

İsmail Çakmak 0000-0002-3191-7570

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 17 Haziran 2021
Kabul Tarihi 18 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 4

Kaynak Göster

APA Tekeş, A. T., Ata, A. Ç., Tanrıverdi, A. A., Çakmak, İ. (2021). Insilico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design. Journal of the Institute of Science and Technology, 11(4), 2955-2966. https://doi.org/10.21597/jist.953803
AMA Tekeş AT, Ata AÇ, Tanrıverdi AA, Çakmak İ. Insilico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2021;11(4):2955-2966. doi:10.21597/jist.953803
Chicago Tekeş, Ahmet Turan, Ahmet Çağrı Ata, Aslıhan Aycan Tanrıverdi, ve İsmail Çakmak. “Insilico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design”. Journal of the Institute of Science and Technology 11, sy. 4 (Aralık 2021): 2955-66. https://doi.org/10.21597/jist.953803.
EndNote Tekeş AT, Ata AÇ, Tanrıverdi AA, Çakmak İ (01 Aralık 2021) Insilico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design. Journal of the Institute of Science and Technology 11 4 2955–2966.
IEEE A. T. Tekeş, A. Ç. Ata, A. A. Tanrıverdi, ve İ. Çakmak, “Insilico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 4, ss. 2955–2966, 2021, doi: 10.21597/jist.953803.
ISNAD Tekeş, Ahmet Turan vd. “Insilico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design”. Journal of the Institute of Science and Technology 11/4 (Aralık 2021), 2955-2966. https://doi.org/10.21597/jist.953803.
JAMA Tekeş AT, Ata AÇ, Tanrıverdi AA, Çakmak İ. Insilico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:2955–2966.
MLA Tekeş, Ahmet Turan vd. “Insilico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design”. Journal of the Institute of Science and Technology, c. 11, sy. 4, 2021, ss. 2955-66, doi:10.21597/jist.953803.
Vancouver Tekeş AT, Ata AÇ, Tanrıverdi AA, Çakmak İ. Insilico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):2955-66.