Derleme
BibTex RIS Kaynak Göster

Effects of Drought on Pome Fruit Species

Yıl 2022, Cilt: 12 Sayı: 3, 1224 - 1237, 01.09.2022
https://doi.org/10.21597/jist.1078983

Öz

Apple, pear, quince, persimmon, loquat, medlar and hawthorn are among the pome fruit species with significant production potential in the world. Temperature is the most important climatic factor which can lead to limiting the cultivation. The increase in drought with global climate change and the difficulty in accessing water resources are emerging as the most important effects of temperature in recent years. With the effect of morphological, biochemical, physiological and molecular changes in pome fruit species under water stress, it leads to a decrease in quality parameters, yield and negatively affecting the economic yield value of pome fruit trees. Resistance breeding, kaolin, melatonin, anti-transpirant (brasinolide), stem reduction, silica, nitric oxide, nutrient application, inoculation with mycorrhizal fungi and plant growth-promoting rhizobacteria, soil tillage practices and shade cover systems are different methods and applications that are widely used in order to reduce the negative effects of water stress on pome fruit trees. In this study, the effects of drought on some pome fruit species were tried to be revealed.

Kaynakça

  • Anli M, Baslam M, Tahiri A, RaklamiA, Symanczik S, Boutasknit A, Meddich A, 2020. Biofertilizers as Strategies to Improve Photosynthetic Apparatus, Growth and Drought Stress Tolerance in the Date Palm. Frontiers in Plant Science, 1560.
  • Arnao MB, Hernández-Ruiz J, 2020. Is phytomelatonin a new plant hormone? Agronomy, 10(1): 95.
  • Aalipour H, Nikbakht A, Etemadi N, Rejali F, Soleimani M, 2020. Biochemical Response and Interactions between Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria during Establishment and Stimulating Growth of Arizona Cypress (Cupressus arizonica G.) under Drought Stress. Scientia Horticulturae, 261:108923.
  • Arabzadeh N, 2012. The Effect of Drought Stress on Soluble Carbohydrates (Sugars) in Two Species of Haloxylon Persicum and Haloxylon Aphyllum. Asian Journal of Plant Sciences, 11(1): 44-51.
  • Ashkavand P, Tabari M, Zarafshar M, Tomášková I, Struve D, 2015. Effect of SiO2 Nanoparticles on Drought Resistance in Hawthorn Seedlings. Forest Research Papers, 76(4): 350-359.
  • Ashkavand P, Tabari M, Zarafshar M, 2014. Assessment of Drought Resistance in Hawthorn and Mahaleb Seedlings with Emphasis on Biochemical Parameters. Zagros Forests Research, 1(1): 1-18.
  • Ashkavand P, Tabari M, Zrafshar M, 2016. The Growth and Physiology Characteristics of Mahaleb (Prunus mahaleb) and Hawthorn (Crataegus aronia L.) Seedlings to Drought Stress. Iranian Journal of Forest, 8(3): 277-289.
  • Auler PA, Amaral MN, Rodrigues G, Dos S, Benitez LC, Maia LC, Souza GM, Braga EJB, 2017. Molecular Responses to Recurrent Drought in Two Contrasting Rice Genotypes. Planta, 246(5): 899-914.
  • Basile B, Rouphael Y, Colla G, Soppelsa S, Andreotti C, 2020. Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Scientia Horticulturae, 267: 109330.
  • Bayram M, 2015. Yarı Kurak Bir Bölgede Sürdürülebilir Toprak İşleme Yöntemlerinin Toprak Kalitesinin Değerlendirilmesi Yoluyla Belirlenmesi. Gaziosmanpaşa Üniversitesi, Doktora Tezi (Basılmış).
  • Babaei L, Sharifani MM, Darvishzadeh R, Abbaspour N, Henareh M, 2021. Impact of Drought Stress on Photosynthetic Response of Some Pear Species. International Journal of Horticultural Science and Technology, 8(4): 353-369.
  • Balakhnina T, Borkowska A, 2013. Effects of Silicon on Plant Resistance to Environmental Stresses. International Agrophysics, 27(2).
  • Ballester C, Buesa I, Soler E, Besada C, Salvador A, Bonet L, Intrigliolo DS, 2018. Postharvest Regulated Deficit Irrigation in Early and Intermediate Maturing Loquat Trees. Agricultural Water Management, 205: 1-8.
  • Badal E, Buesa I, Guerra D, Bonet L, Ferrer P, Intrigliolo DS, 2010. Maximum Diurnal Trunk Shrinkage İs A Sensitive İndicator of Plant Water, Stress in Diospyros kaki (Persimmon) Trees. Agricultural Water Management, 98(1): 143-147.
  • Beis A, Patakas A, 2012. Relative Contribution of Photoprotection and Anti-Oxidative Mechanisms to Differential Drought Adaptation Ability in Grapevines. Environmental and Experimental Botany, 78: 173-183.
  • Bolat I, Dikilitas M, Ercisli S, Ikinci A, Tonkaz T, 2014. The Effect of Water Stress on Some Morphological, Physiological, and Biochemical Characteristics and Bud Success on Apple and Quince Rootstocks. The Scientific World Journal, 769732.
  • Boini A, Manfrini L, Morandi B, Corelli Grappadelli L, Predieri S, Daniele GM, López G, 2021. High Levels of Shading as a Sustainable Application for Mitigating Drought, in Modern Apple Production. Agronomy, 11(3): 422.
  • Budak H, Akpinar BA, Unver T, Turktas M, 2013. Proteome Changes in Wild and Modern Wheat Leaves upon Drought Stress by Two Dimensional Electrophoresis and Nanolc-ESI–MS/MS. Plant Molecular Biology, 83(1-2): 89-103.
  • Cordoba NHA, Trujillo MMP, Rincon BEC, Velazco NF, Magnitskiy S, Moreno LP, 2021. Shading Reduces Water Deficit in Strawberry (Fragaria ananassa Duch.) Plants during Vegetative Growth. Biorxiv.
  • Cui SM, Chen GL, Nii N, 2003. Effects of Water Stress on Sorbitol Production and Anatomical Changes in the Nuclei of Leaf and Root Cells of Young Loquat Trees. Journal of the Japanese Society for Horticultural Science, 72(5): 359-365.
  • Dbara S, Boussetta W, Hafi M, Mars M, 2021. Performance Assessment of Three Old Pear Cultivars (Pyrus communis L.) to Cope Drought Caused by Climate Change. Journal of Horticulture and Postharvest Research, 351-366.
  • Doorn WG, 2008. Is The Onset of Senescence in Leaf Cells of Intact Plants Due to Low or High Sugar Levels?. Journal of Experimental Botany, 59 (8): 1963-1972.
  • Dry PR, Loveys BR, Düring H, 2000. Partial Drying of the Root zone of Grape. I. Transient Changes İn Shoot Growth and Gas Exchange. Vitis, 39(1): 3-7.
  • Dasilva EC, Nogueira RJMC, Da Silva MA, De Albuquerque MB, 2011. Drought Stress and Plant Nutrition. Plant Stress, 5(1): 32-41.
  • Faghih S, Zamani Z, Fatahi R, Omidi M, 2021. Influence of Kaolin Application on Most Important Fruit and Leaf Characteristics of Two Apple Cultivars under Sustained Deficit Irrigation. Biological Research, 54(1): 1-15.
  • Fayed T, El-mohsen MAA, Ali MM, El-karim MSA, 2018. Enhancing water use efficiency of “Le Conte” pear trees under deficit irrigation conditions. Biosci. Res. 15:4452-4464.
  • Gibson SI, 2005. Control of plant development and gene expression by sugar signaling. Current opinion in plant biology, 8(1): 93-102.
  • Glenn DM, 2010. Canopy gas exchange and water use efficiency of (‘Empire’) apple in response to particle film, irrigation, and microclimatic factors. J. Am. Soc. Hortic. Sci.135: 25-32.
  • Gastol M, Domagała-Świątkiewicz I, Bijak M, 2016. The effect of mycorrhizal inoculation and phosphorus application on the growth and mineral nutrient status of apple seedlings. Journal of Plant Nutrition, 39(2): 288-299.
  • Glenn DM, 2016. Effect of highly processed calcined kaolin residues on apple productivity and quality D.M. Sci. Hortic. (Amsterdam). 201: 101-108.
  • Gao T, Zhang Z, Liu X, Wu Q, Chen Q, Liu Q, Li C, 2020. Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. Plant Physiology and Biochemistry, 148: 260-272.
  • Geng D, Chen P, Shen X, Zhang Y, Li X, Jiang L, Guan Q, 2018. MDMYB88 And MDMYB124 Enhance Drought Tolerance by Modulating Root Vessels and Cell Walls in Apple. Plant Physiology, 178(3): 1296-1309.
  • Grinan I, Rodríguez P, Nouri H, Wang R, Huang G, Morales D, Galindo A, 2019. Leaf Mechanisms Involved in The Response of Cydonia oblonga Trees to Water Stress and Recovery. Agricultural Water Management, 221: 66-72.
  • Gugliuzza G, Talluto G, Martinelli F, Farina V, Lo Bianco R, 2020. Water Deficit Affects the Growth and Leaf Metabolite Composition of Young Loquat Plants. Plants, 9(2): 274.
  • Gür İ, 2018. Effects of Water Stress Applied on Some Pear Rootstocks for Morphological and Biochemical Changes. Süleyman Demirel University, Ph.D. Thesis (printed).
  • Hammond JP, Broadley MR, Bowen HC, Spracklen WP, Hayden RM, White PJ, 2011. Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PloS one, 6(9): e24606.
  • Hepaksoy S, 2019. Meyvecilikte Anaç Kullanımı: Armut Anaçları. Türk Bilimsel Derlemeler Dergisi, 12(2): 69-74.
  • Hardie WJ, Martin SR, 2000. Shoot Growth on defruited Grapevines: A Physiological Indicator for Irrigation Scheduling. Australian Journal of Grape and Wine Research, 6(1): 52-58.
  • Huang D, Ma M, Wang Q, Zhang M, Jing G, Li C, Ma F, 2020. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiology and Biochemistry, 149: 245-255.
  • Hueso JJ, Cuevas J, 2008. Loquat as a Crop Model for Successful Deficit İrrigation. Irrigation Science, 26(3): 269-276.
  • Jia D, Jiang Q, Nocker S, Gong X, Ma F, 2019. An apple (Malus domestica) NAC transcription factor enhances drought tolerance in transgenic apple plants. Plant Physiology and Biochemistry, 139: 504-512.
  • Jia X, Gong X, Jia X, Li X, Wang Y, Wang P, Ma F, 2021. Overexpression of MdATG8i Enhances Drought Tolerance by Alleviating Oxidative Damage and Promoting Water Uptake in Transgenic Apple. International Journal of Molecular Sciences, 22(11): 5517.
  • Joshi RK, Bharat SS, Mishra R, 2020. Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech, 10(9): 1-14.
  • Jadhav PV, Kale PB, Moharil MP, Gawai DC, Dudhare MS, Munje SS, Dani RG, 2018. Genetıc Engineering of Crop Plants for Salinity and Drought Stress Tolerance: Being Closer to the Field. Abiotic Stress Tolerance Mechanisms in Plants, 1: 1-84.
  • Kirakosyan A, Seymour E, Kaufman PB, Warber S, Bolling S, Chang SC, 2003. Antioxidant Capacity of Polyphenolic Extracts from Leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) Subjected to Drought and Cold Stress. Journal of Agricultural and Food Chemistry, 51(14): 3973-3976.
  • Küçükyumuk C, 2020. Drought Response of Young Pear Trees (Pyrus comminus). Applied Ecology and Environmental Research, 18(6): 7769-7781.
  • Kumari S, Thakur A, Singh N, Chandel JS, Rana N, 2020. Influence of drought stress and brassinosteroid on growth and physio-biochemical characteristics of apple plants. Indian Journal of Horticulture, 77(1): 88-93.
  • Liang B, Gao T, Zhao Q, Ma C, Chen Q, Wei Z, Ma F, 2018. Effects of exogenous dopamine on the uptake, transport, and resorption of apple ionome under moderate drought. Frontiers in plant science, 9: 755. Lepaja L, Kullaj E, Lepaja K, Avdiu V, Zajmi A, 2018. Effect of Water Stress on Some Physiological Indices in Young Pear Trees. In XXX International Horticultural Congress, 1253: 71-76.
  • Lopez G, Larrigaudière C, Girona J, Behboudian MH, Marsal J, 2011. Fruit Thinning in ‘Conference’ pear Grown under Deficit irrigation: Implications for Fruit Quality at Harvest and after Cold Storage. Scientia Horticulturae, 129(1): 64-70.
  • Losciale P, Zibordi M, Manfrini L, Morandi B, Pierpaoli E, Corelli GL, 2014. Rootstock Effect on Water Consumption in Pear 'Abbé Fetel'. In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes 1130: 403-408.
  • Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y, Kwak SS, Tang ZC, 2004. The Role of Aquaporin RWC3 in Drought Avoidance in Rice. Plant and Cell Physiology, 45(4): 481-489.
  • Liu B, Li M, Cheng L, Liang D, Zou Y, Ma F, 2012. Influence of Rootstock on Antioxidant System in Leaves and Roots of Young Apple Trees in Response to Drought Stress. Plant Growth Regulation, 67(3): 247-256.
  • Lovisolo C, Perrone I, Carra A, Ferrandino A, Flexas J, Medrano H, Schubert A, 2010. Drought-Induced Changes in Development and Function of Grapevine (Vitis spp.) Organs and in Their Hydraulic and Non-Hydraulic Interactions at the Whole-Plant Level: a Physiological and Molecular Update. Functional Plant Biology, 37(2): 98.
  • Li H, Zhao X, Gao X, Ren K, Wu P, 2018. Effects of water collection and mulching combinations on water infiltration and consumption in a semiarid rainfed orchard. Journal of Hydrology, 558: 432-441.
  • Lopez G, Boini A, Manfrini L, Torres-Ruiz JM, Pierpaoli E, Zibordi M, Corelli GL, 2018. Effect of Shading and Water Stress on Light İnterception, Physiology and Yield of Apple Trees. Agricultural Water Management, 210: 140-148.
  • Mahajan S, Tuteja N, 2005. Cold, Salinity and Drought Stresses: An Overview. Archives of Biochemistry and Biophysics, 444(2): 139-158.
  • Montanaro G, Dichio B, Xiloyannis C, 2009. Shade Mitigates Photoinhibition and Enhances Water Use Efficiency in Kiwifruit under Drought. Photosynthetica, 47(3): 363-371.
  • Marsal J, Behboudian MH, Mata M, Basile B, Del CJ, 2010. Fruit Thinning in ‘Conference’ Pear Grown under Deficit Irrigation to Optimise Yield and to İmprove Tree Water Status. The Journal of Horticultural Science and Biotechnology, 85(2): 125-130.
  • Moreno HAC, Vélez SJE, Intrigliolo DS, 2017. Effect of Deficit İrrigation on Yield and Quality of Pear (Pyrus communis cv. Triumph of Vienna). Agronomia Colombiana, 35(3): 350-356.
  • Macho RMA, Herrera RMB, Brejcha R, Schäffner AR, Tanaka N, Fujiwara T, Camacho CJJ, 2018. Boron Toxicity Reduces Water Transport From Root to Shoot in Arabidopsis Plants. Evidence for a Reduced Transpiration Rate and Expression of Major PIP Aquaporin Genes. Plant and Cell Physiology, 59(4): 841-849.
  • Musacchi S, Iglesias I, Neri D, 2021. Training systems and sustainable orchard management for European pear (Pyrus communis L.) in the Mediterranean area: A review. Agronomy, 11(9): 1765.
  • Nicolas E, Torrecillas A, Dellamico J, Alarcón JJ, 2005. Sap Flow, Gas Exchange, and Hydraulic Conductance of Young Apricot Trees Growing under a Shading Net and Different Water Supplies. Journal of Plant Physiology, 162(4): 439-447.
  • Nader KB, Stoll M, Rauhut D, Patz CD, Jung R, Loehnertz O, Gomès E, 2019. Impact of Grapevine Age on Water Status and Productivity of Vitis vinifera L. cv. Riesling. European Journal of Agronomy, 104: 1-12.
  • Noctor G, Reichheld JP, Foyer CH, 2018. ROS-Related Redox Regulation and Signaling in Plants. In Seminars in Cell & Developmental Biology, 80: 3-12.
  • Noceto PA, Bettenfeld P, Boussageon R, Hériché M, Sportes A, van Tuinen D, Wipf D, 2021. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza, 31(6): 655-669.
  • Osakabe Y, Yamaguchi SK, Shinozaki K, Tran LS, 2014. ABA Control of Plant Macroelement Membrane Transport Systems in Response to Water Deficit and High Salinity. The New Phytologist, 202(1): 35-49.
  • Özcan M, 2020. Bahçe Bitkilerinde Stres Fizyolojisi. Ders Notu Lisansüstü Eğitim Enstitüsü, Bahçe Bitkileri Anabilimdalı.
  • Özçağıran R, Ünal A, Özeker E, İsfendiyaroğlu M, 2005. Ilıman İklim Meyve Türleri, Yumuşak Çekirdekli Meyveler, Cilt-II, 73–126. Ege Üniversitesi Ziraat Fakültesi Yayınları, İzmir, Türkiye. Örs S, Ekinci M, 2015. Kuraklık Stresi ve Bitki Fizyolojisi. Derim, 32(2): 237-250.
  • Paudel I, Gerbi H, Zisovich A, Sapir G, Ben DS, Brumfeld V, Klein T, 2019. Drought Tolerance Mechanisms and Aquaporin Expression of Wild vs. Cultivated Pear Tree Species in the Field. Environmental and Experimental Botany, 167: 103-832.
  • Ping M A, Baı, TH, 2015. Effects of Progressive Drought on Photosynthesis and Partitioning of Absorbed Light in Apple Trees. Journal of Integrative Agriculture, 14(4): 681-690.
  • Peng X, Guo Z, Zhang Y, Li J, 2017. Simulation of long-term yield and soil water consumption in apple orchards on the Loess Plateau, China, in response to fertilization. Scientific Reports, 7(1): 1-11.
  • Pou A, Medrano H, Flexas J, Tyerman SD, 2013. A Putative Role for TIP and PIP Aquaporins in Dynamics of Leaf Hydraulic and Stomatal Conductances in Grapevine under Water Stress and Re‐Watering. Plant, Cell & Environment, 36(4): 828-843.
  • Qi J, Sun S, Yang L, Li M, Ma F, Zou Y, 2019. Potassium uptake and transport in apple roots under drought stress. Horticultural Plant Journal, 5(1): 10-16.
  • Reid M, Kalcsits L, 2020. Water Deficit Timing Affects Physiological Drought Response, Fruit Size, and Bitter Pit Development for ‘Honeycrisp’ apple. Plants, 9(7): 874.
  • Rolland F, Moore B, Sheen J, 2002. Sugar Sensing and Signaling in Plants. The Plant Cell, 14: 185-205.
  • Rushton PJ, Somssich IE, Ringler P, Shen QJ, 2010. WRKY Transcription Factors. Trends in Plant Science, 15(5): 247-258.
  • Sharma SAV, Sharma N, 2008. Effect of Rootstocks on Leaf Water Potential, Water Relations, Antioxidant Activities and Drought Tolerant in Flemish Beauty Pear under Water Stress Conditions. Indian Journal of Plant Physiology, 13(3): 266-271.
  • Sakalauskaite J, Kviklys D, Lanauskas J, Duchovskis P, 2006. Biomass Production, Dry Weight Partitioning and Leaf Area of Apple Rootstocks under Drought Stress. Sodininkyste Ir Darzininkyste, 25(3): 283-291.
  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S, 2016. Role of Sugars under Abiotic Stress. Plant Physiology and Biochemistry, 109: 54-61.
  • Sadeghnezhad E, Sharifi M, Zare MH, 2016. Profiling of Acidic (Amino and Phenolic Acids) and Phenylpropanoids Production in Response to Methyl Jasmonate-İnduced Oxidative Stress in Scrophularia Striata Suspension Cells. Planta, 244(1): 75-85.
  • Smeekens S, Ma J, Hanson J, Rolland F, 2010. Sugar Signals and Molecular Networks Controlling Plant Growth. Current Opinion İn Plant Biology, 13(3): 274-279.
  • Stellfeldt A, Maldonado MA, Hueso JJ, Cuevas J, 2018. Gas Exchange and Water Relations of Young Potted Loquat cv. Algerie under Progressive Drought Conditions. Journal of Integrative Agriculture, 17(6): 1360-1368.
  • Song X, Gao X, Wu P, Zhao X, Zhang W, Zou Y, Siddique KH, 2020. Drought responses of profile plant-available water and fine-root distributions in apple (Malus pumila Mill.) orchards in a loessial, semi-arid, hilly area of China. Science of the Total Environment, 723: 137739.
  • Sofo A, Dichio B, Montanaro G, Xiloyannis C, 2009. Shade Effect on Photosynthesis and Photoinhibition in Olive during Drought and Rewatering. Agricultural Water Management, 96(8): 1201-1206.
  • Tatari M, Jafari A, Shirmardi M, Mohamadi M, 2020. Using Morphological and Physiological Traits to Evaluate Drought Tolerance of Pear Populations. International Journal of Fruit Science, 20(4): 837-854.
  • Tramontini S, Vitali M, Centioni L, Schubert A, Lovisolo C, 2013. Rootstock Control of Scion Response to Water Stress in Grapevine. Environmental and Experimental Botany, 93: 20-26.
  • Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Zinta G, 2020. Mechanistic insights on melatonin mediated drought stress mitigation in plants. Physiologia Plantarum. doi:10.1111/ppl.13307
  • Turgay G, 2015. Asma (Vitis vinifera L.) Aquaporin Genlerinin Biyoinformatik Analizi ve Farklı Dokularda İfade Profillerinin Belirlenmesi. Ege Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış).
  • Tyerman SD, Niemietz CM, Bramley H, 2002. Plant Aquaporins: Multifunctional Water and Solute Channels with Expanding Roles. Plant, Cell & Environment, 25(2): 173-194.
  • Tripathi DK, Singh VP, Chauhan DK, Prasad SM, Dubey NK, 2014. Role of Macronutrients in Plant Growth and Acclimation: Recent Advances and Future Prospective. Improvement of Crops in the Era of Climatic Changes, 197-216.
  • Velez SJE, Balaguera LHE, Alvarez HJG, 2021. Effect of Regulated Deficit Irrigation (RDI) on the Production and Quality of Pear Triunfo De Viena Variety under Tropical Conditions. Scientia Horticulturae, 278: 109880.
  • Wang P, Sun X, Jia X, Wang N, Gong X, Ma F, 2016. Characterization of an autophagy-related gene MdATG8i from apple. Frontiers in plant science, 7: 720.
  • Wang D, Chen Q, Chen W, Guo Q, Xia Y, Wang S, Liang G, 2021. Physiological and Transcription Analyses Reveal the Regulatory Mechanism of Melatonin in Inducing Drought Resistance in Loquat (Eriobotrya japonica) Seedlings. Environmental and Experimental Botany, 181: 104291.
  • Wang YT, Chen ZY, Jiang Y, Duan BB, Xi ZM, 2019. Involvement of ABA and Antioxidant System in Brassinosteroid-Induced Water Stress Tolerance of Grapevine (Vitis vinifera L.). Scientia Horticulturae, 256: 108596.
  • Wang S, Liang D, Li C, Hao Y, Ma F, Shu H, 2012. Influence of Drought Stress on the Cellular Ultrastructure and Antioxidant System in Leaves of Drought Tolerant and Drought Sensitive Apple Rootstocks. Plant Physiology and Biochemistry, 51: 81-89.
  • Wingler A, Purdy S, Maclean JA, Pourtau N, 2006. The Role of Sugars in Integrating Environmental Signals during the Regulation of Leaf Senescence. Journal of Experimental Botany, 57(2): 391-399.
  • Yakushiji H, Sugiura H, Azuma A, Yamasaki A, 2012. Responses of Water Status and Fruit Quality of Japanese Persimmon (Diospyros kaki) to Drought Stress. In V International Symposium on Persimmon 996: 265-269.
  • Ye M, Zhao X, Biswas A, Huo G, Yang B, Zou Y, Gao X, 2021. Measurements and modeling of hydrological responses to summer pruning in dryland apple orchards. Journal of Hydrology, 594: 125651.
  • Yunqiang W, Mingan S, Zhipeng L, Zhang C, 2015. Characteristics of dried soil layers under apple orchards of different ages and their applications in soil water managements on the Loess Plateau of China. Pedosphere, 25(4): 546-554.
  • Zhang L, Cheng J, Sun X, Zhao T, Li M, Wang Q, Xin H, 2018. Overexpression of VAWRKY14 Increases Drought Tolerance in Arabidopsis by Modulating the Expression of Stress-Related Genes. Plant Cell Reports, 37(8): 1159-1172.
  • Zhang L, 2017. Grapevine Root Growth under Water Stress and its Relationship to Root Water Uptake. Universite De Bordeaux, Doctoral Dissertation.
  • Zhang L, Wang J, Ai C, An M, Qin Z, 2014. Photosynthesis of Diospyros lotus Seedlings under Drought Stress Responding to Exogenous Nitric Oxide. Jiangsu Journal of Agricultural Sciences, 30(3): 623-628.

Yumuşak Çekirdekli Meyve Türlerinde Kuraklığın Etkileri

Yıl 2022, Cilt: 12 Sayı: 3, 1224 - 1237, 01.09.2022
https://doi.org/10.21597/jist.1078983

Öz

Elma, armut, ayva, trabzonhurması, yenidünya, muşmula ve alıç dünyada önemli üretim potansiyeline sahip yumuşak çekirdekli meyve türleri arasındadır. Sıcaklık yetiştriciliği sınırlandıran en önemli iklim faktörüdür. Son yıllarda küresel iklim değişikliğiyle birlikte kuraklığın artması ve su kaynaklarına erişimin azalması sıcaklığın en önemli etkileri olarak ortaya çıkmaktadır. Su stresi altındaki yumuşak çekirdekli meyve türlerinde ortaya çıkan morfolojik, biyokimyasal, fizyolojik ve moleküler değişimlerin etkisi ile verim ve kalite parametrelerinin düşmesi dolayısıyla ağaçların ekonomik verim değerleri olumsuz etkilenmektedir. Dayanıklılık ıslahı, kaolin, melatonin, anti-transpirant (brasinolid), gövde azaltması, silika, nitrik oksit, besin maddesi uygulaması, mikorizal funguslar ve bitki gelişimini teşvik eden rizobakteriler ile aşılama, toprak işleme uygulamaları ve gölgelik örtü sistemleri farklı yöntemler ve uygulamalar stres faktörlerinin olumsuz etkilerini azalabilmek amacıyla yaygın olarak kullanılmaktadır. Çalışmada yumuşak çekirdekli bazı meyve türlerinde kuraklığın etkileri ortaya konulmaya çalışılmıştır.

Kaynakça

  • Anli M, Baslam M, Tahiri A, RaklamiA, Symanczik S, Boutasknit A, Meddich A, 2020. Biofertilizers as Strategies to Improve Photosynthetic Apparatus, Growth and Drought Stress Tolerance in the Date Palm. Frontiers in Plant Science, 1560.
  • Arnao MB, Hernández-Ruiz J, 2020. Is phytomelatonin a new plant hormone? Agronomy, 10(1): 95.
  • Aalipour H, Nikbakht A, Etemadi N, Rejali F, Soleimani M, 2020. Biochemical Response and Interactions between Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria during Establishment and Stimulating Growth of Arizona Cypress (Cupressus arizonica G.) under Drought Stress. Scientia Horticulturae, 261:108923.
  • Arabzadeh N, 2012. The Effect of Drought Stress on Soluble Carbohydrates (Sugars) in Two Species of Haloxylon Persicum and Haloxylon Aphyllum. Asian Journal of Plant Sciences, 11(1): 44-51.
  • Ashkavand P, Tabari M, Zarafshar M, Tomášková I, Struve D, 2015. Effect of SiO2 Nanoparticles on Drought Resistance in Hawthorn Seedlings. Forest Research Papers, 76(4): 350-359.
  • Ashkavand P, Tabari M, Zarafshar M, 2014. Assessment of Drought Resistance in Hawthorn and Mahaleb Seedlings with Emphasis on Biochemical Parameters. Zagros Forests Research, 1(1): 1-18.
  • Ashkavand P, Tabari M, Zrafshar M, 2016. The Growth and Physiology Characteristics of Mahaleb (Prunus mahaleb) and Hawthorn (Crataegus aronia L.) Seedlings to Drought Stress. Iranian Journal of Forest, 8(3): 277-289.
  • Auler PA, Amaral MN, Rodrigues G, Dos S, Benitez LC, Maia LC, Souza GM, Braga EJB, 2017. Molecular Responses to Recurrent Drought in Two Contrasting Rice Genotypes. Planta, 246(5): 899-914.
  • Basile B, Rouphael Y, Colla G, Soppelsa S, Andreotti C, 2020. Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Scientia Horticulturae, 267: 109330.
  • Bayram M, 2015. Yarı Kurak Bir Bölgede Sürdürülebilir Toprak İşleme Yöntemlerinin Toprak Kalitesinin Değerlendirilmesi Yoluyla Belirlenmesi. Gaziosmanpaşa Üniversitesi, Doktora Tezi (Basılmış).
  • Babaei L, Sharifani MM, Darvishzadeh R, Abbaspour N, Henareh M, 2021. Impact of Drought Stress on Photosynthetic Response of Some Pear Species. International Journal of Horticultural Science and Technology, 8(4): 353-369.
  • Balakhnina T, Borkowska A, 2013. Effects of Silicon on Plant Resistance to Environmental Stresses. International Agrophysics, 27(2).
  • Ballester C, Buesa I, Soler E, Besada C, Salvador A, Bonet L, Intrigliolo DS, 2018. Postharvest Regulated Deficit Irrigation in Early and Intermediate Maturing Loquat Trees. Agricultural Water Management, 205: 1-8.
  • Badal E, Buesa I, Guerra D, Bonet L, Ferrer P, Intrigliolo DS, 2010. Maximum Diurnal Trunk Shrinkage İs A Sensitive İndicator of Plant Water, Stress in Diospyros kaki (Persimmon) Trees. Agricultural Water Management, 98(1): 143-147.
  • Beis A, Patakas A, 2012. Relative Contribution of Photoprotection and Anti-Oxidative Mechanisms to Differential Drought Adaptation Ability in Grapevines. Environmental and Experimental Botany, 78: 173-183.
  • Bolat I, Dikilitas M, Ercisli S, Ikinci A, Tonkaz T, 2014. The Effect of Water Stress on Some Morphological, Physiological, and Biochemical Characteristics and Bud Success on Apple and Quince Rootstocks. The Scientific World Journal, 769732.
  • Boini A, Manfrini L, Morandi B, Corelli Grappadelli L, Predieri S, Daniele GM, López G, 2021. High Levels of Shading as a Sustainable Application for Mitigating Drought, in Modern Apple Production. Agronomy, 11(3): 422.
  • Budak H, Akpinar BA, Unver T, Turktas M, 2013. Proteome Changes in Wild and Modern Wheat Leaves upon Drought Stress by Two Dimensional Electrophoresis and Nanolc-ESI–MS/MS. Plant Molecular Biology, 83(1-2): 89-103.
  • Cordoba NHA, Trujillo MMP, Rincon BEC, Velazco NF, Magnitskiy S, Moreno LP, 2021. Shading Reduces Water Deficit in Strawberry (Fragaria ananassa Duch.) Plants during Vegetative Growth. Biorxiv.
  • Cui SM, Chen GL, Nii N, 2003. Effects of Water Stress on Sorbitol Production and Anatomical Changes in the Nuclei of Leaf and Root Cells of Young Loquat Trees. Journal of the Japanese Society for Horticultural Science, 72(5): 359-365.
  • Dbara S, Boussetta W, Hafi M, Mars M, 2021. Performance Assessment of Three Old Pear Cultivars (Pyrus communis L.) to Cope Drought Caused by Climate Change. Journal of Horticulture and Postharvest Research, 351-366.
  • Doorn WG, 2008. Is The Onset of Senescence in Leaf Cells of Intact Plants Due to Low or High Sugar Levels?. Journal of Experimental Botany, 59 (8): 1963-1972.
  • Dry PR, Loveys BR, Düring H, 2000. Partial Drying of the Root zone of Grape. I. Transient Changes İn Shoot Growth and Gas Exchange. Vitis, 39(1): 3-7.
  • Dasilva EC, Nogueira RJMC, Da Silva MA, De Albuquerque MB, 2011. Drought Stress and Plant Nutrition. Plant Stress, 5(1): 32-41.
  • Faghih S, Zamani Z, Fatahi R, Omidi M, 2021. Influence of Kaolin Application on Most Important Fruit and Leaf Characteristics of Two Apple Cultivars under Sustained Deficit Irrigation. Biological Research, 54(1): 1-15.
  • Fayed T, El-mohsen MAA, Ali MM, El-karim MSA, 2018. Enhancing water use efficiency of “Le Conte” pear trees under deficit irrigation conditions. Biosci. Res. 15:4452-4464.
  • Gibson SI, 2005. Control of plant development and gene expression by sugar signaling. Current opinion in plant biology, 8(1): 93-102.
  • Glenn DM, 2010. Canopy gas exchange and water use efficiency of (‘Empire’) apple in response to particle film, irrigation, and microclimatic factors. J. Am. Soc. Hortic. Sci.135: 25-32.
  • Gastol M, Domagała-Świątkiewicz I, Bijak M, 2016. The effect of mycorrhizal inoculation and phosphorus application on the growth and mineral nutrient status of apple seedlings. Journal of Plant Nutrition, 39(2): 288-299.
  • Glenn DM, 2016. Effect of highly processed calcined kaolin residues on apple productivity and quality D.M. Sci. Hortic. (Amsterdam). 201: 101-108.
  • Gao T, Zhang Z, Liu X, Wu Q, Chen Q, Liu Q, Li C, 2020. Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. Plant Physiology and Biochemistry, 148: 260-272.
  • Geng D, Chen P, Shen X, Zhang Y, Li X, Jiang L, Guan Q, 2018. MDMYB88 And MDMYB124 Enhance Drought Tolerance by Modulating Root Vessels and Cell Walls in Apple. Plant Physiology, 178(3): 1296-1309.
  • Grinan I, Rodríguez P, Nouri H, Wang R, Huang G, Morales D, Galindo A, 2019. Leaf Mechanisms Involved in The Response of Cydonia oblonga Trees to Water Stress and Recovery. Agricultural Water Management, 221: 66-72.
  • Gugliuzza G, Talluto G, Martinelli F, Farina V, Lo Bianco R, 2020. Water Deficit Affects the Growth and Leaf Metabolite Composition of Young Loquat Plants. Plants, 9(2): 274.
  • Gür İ, 2018. Effects of Water Stress Applied on Some Pear Rootstocks for Morphological and Biochemical Changes. Süleyman Demirel University, Ph.D. Thesis (printed).
  • Hammond JP, Broadley MR, Bowen HC, Spracklen WP, Hayden RM, White PJ, 2011. Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PloS one, 6(9): e24606.
  • Hepaksoy S, 2019. Meyvecilikte Anaç Kullanımı: Armut Anaçları. Türk Bilimsel Derlemeler Dergisi, 12(2): 69-74.
  • Hardie WJ, Martin SR, 2000. Shoot Growth on defruited Grapevines: A Physiological Indicator for Irrigation Scheduling. Australian Journal of Grape and Wine Research, 6(1): 52-58.
  • Huang D, Ma M, Wang Q, Zhang M, Jing G, Li C, Ma F, 2020. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiology and Biochemistry, 149: 245-255.
  • Hueso JJ, Cuevas J, 2008. Loquat as a Crop Model for Successful Deficit İrrigation. Irrigation Science, 26(3): 269-276.
  • Jia D, Jiang Q, Nocker S, Gong X, Ma F, 2019. An apple (Malus domestica) NAC transcription factor enhances drought tolerance in transgenic apple plants. Plant Physiology and Biochemistry, 139: 504-512.
  • Jia X, Gong X, Jia X, Li X, Wang Y, Wang P, Ma F, 2021. Overexpression of MdATG8i Enhances Drought Tolerance by Alleviating Oxidative Damage and Promoting Water Uptake in Transgenic Apple. International Journal of Molecular Sciences, 22(11): 5517.
  • Joshi RK, Bharat SS, Mishra R, 2020. Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech, 10(9): 1-14.
  • Jadhav PV, Kale PB, Moharil MP, Gawai DC, Dudhare MS, Munje SS, Dani RG, 2018. Genetıc Engineering of Crop Plants for Salinity and Drought Stress Tolerance: Being Closer to the Field. Abiotic Stress Tolerance Mechanisms in Plants, 1: 1-84.
  • Kirakosyan A, Seymour E, Kaufman PB, Warber S, Bolling S, Chang SC, 2003. Antioxidant Capacity of Polyphenolic Extracts from Leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) Subjected to Drought and Cold Stress. Journal of Agricultural and Food Chemistry, 51(14): 3973-3976.
  • Küçükyumuk C, 2020. Drought Response of Young Pear Trees (Pyrus comminus). Applied Ecology and Environmental Research, 18(6): 7769-7781.
  • Kumari S, Thakur A, Singh N, Chandel JS, Rana N, 2020. Influence of drought stress and brassinosteroid on growth and physio-biochemical characteristics of apple plants. Indian Journal of Horticulture, 77(1): 88-93.
  • Liang B, Gao T, Zhao Q, Ma C, Chen Q, Wei Z, Ma F, 2018. Effects of exogenous dopamine on the uptake, transport, and resorption of apple ionome under moderate drought. Frontiers in plant science, 9: 755. Lepaja L, Kullaj E, Lepaja K, Avdiu V, Zajmi A, 2018. Effect of Water Stress on Some Physiological Indices in Young Pear Trees. In XXX International Horticultural Congress, 1253: 71-76.
  • Lopez G, Larrigaudière C, Girona J, Behboudian MH, Marsal J, 2011. Fruit Thinning in ‘Conference’ pear Grown under Deficit irrigation: Implications for Fruit Quality at Harvest and after Cold Storage. Scientia Horticulturae, 129(1): 64-70.
  • Losciale P, Zibordi M, Manfrini L, Morandi B, Pierpaoli E, Corelli GL, 2014. Rootstock Effect on Water Consumption in Pear 'Abbé Fetel'. In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes 1130: 403-408.
  • Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y, Kwak SS, Tang ZC, 2004. The Role of Aquaporin RWC3 in Drought Avoidance in Rice. Plant and Cell Physiology, 45(4): 481-489.
  • Liu B, Li M, Cheng L, Liang D, Zou Y, Ma F, 2012. Influence of Rootstock on Antioxidant System in Leaves and Roots of Young Apple Trees in Response to Drought Stress. Plant Growth Regulation, 67(3): 247-256.
  • Lovisolo C, Perrone I, Carra A, Ferrandino A, Flexas J, Medrano H, Schubert A, 2010. Drought-Induced Changes in Development and Function of Grapevine (Vitis spp.) Organs and in Their Hydraulic and Non-Hydraulic Interactions at the Whole-Plant Level: a Physiological and Molecular Update. Functional Plant Biology, 37(2): 98.
  • Li H, Zhao X, Gao X, Ren K, Wu P, 2018. Effects of water collection and mulching combinations on water infiltration and consumption in a semiarid rainfed orchard. Journal of Hydrology, 558: 432-441.
  • Lopez G, Boini A, Manfrini L, Torres-Ruiz JM, Pierpaoli E, Zibordi M, Corelli GL, 2018. Effect of Shading and Water Stress on Light İnterception, Physiology and Yield of Apple Trees. Agricultural Water Management, 210: 140-148.
  • Mahajan S, Tuteja N, 2005. Cold, Salinity and Drought Stresses: An Overview. Archives of Biochemistry and Biophysics, 444(2): 139-158.
  • Montanaro G, Dichio B, Xiloyannis C, 2009. Shade Mitigates Photoinhibition and Enhances Water Use Efficiency in Kiwifruit under Drought. Photosynthetica, 47(3): 363-371.
  • Marsal J, Behboudian MH, Mata M, Basile B, Del CJ, 2010. Fruit Thinning in ‘Conference’ Pear Grown under Deficit Irrigation to Optimise Yield and to İmprove Tree Water Status. The Journal of Horticultural Science and Biotechnology, 85(2): 125-130.
  • Moreno HAC, Vélez SJE, Intrigliolo DS, 2017. Effect of Deficit İrrigation on Yield and Quality of Pear (Pyrus communis cv. Triumph of Vienna). Agronomia Colombiana, 35(3): 350-356.
  • Macho RMA, Herrera RMB, Brejcha R, Schäffner AR, Tanaka N, Fujiwara T, Camacho CJJ, 2018. Boron Toxicity Reduces Water Transport From Root to Shoot in Arabidopsis Plants. Evidence for a Reduced Transpiration Rate and Expression of Major PIP Aquaporin Genes. Plant and Cell Physiology, 59(4): 841-849.
  • Musacchi S, Iglesias I, Neri D, 2021. Training systems and sustainable orchard management for European pear (Pyrus communis L.) in the Mediterranean area: A review. Agronomy, 11(9): 1765.
  • Nicolas E, Torrecillas A, Dellamico J, Alarcón JJ, 2005. Sap Flow, Gas Exchange, and Hydraulic Conductance of Young Apricot Trees Growing under a Shading Net and Different Water Supplies. Journal of Plant Physiology, 162(4): 439-447.
  • Nader KB, Stoll M, Rauhut D, Patz CD, Jung R, Loehnertz O, Gomès E, 2019. Impact of Grapevine Age on Water Status and Productivity of Vitis vinifera L. cv. Riesling. European Journal of Agronomy, 104: 1-12.
  • Noctor G, Reichheld JP, Foyer CH, 2018. ROS-Related Redox Regulation and Signaling in Plants. In Seminars in Cell & Developmental Biology, 80: 3-12.
  • Noceto PA, Bettenfeld P, Boussageon R, Hériché M, Sportes A, van Tuinen D, Wipf D, 2021. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza, 31(6): 655-669.
  • Osakabe Y, Yamaguchi SK, Shinozaki K, Tran LS, 2014. ABA Control of Plant Macroelement Membrane Transport Systems in Response to Water Deficit and High Salinity. The New Phytologist, 202(1): 35-49.
  • Özcan M, 2020. Bahçe Bitkilerinde Stres Fizyolojisi. Ders Notu Lisansüstü Eğitim Enstitüsü, Bahçe Bitkileri Anabilimdalı.
  • Özçağıran R, Ünal A, Özeker E, İsfendiyaroğlu M, 2005. Ilıman İklim Meyve Türleri, Yumuşak Çekirdekli Meyveler, Cilt-II, 73–126. Ege Üniversitesi Ziraat Fakültesi Yayınları, İzmir, Türkiye. Örs S, Ekinci M, 2015. Kuraklık Stresi ve Bitki Fizyolojisi. Derim, 32(2): 237-250.
  • Paudel I, Gerbi H, Zisovich A, Sapir G, Ben DS, Brumfeld V, Klein T, 2019. Drought Tolerance Mechanisms and Aquaporin Expression of Wild vs. Cultivated Pear Tree Species in the Field. Environmental and Experimental Botany, 167: 103-832.
  • Ping M A, Baı, TH, 2015. Effects of Progressive Drought on Photosynthesis and Partitioning of Absorbed Light in Apple Trees. Journal of Integrative Agriculture, 14(4): 681-690.
  • Peng X, Guo Z, Zhang Y, Li J, 2017. Simulation of long-term yield and soil water consumption in apple orchards on the Loess Plateau, China, in response to fertilization. Scientific Reports, 7(1): 1-11.
  • Pou A, Medrano H, Flexas J, Tyerman SD, 2013. A Putative Role for TIP and PIP Aquaporins in Dynamics of Leaf Hydraulic and Stomatal Conductances in Grapevine under Water Stress and Re‐Watering. Plant, Cell & Environment, 36(4): 828-843.
  • Qi J, Sun S, Yang L, Li M, Ma F, Zou Y, 2019. Potassium uptake and transport in apple roots under drought stress. Horticultural Plant Journal, 5(1): 10-16.
  • Reid M, Kalcsits L, 2020. Water Deficit Timing Affects Physiological Drought Response, Fruit Size, and Bitter Pit Development for ‘Honeycrisp’ apple. Plants, 9(7): 874.
  • Rolland F, Moore B, Sheen J, 2002. Sugar Sensing and Signaling in Plants. The Plant Cell, 14: 185-205.
  • Rushton PJ, Somssich IE, Ringler P, Shen QJ, 2010. WRKY Transcription Factors. Trends in Plant Science, 15(5): 247-258.
  • Sharma SAV, Sharma N, 2008. Effect of Rootstocks on Leaf Water Potential, Water Relations, Antioxidant Activities and Drought Tolerant in Flemish Beauty Pear under Water Stress Conditions. Indian Journal of Plant Physiology, 13(3): 266-271.
  • Sakalauskaite J, Kviklys D, Lanauskas J, Duchovskis P, 2006. Biomass Production, Dry Weight Partitioning and Leaf Area of Apple Rootstocks under Drought Stress. Sodininkyste Ir Darzininkyste, 25(3): 283-291.
  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S, 2016. Role of Sugars under Abiotic Stress. Plant Physiology and Biochemistry, 109: 54-61.
  • Sadeghnezhad E, Sharifi M, Zare MH, 2016. Profiling of Acidic (Amino and Phenolic Acids) and Phenylpropanoids Production in Response to Methyl Jasmonate-İnduced Oxidative Stress in Scrophularia Striata Suspension Cells. Planta, 244(1): 75-85.
  • Smeekens S, Ma J, Hanson J, Rolland F, 2010. Sugar Signals and Molecular Networks Controlling Plant Growth. Current Opinion İn Plant Biology, 13(3): 274-279.
  • Stellfeldt A, Maldonado MA, Hueso JJ, Cuevas J, 2018. Gas Exchange and Water Relations of Young Potted Loquat cv. Algerie under Progressive Drought Conditions. Journal of Integrative Agriculture, 17(6): 1360-1368.
  • Song X, Gao X, Wu P, Zhao X, Zhang W, Zou Y, Siddique KH, 2020. Drought responses of profile plant-available water and fine-root distributions in apple (Malus pumila Mill.) orchards in a loessial, semi-arid, hilly area of China. Science of the Total Environment, 723: 137739.
  • Sofo A, Dichio B, Montanaro G, Xiloyannis C, 2009. Shade Effect on Photosynthesis and Photoinhibition in Olive during Drought and Rewatering. Agricultural Water Management, 96(8): 1201-1206.
  • Tatari M, Jafari A, Shirmardi M, Mohamadi M, 2020. Using Morphological and Physiological Traits to Evaluate Drought Tolerance of Pear Populations. International Journal of Fruit Science, 20(4): 837-854.
  • Tramontini S, Vitali M, Centioni L, Schubert A, Lovisolo C, 2013. Rootstock Control of Scion Response to Water Stress in Grapevine. Environmental and Experimental Botany, 93: 20-26.
  • Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Zinta G, 2020. Mechanistic insights on melatonin mediated drought stress mitigation in plants. Physiologia Plantarum. doi:10.1111/ppl.13307
  • Turgay G, 2015. Asma (Vitis vinifera L.) Aquaporin Genlerinin Biyoinformatik Analizi ve Farklı Dokularda İfade Profillerinin Belirlenmesi. Ege Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış).
  • Tyerman SD, Niemietz CM, Bramley H, 2002. Plant Aquaporins: Multifunctional Water and Solute Channels with Expanding Roles. Plant, Cell & Environment, 25(2): 173-194.
  • Tripathi DK, Singh VP, Chauhan DK, Prasad SM, Dubey NK, 2014. Role of Macronutrients in Plant Growth and Acclimation: Recent Advances and Future Prospective. Improvement of Crops in the Era of Climatic Changes, 197-216.
  • Velez SJE, Balaguera LHE, Alvarez HJG, 2021. Effect of Regulated Deficit Irrigation (RDI) on the Production and Quality of Pear Triunfo De Viena Variety under Tropical Conditions. Scientia Horticulturae, 278: 109880.
  • Wang P, Sun X, Jia X, Wang N, Gong X, Ma F, 2016. Characterization of an autophagy-related gene MdATG8i from apple. Frontiers in plant science, 7: 720.
  • Wang D, Chen Q, Chen W, Guo Q, Xia Y, Wang S, Liang G, 2021. Physiological and Transcription Analyses Reveal the Regulatory Mechanism of Melatonin in Inducing Drought Resistance in Loquat (Eriobotrya japonica) Seedlings. Environmental and Experimental Botany, 181: 104291.
  • Wang YT, Chen ZY, Jiang Y, Duan BB, Xi ZM, 2019. Involvement of ABA and Antioxidant System in Brassinosteroid-Induced Water Stress Tolerance of Grapevine (Vitis vinifera L.). Scientia Horticulturae, 256: 108596.
  • Wang S, Liang D, Li C, Hao Y, Ma F, Shu H, 2012. Influence of Drought Stress on the Cellular Ultrastructure and Antioxidant System in Leaves of Drought Tolerant and Drought Sensitive Apple Rootstocks. Plant Physiology and Biochemistry, 51: 81-89.
  • Wingler A, Purdy S, Maclean JA, Pourtau N, 2006. The Role of Sugars in Integrating Environmental Signals during the Regulation of Leaf Senescence. Journal of Experimental Botany, 57(2): 391-399.
  • Yakushiji H, Sugiura H, Azuma A, Yamasaki A, 2012. Responses of Water Status and Fruit Quality of Japanese Persimmon (Diospyros kaki) to Drought Stress. In V International Symposium on Persimmon 996: 265-269.
  • Ye M, Zhao X, Biswas A, Huo G, Yang B, Zou Y, Gao X, 2021. Measurements and modeling of hydrological responses to summer pruning in dryland apple orchards. Journal of Hydrology, 594: 125651.
  • Yunqiang W, Mingan S, Zhipeng L, Zhang C, 2015. Characteristics of dried soil layers under apple orchards of different ages and their applications in soil water managements on the Loess Plateau of China. Pedosphere, 25(4): 546-554.
  • Zhang L, Cheng J, Sun X, Zhao T, Li M, Wang Q, Xin H, 2018. Overexpression of VAWRKY14 Increases Drought Tolerance in Arabidopsis by Modulating the Expression of Stress-Related Genes. Plant Cell Reports, 37(8): 1159-1172.
  • Zhang L, 2017. Grapevine Root Growth under Water Stress and its Relationship to Root Water Uptake. Universite De Bordeaux, Doctoral Dissertation.
  • Zhang L, Wang J, Ai C, An M, Qin Z, 2014. Photosynthesis of Diospyros lotus Seedlings under Drought Stress Responding to Exogenous Nitric Oxide. Jiangsu Journal of Agricultural Sciences, 30(3): 623-628.
Toplam 102 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Bahçe Bitkileri / Horticulture
Yazarlar

Zaki Ahmad Faizi 0000-0002-1429-6493

Ahmet Öztürk 0000-0002-8800-1248

Erken Görünüm Tarihi 26 Ağustos 2022
Yayımlanma Tarihi 1 Eylül 2022
Gönderilme Tarihi 25 Şubat 2022
Kabul Tarihi 22 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 3

Kaynak Göster

APA Faizi, Z. A., & Öztürk, A. (2022). Yumuşak Çekirdekli Meyve Türlerinde Kuraklığın Etkileri. Journal of the Institute of Science and Technology, 12(3), 1224-1237. https://doi.org/10.21597/jist.1078983
AMA Faizi ZA, Öztürk A. Yumuşak Çekirdekli Meyve Türlerinde Kuraklığın Etkileri. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2022;12(3):1224-1237. doi:10.21597/jist.1078983
Chicago Faizi, Zaki Ahmad, ve Ahmet Öztürk. “Yumuşak Çekirdekli Meyve Türlerinde Kuraklığın Etkileri”. Journal of the Institute of Science and Technology 12, sy. 3 (Eylül 2022): 1224-37. https://doi.org/10.21597/jist.1078983.
EndNote Faizi ZA, Öztürk A (01 Eylül 2022) Yumuşak Çekirdekli Meyve Türlerinde Kuraklığın Etkileri. Journal of the Institute of Science and Technology 12 3 1224–1237.
IEEE Z. A. Faizi ve A. Öztürk, “Yumuşak Çekirdekli Meyve Türlerinde Kuraklığın Etkileri”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 3, ss. 1224–1237, 2022, doi: 10.21597/jist.1078983.
ISNAD Faizi, Zaki Ahmad - Öztürk, Ahmet. “Yumuşak Çekirdekli Meyve Türlerinde Kuraklığın Etkileri”. Journal of the Institute of Science and Technology 12/3 (Eylül 2022), 1224-1237. https://doi.org/10.21597/jist.1078983.
JAMA Faizi ZA, Öztürk A. Yumuşak Çekirdekli Meyve Türlerinde Kuraklığın Etkileri. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:1224–1237.
MLA Faizi, Zaki Ahmad ve Ahmet Öztürk. “Yumuşak Çekirdekli Meyve Türlerinde Kuraklığın Etkileri”. Journal of the Institute of Science and Technology, c. 12, sy. 3, 2022, ss. 1224-37, doi:10.21597/jist.1078983.
Vancouver Faizi ZA, Öztürk A. Yumuşak Çekirdekli Meyve Türlerinde Kuraklığın Etkileri. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(3):1224-37.