Araştırma Makalesi
BibTex RIS Kaynak Göster

AISI H13 Sıcak İş Takım Çeliğinin İşlenmesinde Kesme Kuvvetinin Deneysel, Nümerik ve İstatistiksel Olarak İncelenmesi

Yıl 2022, Cilt: 12 Sayı: 3, 1758 - 1769, 01.09.2022
https://doi.org/10.21597/jist.1090227

Öz

Bu çalışmada, seramik kesici takımlar ile AISI H13 sıcak iş takım çeliğinin tornalanmasında kesme parametrelerinin kesme kuvveti üzerindeki etkileri araştırılmıştır. Tornalama deneyleri, üç farklı kesme hızında (120, 180 ve 240 m dak-1), üç farklı ilerleme miktarında (0.12, 0.15 ve 0.18 mm dev-1) ve üç farklı talaş derinliğinde (0.6, 1 ve 1.4 mm) kuru kesme şartlarında CNC torna tezgahında gerçekleştirilmiştir. Aynı zamanda, tornalama simülasyonları da sonlu elemanlar analizine (FEA) dayalı olarak Third Wave AdvantEdge yazılımı ile gerçekleştirilmiştir. Deneysel ve nümerik analizler ile elde edilen kesme kuvveti verileri, Taguchi methodu, Anova ve regresyon analizleri kullanılarak istatistiksel olarak analiz edilmiştir. Analiz sonuçları her iki yöntem ile elde edilen esas kesme kuvveti (Fc) değerleri üzerinde sırasıyla %80.97 ve %80.32 katkı oranları ile en etkin parametrenin talaş derinliği olduğunu göstermektedir. Dahası, tornalama simülasyonlarında ve deneysel olarak elde edilen esas kesme kuvveti (Fc) değerleri arasında ortalama %9'lik bir fark elde edilmiştir ve her iki yöntem ile elde edilen Fc değerleri için optimum parametre grubu A3B1C1 (kesme hızı = 240 m dak-1, ilerleme miktarı = 0.12 mm dev-1 ve talaş derinliği = 0.6 mm)’dir.

Kaynakça

  • Akgün M, Demir H, 2021. Estimation of surface roughness and flank wear in milling of Inconel 625 superalloy. Surface Review and Letters, 28(04): 2150011.
  • Aydın M, Köklü U, 2017. Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique. The International Journal of Advanced Manufacturing Technology, 92(1): 1465-1480.
  • Cebeci İ, Özlü B, Demir H, 2021. AISI 310 kalite östenitik paslanmaz sac malzemenin lazerle kesilmesinde kesme parametrelerinin kesim kalitesine etkisinin incelenmesi. Journal of the Institute of Science and Technology, 10(4), 2791-2799.
  • Cui X, Wang D, Guo J, 2016. Influences of tool rake angle and cutting speed on ceramic tool failure in continuous and intermittent turning of hardened steel. Ceramics International, 42(10): 12390–400.
  • Çiçek A, Kara F, Kivak T, Ekici E, 2013. Evaluation of Machinability of Hardened and Cryo-Treated AISI H13 Hot Work Tool Steel with Ceramic Inserts. International Journal of Refractory Metals and Hard Materials, 41: 461–69.
  • Demir H, Gündüz S, Erden MA, 2018. Influence of the Heat Treatment on the Microstructure and Machinability of AISI H13 Hot Work Tool Steel. The International Journal of Advanced Manufacturing Technology, 95(5): 2951–58.
  • Davis JR, 1995. ASM Specialty Handbook: Tool Materials. ASM International, pp. 251-255, Ohio-ABD. Fallböhmer P, Rodrı́guez CA, Özel T, Altan T, 2000. High-speed machining of cast iron and alloy steels for die and mold manufacturing. Journal of Materials Processing Technology, 98(1), 104-115. Fallböhmer P, Rodrı́guez CA, Özel T, Altan T, 2000. High-speed machining of cast iron and alloy steels for die and mold manufacturing. Journal of Materials Processing Technology, 98(1), 104-115.
  • Işık Y, 2014. The performance evalution of ceramic and carbide cutting tools in machining of austemepered ductile irons. Uludağ University Journal of The Faculty of Engineering, 19(2), 67-76.
  • Kıvak T, 2014. Optimization of Surface Roughness and Flank Wear Using the Taguchi Method in Milling of Hadfield Steel with PVD and CVD Coated Inserts. Measurement, 50: 19–28.
  • Korkmaz ME, Günay M, 2018. Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel. Arabian Journal for Science and Engineering, 43(9): 4863–70. Medvedeva A, Bergström J, Gunnarsson S, Andersson J. 2009. High-Temperature Properties and Microstructural Stability of Hot-Work Tool Steels. Materials Science and Engineering: A, 523(1–2): 39–46.
  • Nas E, Altan Özbek N, 2019. Optimization of the Machining Parameters in Turning of Hardened Hot Work Tool Steel Using Cryogenically Treated Tools. Surface Review and Letters, 27(05): 1950177.
  • Özbek N, Özbek O, Kara F, 2021. Statistical Analysis of the Effect of the Cutting Tool Coating Type on Sustainable Machining Parameters. Journal of Materials Engineering and Performance, 30(10): 7783–95.
  • Özlü B, Akgün M, Demir H, 2019. Analysis and Optimization of Effects on Surface Roughness of Cutting Parameters on Turning of AA6061 Alloy. Gazi Mühendislik Bilimleri Dergisi (GMBD), 5(2): 151–58.
  • Özel T, 2003. Modeling of hard part machining: effect of insert edge preparation in CBN cutting tools. Journal of Materials Processing Technology, 141(2): 284-293.
  • Parida AK, Maity K, 2019. FEM Analysis and Experimental Investigation of Force and Chip Formation on Hot Turning of Inconel 625. Defence Technology, 15(6): 853–60.
  • Parida AK, Maity K, 2018. Numerical Analysis of Chip Geometry on Hot Machining of Nickel Base Alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(10): 498.
  • Persson A, Hogmark S, Bergström J, 2004. Simulation and evaluation of thermal fatigue cracking of hot work tool steels. International Journal of Fatigue, 26(10): 1095-1107.
  • Reimer A, Luo X, 2018. Prediction of Residual Stress in Precision Milling of AISI H13 Steel. Procedia CIRP, 71: 329–34.
  • Stenberg N, Proudian J, 2013. Numerical Modelling of Turning to Find Residual Stresses, Procedia CIRP, 8: 258.
  • Sun X, Li J, Cameron D, Zhou A, 2021. Field monitoring and assessment of the impact of a large eucalypt on soil desiccation, Acta Geotechnica, 1-14.
  • Taştemur D, Gündüz S, 2021. The Effect of Tempering and Strain Aging Processes on the Mechanical Properties of AISI H10 Hot Work Tool Steel. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3): 1387–97.
  • Tekaüt İ, Demir H, Şeker U, 2018. Experimental Analysis and Theoretical Modelling of Cutting Parameters in the Drilling of AISI H13 Steel with Coated and Uncoated Drills. Transactions of FAMENA, 42(2): 83–96.
  • Umbrello D, Rizzuti S, Outeiro JC, Shivpuri R, M’Saoubi R, 2008. Hardness-Based Flow Stress for Numerical Simulation of Hard Machining AISI H13 Tool Steel. Journal of Materials Processing Technology, 199(1–3): 64–73.

Experimental, Numerical and Statistical Investigation of Cutting Force in the Machining of AISI H13 Hot Work Tool Steel

Yıl 2022, Cilt: 12 Sayı: 3, 1758 - 1769, 01.09.2022
https://doi.org/10.21597/jist.1090227

Öz

In this study, the effects of cutting parameters on cutting force are investigated in turning of AISI H13 hot work tool steel with ceramic cutting tools. Turning experiments have been performed at three different cutting speeds (180 and 240 m min-1), three different feed rates (0.12, 0.15 and 0.18 mm rev-1) and three different depths of cut (0.6, 1 and 1, 4 mm) on a CNC lathe under dry cutting conditions. At the same time, turning simulations have been made with Third Wave AdvantEdge software based on finite element analysis (FEA). The cutting force data obtained by experimental and numerical analyzes have been also statistically analyzed using the Taguchi method, Anova, and regression analysis. The analysis results revealed that the most effective parameter on the main cutting force (Fc) values obtained by both methods was the depth of cut with the contribution rates of 80.97% and 80.32%, respectively. Moreover, an average of 9% difference was obtained between the main cutting force values (Fc) obtained in the turning simulations and experimentally and the optimum parameter group for the Fc values obtained by both methods were A3B1C1 (cutting speed = 240 m min-1, feed rate = 0.12 mm rev-1, and depth of cut = 0.6 mm).

Kaynakça

  • Akgün M, Demir H, 2021. Estimation of surface roughness and flank wear in milling of Inconel 625 superalloy. Surface Review and Letters, 28(04): 2150011.
  • Aydın M, Köklü U, 2017. Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique. The International Journal of Advanced Manufacturing Technology, 92(1): 1465-1480.
  • Cebeci İ, Özlü B, Demir H, 2021. AISI 310 kalite östenitik paslanmaz sac malzemenin lazerle kesilmesinde kesme parametrelerinin kesim kalitesine etkisinin incelenmesi. Journal of the Institute of Science and Technology, 10(4), 2791-2799.
  • Cui X, Wang D, Guo J, 2016. Influences of tool rake angle and cutting speed on ceramic tool failure in continuous and intermittent turning of hardened steel. Ceramics International, 42(10): 12390–400.
  • Çiçek A, Kara F, Kivak T, Ekici E, 2013. Evaluation of Machinability of Hardened and Cryo-Treated AISI H13 Hot Work Tool Steel with Ceramic Inserts. International Journal of Refractory Metals and Hard Materials, 41: 461–69.
  • Demir H, Gündüz S, Erden MA, 2018. Influence of the Heat Treatment on the Microstructure and Machinability of AISI H13 Hot Work Tool Steel. The International Journal of Advanced Manufacturing Technology, 95(5): 2951–58.
  • Davis JR, 1995. ASM Specialty Handbook: Tool Materials. ASM International, pp. 251-255, Ohio-ABD. Fallböhmer P, Rodrı́guez CA, Özel T, Altan T, 2000. High-speed machining of cast iron and alloy steels for die and mold manufacturing. Journal of Materials Processing Technology, 98(1), 104-115. Fallböhmer P, Rodrı́guez CA, Özel T, Altan T, 2000. High-speed machining of cast iron and alloy steels for die and mold manufacturing. Journal of Materials Processing Technology, 98(1), 104-115.
  • Işık Y, 2014. The performance evalution of ceramic and carbide cutting tools in machining of austemepered ductile irons. Uludağ University Journal of The Faculty of Engineering, 19(2), 67-76.
  • Kıvak T, 2014. Optimization of Surface Roughness and Flank Wear Using the Taguchi Method in Milling of Hadfield Steel with PVD and CVD Coated Inserts. Measurement, 50: 19–28.
  • Korkmaz ME, Günay M, 2018. Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel. Arabian Journal for Science and Engineering, 43(9): 4863–70. Medvedeva A, Bergström J, Gunnarsson S, Andersson J. 2009. High-Temperature Properties and Microstructural Stability of Hot-Work Tool Steels. Materials Science and Engineering: A, 523(1–2): 39–46.
  • Nas E, Altan Özbek N, 2019. Optimization of the Machining Parameters in Turning of Hardened Hot Work Tool Steel Using Cryogenically Treated Tools. Surface Review and Letters, 27(05): 1950177.
  • Özbek N, Özbek O, Kara F, 2021. Statistical Analysis of the Effect of the Cutting Tool Coating Type on Sustainable Machining Parameters. Journal of Materials Engineering and Performance, 30(10): 7783–95.
  • Özlü B, Akgün M, Demir H, 2019. Analysis and Optimization of Effects on Surface Roughness of Cutting Parameters on Turning of AA6061 Alloy. Gazi Mühendislik Bilimleri Dergisi (GMBD), 5(2): 151–58.
  • Özel T, 2003. Modeling of hard part machining: effect of insert edge preparation in CBN cutting tools. Journal of Materials Processing Technology, 141(2): 284-293.
  • Parida AK, Maity K, 2019. FEM Analysis and Experimental Investigation of Force and Chip Formation on Hot Turning of Inconel 625. Defence Technology, 15(6): 853–60.
  • Parida AK, Maity K, 2018. Numerical Analysis of Chip Geometry on Hot Machining of Nickel Base Alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(10): 498.
  • Persson A, Hogmark S, Bergström J, 2004. Simulation and evaluation of thermal fatigue cracking of hot work tool steels. International Journal of Fatigue, 26(10): 1095-1107.
  • Reimer A, Luo X, 2018. Prediction of Residual Stress in Precision Milling of AISI H13 Steel. Procedia CIRP, 71: 329–34.
  • Stenberg N, Proudian J, 2013. Numerical Modelling of Turning to Find Residual Stresses, Procedia CIRP, 8: 258.
  • Sun X, Li J, Cameron D, Zhou A, 2021. Field monitoring and assessment of the impact of a large eucalypt on soil desiccation, Acta Geotechnica, 1-14.
  • Taştemur D, Gündüz S, 2021. The Effect of Tempering and Strain Aging Processes on the Mechanical Properties of AISI H10 Hot Work Tool Steel. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3): 1387–97.
  • Tekaüt İ, Demir H, Şeker U, 2018. Experimental Analysis and Theoretical Modelling of Cutting Parameters in the Drilling of AISI H13 Steel with Coated and Uncoated Drills. Transactions of FAMENA, 42(2): 83–96.
  • Umbrello D, Rizzuti S, Outeiro JC, Shivpuri R, M’Saoubi R, 2008. Hardness-Based Flow Stress for Numerical Simulation of Hard Machining AISI H13 Tool Steel. Journal of Materials Processing Technology, 199(1–3): 64–73.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makina Mühendisliği / Mechanical Engineering
Yazarlar

Mahir Akgün 0000-0002-4522-066X

Erken Görünüm Tarihi 26 Ağustos 2022
Yayımlanma Tarihi 1 Eylül 2022
Gönderilme Tarihi 19 Mart 2022
Kabul Tarihi 7 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 3

Kaynak Göster

APA Akgün, M. (2022). AISI H13 Sıcak İş Takım Çeliğinin İşlenmesinde Kesme Kuvvetinin Deneysel, Nümerik ve İstatistiksel Olarak İncelenmesi. Journal of the Institute of Science and Technology, 12(3), 1758-1769. https://doi.org/10.21597/jist.1090227
AMA Akgün M. AISI H13 Sıcak İş Takım Çeliğinin İşlenmesinde Kesme Kuvvetinin Deneysel, Nümerik ve İstatistiksel Olarak İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2022;12(3):1758-1769. doi:10.21597/jist.1090227
Chicago Akgün, Mahir. “AISI H13 Sıcak İş Takım Çeliğinin İşlenmesinde Kesme Kuvvetinin Deneysel, Nümerik Ve İstatistiksel Olarak İncelenmesi”. Journal of the Institute of Science and Technology 12, sy. 3 (Eylül 2022): 1758-69. https://doi.org/10.21597/jist.1090227.
EndNote Akgün M (01 Eylül 2022) AISI H13 Sıcak İş Takım Çeliğinin İşlenmesinde Kesme Kuvvetinin Deneysel, Nümerik ve İstatistiksel Olarak İncelenmesi. Journal of the Institute of Science and Technology 12 3 1758–1769.
IEEE M. Akgün, “AISI H13 Sıcak İş Takım Çeliğinin İşlenmesinde Kesme Kuvvetinin Deneysel, Nümerik ve İstatistiksel Olarak İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 3, ss. 1758–1769, 2022, doi: 10.21597/jist.1090227.
ISNAD Akgün, Mahir. “AISI H13 Sıcak İş Takım Çeliğinin İşlenmesinde Kesme Kuvvetinin Deneysel, Nümerik Ve İstatistiksel Olarak İncelenmesi”. Journal of the Institute of Science and Technology 12/3 (Eylül 2022), 1758-1769. https://doi.org/10.21597/jist.1090227.
JAMA Akgün M. AISI H13 Sıcak İş Takım Çeliğinin İşlenmesinde Kesme Kuvvetinin Deneysel, Nümerik ve İstatistiksel Olarak İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:1758–1769.
MLA Akgün, Mahir. “AISI H13 Sıcak İş Takım Çeliğinin İşlenmesinde Kesme Kuvvetinin Deneysel, Nümerik Ve İstatistiksel Olarak İncelenmesi”. Journal of the Institute of Science and Technology, c. 12, sy. 3, 2022, ss. 1758-69, doi:10.21597/jist.1090227.
Vancouver Akgün M. AISI H13 Sıcak İş Takım Çeliğinin İşlenmesinde Kesme Kuvvetinin Deneysel, Nümerik ve İstatistiksel Olarak İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(3):1758-69.