Araştırma Makalesi
BibTex RIS Kaynak Göster

Tek-eksenli Manyetik Anizotropiye Sahip Permalloy (Ni79Fe21) İnce Filmlerin Manyetik ve Yapısal Karakterizasyonu

Yıl 2022, Cilt: 12 Sayı: 4, 2153 - 2165, 01.12.2022
https://doi.org/10.21597/jist.1120850

Öz

Bu çalışmada, Si(100)/SiO2(~200 nm) alttaş üzerine 4 - 20 nm arasında değişen kalınlıklarda büyütülen permalloy ince filmlerin yapısal ve manyetik özellikleri araştırılmıştır. Permalloy ince filmler eğik açılı magnetron saçtırma tekniği kullanılarak yüksek vakumlu odada hazırlandı. X-ışını foto-elektron spektroskopisi ölçüm sonuçlarından, permalloyun alaşım komposizyonu oranı %21 Fe ve %79 Ni olarak bulundu. X-ışını kırınım ve yansıma ölçümleri, permalloy filmlerinin (111) yönünde, düşük yüzey pürüzlülüğüne sahip ve nominal kalınlıklarda büyüdüğünü gösterdi. Elde edilen ince filmlerin manyetik özellikleri ferromanyetik rezonans (FMR) ve titreşimli örnek manyetometresi (VSM) teknikleri kullanılarak araştırıldı. Film hazırlamada kullanılan eğik biriktirme nedeniyle, filmlerde düzlem içi tek-eksenli manyetik anizotropi gözlemlendi. Mıknatıslanma yönüne göre serbest enerji minimizasyonu yöntemini kullanan bir bilgisayar kodu yazılarak deneysel FMR verileri simule edildi ve bu sayede filmlerin tek eksenli anizotropi sabitleri belirlendi. Ayrıca, zorlayıcı alan ve anizotropi alanı gibi manyetik özelliklerin kalınlığa bağlı olarak değişimleri tartışıldı.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

114F359

Teşekkür

Bu çalışma kısmi olarak TÜBİTAK 114F359 nolu projeden desteklenmiştir. Çalışmada değerli katkılarından dolayı AC Başaran, B Aktaş ve KY Aktaş’a ve laboratuvar desteğinden dolayı Gebze Teknik Üniversitesi’ne teşekkür ederim.

Kaynakça

  • Aldimassi AM, Chevalier A, Youssef JB, Laur V, Rouvellou B, 2020. Magnetic anisotropies in oblique columnar growth of FeCoB films. AIP Advances, 10: 065218.
  • Ali Z, Basaula D, Zhou W, Brock J, Khan M, Eid KF, 2019. Controlling the charge transport mode in permalloy films using oblique angle deposition. Journal of Magnetism and Magnetic Materials, 484: 430-436.
  • Ariake Y, Wu S, Kanada I, Mewes T, Tanaka Y, Mankey G, Mewes C, Suzuki T, 2018. The growth temperature and measurement temperature dependences of soft magnetic properties and effective damping parameter of (FeCo)-Al alloy thin films. AIP Advances, 8: 056119.
  • Barranco A, Borras A, Gonzalez-Elipe AR, Palmero A, 2016. Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progress in Materials Scien.ce, 76: 59-153.
  • Bertelli TP, Bueno TEP, Krohling AC, Silva BC, Rodríguez-Suárez RL, Nascimento VP, Paniago R, Krambrock K, Larica C, Passamani EC, 2017. Magnetic anisotropy of Co thin films: Playing with the shadowing effect, magnetic field and substrate spinning. Journal of Magnetism and Magnetic Materials, 426: 636-640.
  • Bozorth RM, Walker JG, 1953. Magnetic Crystal Anisotropy and Magnetostriction of Iron-Nickel Alloys. Physical Review, 89: 624-628.
  • Bueno TEP, Parreiras DE, Gomes GFM, Michea S, Rodríguez-Suárez RL, Filho MSA, Macedo WAA, Krambrock K, Paniago R, 2014. Noncollinear ferromagnetic easy axes in Py/Ru/FeCo/IrMn spin valves induced by oblique deposition. Applied Physics Letters, 104: 242404.
  • Chi CS, Wang BY, Pong WF, Ho TY, Tsai CJ, Lo FY, Chern MY, Lin WC, 2012. Uniaxial magnetic anisotropy in Pd/Fe bilayers on Al2O3 (0001) induced by oblique deposition. Journal of Applied Physics, 111: 123918.
  • Choi JG, Hwang DG, Rhee JR, Lee SS, 2010. Comparison of the soft magnetic properties of permalloy and conetic thin films. Journal of Magnetism and Magnetic Materials, 322: 2191-2194.
  • Demirci E, 2020. Magnetic and Magnetotransport Properties of Memory Sensors Based on Anisotropic Magnetoresistance. Journal of Superconductivity and Novel Magnetism, 33: 3835-3840.
  • Farle M, 1998. Ferromagnetic resonance of ultrathin metallic layers. Reports on Progress in Physics, 61:755-826.
  • Fitzsimmons MR, Silva TJ, Crawford TM, 2006. Surface oxidation of Permalloy thin films. Physical Review B, 73: 014420.
  • Fukuma Y, Lu Z, Fujiwara H, Mankey G.J, Butler WH, Matsunuma S, 2009. Strong uniaxial magnetic anisotropy in CoFe films on obliquely sputtered Ru underlayer. Journal of Applied Physics, 106: 076101.
  • Gul Q, He W, Li Y, Sun R, Li N, Yang X, Li Y, Gong ZZ, Xie Z, Zhang XQ, 2018. Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition. Chinese Physics B, 27: 097504.
  • Hawkeye MM, Brett MJ, 2007. Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. Journal of Vacuum Science & Technology A, 25: 1317-1335.
  • Jen SU, Wang PJ, Tseng YC, Chiang HP, 2009. Planar Hall effect of Permalloy films on Si(111), Si(100), and glass substrates. Journal of Applied Physics, 105: 07E903.
  • Jiao J, Wang T, Ma T, Wang Y, Li F, 2017. Achievement of Diverse Domain Structures in Soft Magnetic Thin Film through Adjusting Intrinsic Magnetocrystalline Anisotropy. Nanoscale Research Letters, 12: 21.
  • Kateb M, Hajihoseini H, Gudmundsson JT, Ingvarsson S, 2018. Comparison of magnetic and structural properties of permalloy Ni80Fe20 grown by dc and high power impulse magnetron sputtering. Journal of Physics D: Applied Physics, 51: 285005.
  • Kateb M, Ingvarsson S, 2017. Thickness-dependent magnetic and magnetoresistance properties of permalloy prepared by field assisted tilt sputtering. IEEE Sensors Applications Symposium (SAS), 13-15 Mart 2017, Amerika.
  • Kittel C, 1949. On the Gyromagnetic Ratio and Spectroscopic Splitting Factor of Ferromagnetic Substances. Physical Review, 76: 743-748.
  • Kocaman B, Akdoğan N, 2018. Reduction of shunt current in buffer-free IrMn based spin-valve structures. Journal of Magnetism and Magnetic Materials, 456: 17-21.
  • Kocaman B, Aktaş KY, Basaran AC, 2021. Dependence of exchange bias and coercive field on Cu spacer thickness in oblique deposited Co/Cu/CoO multilayers. Journal of Magnetism and Magnetic Materials, 530: 167926.
  • Krohling AC, Verbeno CH, Bueno TEP, Nascimento VP, Krambrock K, Litterst FJ, Passamani EC, 2020. The influence of Cu spacer morphology in Cu/Py/Cu/Co/IrMn spin valves with induced non-collinear spin structures. Journal of Magnetism and Magnetic Materials, 512: 166985.
  • Kumar P, Krishna MG, Bhattacharya AK, 2009. Effect of microstructural evolution on magnetic properties of Ni thin films. Bulletin of Materials Science, 32: 263-270.
  • Li C, Chai G, Yang C, Wang W, Xue D, 2015. Tunable zero-field ferromagnetic resonance frequency from S to X band in oblique deposited CoFeB thin films. Scientific Reports, 5: 17023.
  • Mattera M, Torres-Cavanillas RN, Prieto-Ruiz JP, Prima-García H, Tatay S, Forment-Aliaga A, Coronado E, 2015. Self-Assembled monolayers on a ferromagnetic permalloy surface. Langmuir, 31: 5311-5318.
  • Mazumdar D, Shen W, Liu X, Schrag BD, Carter M, Xiao G, 2008. Field sensing characteristics of magnetic tunnel junctions with (001) MgO tunnel barrier. Journal of Applied Physics, 103: 113911.
  • Phuoc NN, Xu F, Ong CK, 2009. Tuning magnetization dynamic properties of Fe–SiO2 multilayers by oblique deposition. Journal of Applied Physics, 105: 113926.
  • Pollak RA, Bajorek CH, 1975. Surface composition and chemistry of evaporated Permalloy films observed by x−ray photoemission spectroscopy and by Auger electron spectroscopy. Journal of Applied Physics, 46: 1382-1388.
  • Salou M, Lescop B, Rioual S, Lebon A, Youssef JB, Rouvellou B, 2008. Initial oxidation of polycrystalline Permalloy surface. Surface Science, 602: 2901-2906.
  • Smit J, Beljers H, 1955. Ferromagnetic resonance absorption in BaFe12O19 a highly anisotropic crystal. Philips Res. Rep. 10: 113.
  • Snigirev OV, Andreev KE, Tishin AM, Gudoshnikov SA, Bohr J, 1997. Magnetic properties of thin Ni films measured by a dc SQUID-based magnetic microscope. Physical Review B, 55: 14429-14433.
  • Suhl H, 1955. Ferromagnetic Resonance in Nickel Ferrite Between One and Two Kilomegacycles. Physical Review, 97: 555-557.
  • Suraj TS, Müller M, Gelder S, Geprägs S, Opel M, Weiler M, Sethupathi K, Huebl H, Gross R, Ramachandra Rao MS, Althammer M, 2020. Effect of interfacial oxidation layer in spin pumping experiments on Ni80Fe20/SrIrO3 heterostructures. Journal of Applied Physics, 128: 083903.
  • Svalov A, Aseguinolaza I, Garcia-Arribas A, Orue I, Barandiaran J, Alonso J, Fernández-Gubieda M, Kurlyandskaya G, 2010. Structure and magnetic properties of thin permalloy films near the “transcritical” state. IEEE transactions on magnetics, 46: 333-336.
  • Telepinsky Y, Mor V, Schultz M, Hung YM, Kent AD, Klein L, 2016. Towards a six-state magnetic memory element. Applied Physics Letters, 108: 182401.
  • Thomson T, 2014. Magnetic properties of metallic thin films. Metallic Films for Electronic, Optical and Magnetic Applications. Woodhead Publishing, pp 454-546.
  • Topkaya R, 2017. Ferromagnetic Resonance Study of Fe/Cu Multilayer Thin Film. Journal of Superconductivity and Novel Magnetism, 30: 1275-1280.
  • Wang G, Dong C, Wang W, Wang Z, Chai G, Jiang C, Xue D, 2012. Observation of rotatable stripe domain in permalloy films with oblique sputtering. Journal of Applied Physics, 112: 093907.
  • Wulfhekel W, Knappmann S, Oepen HP, 1996. Magnetic anisotropy of Co on Cu(1 1 1). Journal of Applied Physics, 79: 988-992.
  • Yasaka M, 2010. X-ray thin-film measurement techniques, The Rigaku Journal, 26: 1-9.
  • Youssef JB, Vukadinovic N, Billet D, Labrune M, 2004. Thickness-dependent magnetic excitations in Permalloy films with nonuniform magnetization. Physical Review B, 69: 174402.
  • Zhan Q.F, Vandezande S, Haesendonck CV, Temst K, 2007. Manipulation of in-plane uniaxial anisotropy in Fe∕MgO(001) films by ion sputtering. Applied Physics Letters, 91: 122510.

Magnetic and Structural Characterization of Permalloy (Ni79Fe21) Thin Films with Uniaxial Magnetic Anisotropy

Yıl 2022, Cilt: 12 Sayı: 4, 2153 - 2165, 01.12.2022
https://doi.org/10.21597/jist.1120850

Öz

In this study, the structural and magnetic properties of permalloy thin films with thicknesses varying from 4 to 20 nm on Si (100) / SiO2 (~ 200 nm) substrate were investigated. Permalloy thin films were prepared in a high vacuum chamber using the oblique angle magnetron sputtering technique. From the in-situ X-ray photoelectron spectroscopy measurements, the alloy composition ratio of permalloy was found as 21% Fe and 79% Ni. X-ray diffraction and reflectivity measurements showed that permalloy films grew in (111) orientation with low surface roughness and at the nominal thicknesses. Magnetic properties were investigated using ferromagnetic resonance (FMR) and vibrating sample magnetometry (VSM) techniques. In-plane uniaxial magnetic anisotropy was observed in the films due to the oblique deposition used in film preparation. Experimental FMR data were simulated by writing a computer code using the free energy minimization method according to the magnetization direction, and thus these uniaxial anisotropy constants of the films were determined. In addition, variations of magnetic properties such as coercive field and anisotropy field depending on thickness are discussed.

Proje Numarası

114F359

Kaynakça

  • Aldimassi AM, Chevalier A, Youssef JB, Laur V, Rouvellou B, 2020. Magnetic anisotropies in oblique columnar growth of FeCoB films. AIP Advances, 10: 065218.
  • Ali Z, Basaula D, Zhou W, Brock J, Khan M, Eid KF, 2019. Controlling the charge transport mode in permalloy films using oblique angle deposition. Journal of Magnetism and Magnetic Materials, 484: 430-436.
  • Ariake Y, Wu S, Kanada I, Mewes T, Tanaka Y, Mankey G, Mewes C, Suzuki T, 2018. The growth temperature and measurement temperature dependences of soft magnetic properties and effective damping parameter of (FeCo)-Al alloy thin films. AIP Advances, 8: 056119.
  • Barranco A, Borras A, Gonzalez-Elipe AR, Palmero A, 2016. Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progress in Materials Scien.ce, 76: 59-153.
  • Bertelli TP, Bueno TEP, Krohling AC, Silva BC, Rodríguez-Suárez RL, Nascimento VP, Paniago R, Krambrock K, Larica C, Passamani EC, 2017. Magnetic anisotropy of Co thin films: Playing with the shadowing effect, magnetic field and substrate spinning. Journal of Magnetism and Magnetic Materials, 426: 636-640.
  • Bozorth RM, Walker JG, 1953. Magnetic Crystal Anisotropy and Magnetostriction of Iron-Nickel Alloys. Physical Review, 89: 624-628.
  • Bueno TEP, Parreiras DE, Gomes GFM, Michea S, Rodríguez-Suárez RL, Filho MSA, Macedo WAA, Krambrock K, Paniago R, 2014. Noncollinear ferromagnetic easy axes in Py/Ru/FeCo/IrMn spin valves induced by oblique deposition. Applied Physics Letters, 104: 242404.
  • Chi CS, Wang BY, Pong WF, Ho TY, Tsai CJ, Lo FY, Chern MY, Lin WC, 2012. Uniaxial magnetic anisotropy in Pd/Fe bilayers on Al2O3 (0001) induced by oblique deposition. Journal of Applied Physics, 111: 123918.
  • Choi JG, Hwang DG, Rhee JR, Lee SS, 2010. Comparison of the soft magnetic properties of permalloy and conetic thin films. Journal of Magnetism and Magnetic Materials, 322: 2191-2194.
  • Demirci E, 2020. Magnetic and Magnetotransport Properties of Memory Sensors Based on Anisotropic Magnetoresistance. Journal of Superconductivity and Novel Magnetism, 33: 3835-3840.
  • Farle M, 1998. Ferromagnetic resonance of ultrathin metallic layers. Reports on Progress in Physics, 61:755-826.
  • Fitzsimmons MR, Silva TJ, Crawford TM, 2006. Surface oxidation of Permalloy thin films. Physical Review B, 73: 014420.
  • Fukuma Y, Lu Z, Fujiwara H, Mankey G.J, Butler WH, Matsunuma S, 2009. Strong uniaxial magnetic anisotropy in CoFe films on obliquely sputtered Ru underlayer. Journal of Applied Physics, 106: 076101.
  • Gul Q, He W, Li Y, Sun R, Li N, Yang X, Li Y, Gong ZZ, Xie Z, Zhang XQ, 2018. Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition. Chinese Physics B, 27: 097504.
  • Hawkeye MM, Brett MJ, 2007. Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. Journal of Vacuum Science & Technology A, 25: 1317-1335.
  • Jen SU, Wang PJ, Tseng YC, Chiang HP, 2009. Planar Hall effect of Permalloy films on Si(111), Si(100), and glass substrates. Journal of Applied Physics, 105: 07E903.
  • Jiao J, Wang T, Ma T, Wang Y, Li F, 2017. Achievement of Diverse Domain Structures in Soft Magnetic Thin Film through Adjusting Intrinsic Magnetocrystalline Anisotropy. Nanoscale Research Letters, 12: 21.
  • Kateb M, Hajihoseini H, Gudmundsson JT, Ingvarsson S, 2018. Comparison of magnetic and structural properties of permalloy Ni80Fe20 grown by dc and high power impulse magnetron sputtering. Journal of Physics D: Applied Physics, 51: 285005.
  • Kateb M, Ingvarsson S, 2017. Thickness-dependent magnetic and magnetoresistance properties of permalloy prepared by field assisted tilt sputtering. IEEE Sensors Applications Symposium (SAS), 13-15 Mart 2017, Amerika.
  • Kittel C, 1949. On the Gyromagnetic Ratio and Spectroscopic Splitting Factor of Ferromagnetic Substances. Physical Review, 76: 743-748.
  • Kocaman B, Akdoğan N, 2018. Reduction of shunt current in buffer-free IrMn based spin-valve structures. Journal of Magnetism and Magnetic Materials, 456: 17-21.
  • Kocaman B, Aktaş KY, Basaran AC, 2021. Dependence of exchange bias and coercive field on Cu spacer thickness in oblique deposited Co/Cu/CoO multilayers. Journal of Magnetism and Magnetic Materials, 530: 167926.
  • Krohling AC, Verbeno CH, Bueno TEP, Nascimento VP, Krambrock K, Litterst FJ, Passamani EC, 2020. The influence of Cu spacer morphology in Cu/Py/Cu/Co/IrMn spin valves with induced non-collinear spin structures. Journal of Magnetism and Magnetic Materials, 512: 166985.
  • Kumar P, Krishna MG, Bhattacharya AK, 2009. Effect of microstructural evolution on magnetic properties of Ni thin films. Bulletin of Materials Science, 32: 263-270.
  • Li C, Chai G, Yang C, Wang W, Xue D, 2015. Tunable zero-field ferromagnetic resonance frequency from S to X band in oblique deposited CoFeB thin films. Scientific Reports, 5: 17023.
  • Mattera M, Torres-Cavanillas RN, Prieto-Ruiz JP, Prima-García H, Tatay S, Forment-Aliaga A, Coronado E, 2015. Self-Assembled monolayers on a ferromagnetic permalloy surface. Langmuir, 31: 5311-5318.
  • Mazumdar D, Shen W, Liu X, Schrag BD, Carter M, Xiao G, 2008. Field sensing characteristics of magnetic tunnel junctions with (001) MgO tunnel barrier. Journal of Applied Physics, 103: 113911.
  • Phuoc NN, Xu F, Ong CK, 2009. Tuning magnetization dynamic properties of Fe–SiO2 multilayers by oblique deposition. Journal of Applied Physics, 105: 113926.
  • Pollak RA, Bajorek CH, 1975. Surface composition and chemistry of evaporated Permalloy films observed by x−ray photoemission spectroscopy and by Auger electron spectroscopy. Journal of Applied Physics, 46: 1382-1388.
  • Salou M, Lescop B, Rioual S, Lebon A, Youssef JB, Rouvellou B, 2008. Initial oxidation of polycrystalline Permalloy surface. Surface Science, 602: 2901-2906.
  • Smit J, Beljers H, 1955. Ferromagnetic resonance absorption in BaFe12O19 a highly anisotropic crystal. Philips Res. Rep. 10: 113.
  • Snigirev OV, Andreev KE, Tishin AM, Gudoshnikov SA, Bohr J, 1997. Magnetic properties of thin Ni films measured by a dc SQUID-based magnetic microscope. Physical Review B, 55: 14429-14433.
  • Suhl H, 1955. Ferromagnetic Resonance in Nickel Ferrite Between One and Two Kilomegacycles. Physical Review, 97: 555-557.
  • Suraj TS, Müller M, Gelder S, Geprägs S, Opel M, Weiler M, Sethupathi K, Huebl H, Gross R, Ramachandra Rao MS, Althammer M, 2020. Effect of interfacial oxidation layer in spin pumping experiments on Ni80Fe20/SrIrO3 heterostructures. Journal of Applied Physics, 128: 083903.
  • Svalov A, Aseguinolaza I, Garcia-Arribas A, Orue I, Barandiaran J, Alonso J, Fernández-Gubieda M, Kurlyandskaya G, 2010. Structure and magnetic properties of thin permalloy films near the “transcritical” state. IEEE transactions on magnetics, 46: 333-336.
  • Telepinsky Y, Mor V, Schultz M, Hung YM, Kent AD, Klein L, 2016. Towards a six-state magnetic memory element. Applied Physics Letters, 108: 182401.
  • Thomson T, 2014. Magnetic properties of metallic thin films. Metallic Films for Electronic, Optical and Magnetic Applications. Woodhead Publishing, pp 454-546.
  • Topkaya R, 2017. Ferromagnetic Resonance Study of Fe/Cu Multilayer Thin Film. Journal of Superconductivity and Novel Magnetism, 30: 1275-1280.
  • Wang G, Dong C, Wang W, Wang Z, Chai G, Jiang C, Xue D, 2012. Observation of rotatable stripe domain in permalloy films with oblique sputtering. Journal of Applied Physics, 112: 093907.
  • Wulfhekel W, Knappmann S, Oepen HP, 1996. Magnetic anisotropy of Co on Cu(1 1 1). Journal of Applied Physics, 79: 988-992.
  • Yasaka M, 2010. X-ray thin-film measurement techniques, The Rigaku Journal, 26: 1-9.
  • Youssef JB, Vukadinovic N, Billet D, Labrune M, 2004. Thickness-dependent magnetic excitations in Permalloy films with nonuniform magnetization. Physical Review B, 69: 174402.
  • Zhan Q.F, Vandezande S, Haesendonck CV, Temst K, 2007. Manipulation of in-plane uniaxial anisotropy in Fe∕MgO(001) films by ion sputtering. Applied Physics Letters, 91: 122510.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Bayram Kocaman 0000-0002-9439-3604

Proje Numarası 114F359
Erken Görünüm Tarihi 25 Kasım 2022
Yayımlanma Tarihi 1 Aralık 2022
Gönderilme Tarihi 25 Mayıs 2022
Kabul Tarihi 31 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 4

Kaynak Göster

APA Kocaman, B. (2022). Tek-eksenli Manyetik Anizotropiye Sahip Permalloy (Ni79Fe21) İnce Filmlerin Manyetik ve Yapısal Karakterizasyonu. Journal of the Institute of Science and Technology, 12(4), 2153-2165. https://doi.org/10.21597/jist.1120850
AMA Kocaman B. Tek-eksenli Manyetik Anizotropiye Sahip Permalloy (Ni79Fe21) İnce Filmlerin Manyetik ve Yapısal Karakterizasyonu. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2022;12(4):2153-2165. doi:10.21597/jist.1120850
Chicago Kocaman, Bayram. “Tek-Eksenli Manyetik Anizotropiye Sahip Permalloy (Ni79Fe21) İnce Filmlerin Manyetik Ve Yapısal Karakterizasyonu”. Journal of the Institute of Science and Technology 12, sy. 4 (Aralık 2022): 2153-65. https://doi.org/10.21597/jist.1120850.
EndNote Kocaman B (01 Aralık 2022) Tek-eksenli Manyetik Anizotropiye Sahip Permalloy (Ni79Fe21) İnce Filmlerin Manyetik ve Yapısal Karakterizasyonu. Journal of the Institute of Science and Technology 12 4 2153–2165.
IEEE B. Kocaman, “Tek-eksenli Manyetik Anizotropiye Sahip Permalloy (Ni79Fe21) İnce Filmlerin Manyetik ve Yapısal Karakterizasyonu”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 4, ss. 2153–2165, 2022, doi: 10.21597/jist.1120850.
ISNAD Kocaman, Bayram. “Tek-Eksenli Manyetik Anizotropiye Sahip Permalloy (Ni79Fe21) İnce Filmlerin Manyetik Ve Yapısal Karakterizasyonu”. Journal of the Institute of Science and Technology 12/4 (Aralık 2022), 2153-2165. https://doi.org/10.21597/jist.1120850.
JAMA Kocaman B. Tek-eksenli Manyetik Anizotropiye Sahip Permalloy (Ni79Fe21) İnce Filmlerin Manyetik ve Yapısal Karakterizasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:2153–2165.
MLA Kocaman, Bayram. “Tek-Eksenli Manyetik Anizotropiye Sahip Permalloy (Ni79Fe21) İnce Filmlerin Manyetik Ve Yapısal Karakterizasyonu”. Journal of the Institute of Science and Technology, c. 12, sy. 4, 2022, ss. 2153-65, doi:10.21597/jist.1120850.
Vancouver Kocaman B. Tek-eksenli Manyetik Anizotropiye Sahip Permalloy (Ni79Fe21) İnce Filmlerin Manyetik ve Yapısal Karakterizasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(4):2153-65.