Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Van der Waals Interaction and Hubbard Term Correction on First Principles Calculations of Structural and Lattice Dynamical Properties of AgCl

Yıl 2022, Cilt: 12 Sayı: 4, 2166 - 2174, 01.12.2022
https://doi.org/10.21597/jist.1129531

Öz

Structural, dielectric, and lattice dynamical properties of AgCl in the rock-salt structure are studied using density functional theory within generalized gradient approximation(GGA) in Perdew-Burke-Erzhenhof(PBE) parametrization and plane-wave pseudopotential method. The effect of van der Waals interaction (vdW) and Hubbard-U is investigated in detail for the lattice parameters, bulk modulus, dielectric, and phonon properties and compared to available experimental measurements. It is found that, inclusion of vdW interactions together with Hubbard U parameter to the standard GGA-PBE (PBE+vdW+U) improved the agreement with experimental lattice constant and bulk modulus of rock-salt AgCl. Moreover, PBE+vdW+U method is also correctly describes the acoustic and transverse optical (TO) phonon dispersion relation curves. The large underestimation (15%) of GGA-PBE in the longitudinal optical (LO) modes with respect to experiment is also decreased to 5% within the PBE+vdW+U method. This work demonstrates the applicability and accuracy of the van der Waals interaction and Hubbard-U term in predicting the structural, dielectric, and lattice dynamical properties of AgCl in the rock-salt structure.

Kaynakça

  • Ahn D, Park S, 2016. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes. Scientific Reports 6: 1-9.
  • Amrani B, Ahmed R, El Haj Hassan F, Reshak A, 2008. Structural, electronic and optical properties of AgI under pressure. Physics Letters A 372(14): 2502-2508.
  • An C, Wang S, Sun Y, Zhang Q, Zhang J, Wang C, Fang J, 2016. Plasmonic silver incor- porated silver halides for efficient photocatalysis. Journal of Materials Chemistry A 4(12): 4336-4352.
  • Anisimov V, Zaanen J, Andersen O, 1991. Band theory and Mott insulators: Hubbard U instead of Stoner I. Physical Review B 44(3): 943-954.
  • Assis M, et al., 2020. Ag Nanoparticles/AgX (X=Cl, Br and I) Composites with Enhanced Photocatalytic Activity and Low Toxicological Effects. ChemistrySelect, 5: 4655–4673.
  • Baroni S, Gironcoli S, Dal Corso A, 2001. Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics 73(2): 515-562.
  • Becquerel A, 1839. Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques, CR Acad. Sci 9(145): 561.
  • Benmessabih T, Amrani B, 2007. El Haj Hassan F, Hamdache F, Zoaeter M. Computational study of AgCl and AgBr semiconductors. Physica B: Condensed Matter 392(1-2): 309-317.
  • Cha J, Jung D, 2017. Air-Stable Transparent Silver Iodide-Copper Iodide Heterojunction Diode. ACS Applied Materials and Interfaces 9(50): 43807-43813.
  • Choudhary et al., 2018. Data Descriptor: Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms. Scientific Data 5: 180082.
  • Consiglio A, Tian Z, 2016. Importance of the Hubbard correction on the thermal conductivity calculation of strongly correlated materials: A case study of ZnO. Scientific Reports 6: 36875.
  • Falter C, Ludwig W, Selmke M, Zierau W, 1984. An alternative definition of ionicity on a microscopic scale. Physics Letters A 105(3): 139-144.
  • Faustino M, et al., 2018. CuI p-type thin films for highly transparent thermoelectric p-n modules. Scientific Reports 8(1): 6867-6877.
  • Gao W, Xia W, Wu Y, Ren W, Gao X, Zhang P, 2018. Quasiparticle band structures of CuCl, CuBr, AgCl, and AgBr: The extreme case. Physical Review B 98(4): 1-10.
  • Giannozzi P, et al., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simula- tions of materials. Journal of Physics: Condensed Matter 21(39): 395502.
  • Giannozzi P, et al., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter 29: 465901.
  • Gordienko A, Kravchenko N, Sedelnikov A, 2010. Ab initio calculations of the lattice dynamics of silver halides. Russian Physics Journal 53(7): 692-697.
  • Grundmann M, Schein F, Lorenz M, Bontgen T, Lenzner J, Wenckstern von H, 2013. Cuprous iodide: A p-type transparent semiconductor, history, and novel applications. Physica status solidi A 210(9): 1-33.
  • Hebbache M, Zemzemi M, 2004. Ab initio study of high-pressure behavior of a low compressibility metal and a hard material: Osmium and diamond. Physical Review B Condensed Matter and Materials Physics 70(22): 5-10.
  • Hull S, Keen D, 1999. Pressure-induced phase transitions in AgCl, AgBr, and AgI. Physical Review B 59(2): 750-761.
  • Jiang H, 2018. Revisiting the GW approach to d - And f -electron oxides. Physical Review B 97(24): 1-9.
  • Jossou E, Malakkal L, Szpunar B, Oladimeji D, Szpunar J, 2017. A first principles study of the electronic structure, elastic and thermal properties of UB2. Journal of Nuclear Materials 490: 41-48.
  • Kirchhoff F, Holender J, Gillan M, 1994. Energetics and electronic structure of silver chloride. Physical Review B 49(24):17420-17423.
  • Klimes J, Bowler D, Michaelides A, 2010. Chemical accuracy for the van der Waals density functional. Journal of Physics: Condensed Matter 22(2): 022201.
  • Li Y, Zhang L J, Cui T, Li Y W, Wang Y, Ma Y M, Zou G T, 2008. First-principles studies of phonon instabilities in AgI under high pressure. Journal of Physics: Condensed Matter 20(19): 195218.
  • Li Y, Zhang L, Cui T, Ma Y, Zou G, Klug D, 2006. Phonon instabilities in rocksalt AgCl and AgBr under pressure studied within density functional theory. Physical Review B 74(5): 054102.
  • Masumoto Y, Wamura T, Iwaki A, 1989. Homogeneous width of exciton absorption spectra in CuCl microcrystals. Applied Physics Letters 55(24): 2535-2537.
  • Mellander B E, 1982. Electrical conductivity and activation volume of the solid electrolyte phase AgI and the high-pressure phase fcc AgI. Physical Review B 26(10): 5886-5896.
  • Mellander B E, Lunden A, Friesel M, 1981. High pressure studies of silver iodide and copper iodide. Solid State Ionics 5(C): 477-479.
  • Mukhopadhyay S, Bansal D, Delaire O, Perrodin D, Bourret-Courchesne D, Singh D J, Lindsay L, 2017. The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting. Physical Review B 96(10): 100301.
  • Nunes G S, Allen P B, Martins J L, 1998. Pressure-induced phase transitions in silver halides. Physical Review B 57(9): 5098-5105.
  • Okoye C, 2004. Investigation of the pressure dependence of band gaps for silver halides within a first-principles method. Solid State Communications 129(1): 69-73.
  • Palomino-Rojas L, L´opez-Fuentes M, Cocoletzi G, Murrieta G, Coss R, Takeuchi N, 2008. Density functional study of the structural properties of silver halides: LDA vs GGA calculations. Solid State Sciences 10(9): 1228-1235.
  • Patnaik J, Sunandana C, 1998. Studies on gamma silver iodide. Journal of Physics and Chemistry of Solids 3697(97): 1059-1069.
  • Perdew J, Burke K, Ernzerhof M, 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters 77(18): 3865-3868.
  • Saito K, Hasuo M, Hatano T, Nagasawa N, 1995. Band gap energy and binding energies of Z3-excitions in CuCl. Solid State Communications 94(1): 33-35.
  • Smith P, 1976. A tight-binding approach to the electronic structure of the silver halides. Journal of Physics and Chemistry of Solids 37(6): 581-587.
  • Tejeda J, Braun W, Goldmann A, Cardona M, 1974. Valence bands of silver halides de- termined by X-ray and UV photoemission. Journal of Electron Spectroscopy and Related Phenomena 5(1): 583-592.
  • Tejeda J, Shevchik N, Braun W, Goldmann A, Cardona M, 1975. Valence bands of AgCl and AgBr: Uv photoemission and theory. Physical Review B 12(4): 1557-1566.
  • Tolba S, Gameel K, Ali B, Almossalami H, Allam N, 2018. The DFT+U: Approaches, Accuracy, and Applications. Density Functional Calculations-Recent Progresses of Theory and Application (InTech) pp.3-30. DOI: https://doi.org/10.5772/intechopen.72020
  • Vanderbilt D, 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B 41(11): 7892-7895.
  • Vijayaraghavan P, Nicklow R, Smith H, Wilkinson M, 1970. Lattice Dynamics of Silver Chloride. Physical Review B 1(12): 4819-4826.
  • Victora R, 1997. Calculated electronic structure of silver halide crystals. Physical Review B 56(8): 4417-4421.
  • Vogel D, Kruger P, Pollmann J, 1998. Ab initio electronic structure of silver halides calculated with self-interaction and relaxation-corrected pseudopotentials. Physical Review B - Condensed Matter and Materials Physics 58(7): 3865-3869.
  • Wang Y, Ye C, Wang G, Zhang L, Liu Y, Zhao Z, 2003. In situ x-ray diffraction study on AgI nanowire arrays. Applied Physics Letters 82(24): 4253-4255.
  • Yang C, et al, 2017. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nature Communications 8: 16076.
  • Yang X, Dai Z, Zhao Y, Meng S, 2019. Superhigh thermoelectric figure of merit in silver halides AgCl and AgBr from first principles. arXiv:1904.06010.
  • Zhang G, Tkatchenko A, Paier J, Appel H, Scheffler M, 2011. van der Waals Interactions in Ionic and Semiconductor Solids. Physical Review Letters 107(24): 245501.
  • Zhang M, Jiang H, 2019. Electronic band structure of cuprous and silver halides: An all- electron GW study. Physical Review B 100(20): 205123.
  • Zhu H, Liu A, Noh Y, 2019. Transparent Inorganic Copper Bromide (CuBr) p-Channel Transistors Synthesized From Solution at Room Temperature. IEEE Electron Device Letters 40(5): 769-772.
Yıl 2022, Cilt: 12 Sayı: 4, 2166 - 2174, 01.12.2022
https://doi.org/10.21597/jist.1129531

Öz

Kaynakça

  • Ahn D, Park S, 2016. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes. Scientific Reports 6: 1-9.
  • Amrani B, Ahmed R, El Haj Hassan F, Reshak A, 2008. Structural, electronic and optical properties of AgI under pressure. Physics Letters A 372(14): 2502-2508.
  • An C, Wang S, Sun Y, Zhang Q, Zhang J, Wang C, Fang J, 2016. Plasmonic silver incor- porated silver halides for efficient photocatalysis. Journal of Materials Chemistry A 4(12): 4336-4352.
  • Anisimov V, Zaanen J, Andersen O, 1991. Band theory and Mott insulators: Hubbard U instead of Stoner I. Physical Review B 44(3): 943-954.
  • Assis M, et al., 2020. Ag Nanoparticles/AgX (X=Cl, Br and I) Composites with Enhanced Photocatalytic Activity and Low Toxicological Effects. ChemistrySelect, 5: 4655–4673.
  • Baroni S, Gironcoli S, Dal Corso A, 2001. Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics 73(2): 515-562.
  • Becquerel A, 1839. Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques, CR Acad. Sci 9(145): 561.
  • Benmessabih T, Amrani B, 2007. El Haj Hassan F, Hamdache F, Zoaeter M. Computational study of AgCl and AgBr semiconductors. Physica B: Condensed Matter 392(1-2): 309-317.
  • Cha J, Jung D, 2017. Air-Stable Transparent Silver Iodide-Copper Iodide Heterojunction Diode. ACS Applied Materials and Interfaces 9(50): 43807-43813.
  • Choudhary et al., 2018. Data Descriptor: Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms. Scientific Data 5: 180082.
  • Consiglio A, Tian Z, 2016. Importance of the Hubbard correction on the thermal conductivity calculation of strongly correlated materials: A case study of ZnO. Scientific Reports 6: 36875.
  • Falter C, Ludwig W, Selmke M, Zierau W, 1984. An alternative definition of ionicity on a microscopic scale. Physics Letters A 105(3): 139-144.
  • Faustino M, et al., 2018. CuI p-type thin films for highly transparent thermoelectric p-n modules. Scientific Reports 8(1): 6867-6877.
  • Gao W, Xia W, Wu Y, Ren W, Gao X, Zhang P, 2018. Quasiparticle band structures of CuCl, CuBr, AgCl, and AgBr: The extreme case. Physical Review B 98(4): 1-10.
  • Giannozzi P, et al., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simula- tions of materials. Journal of Physics: Condensed Matter 21(39): 395502.
  • Giannozzi P, et al., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter 29: 465901.
  • Gordienko A, Kravchenko N, Sedelnikov A, 2010. Ab initio calculations of the lattice dynamics of silver halides. Russian Physics Journal 53(7): 692-697.
  • Grundmann M, Schein F, Lorenz M, Bontgen T, Lenzner J, Wenckstern von H, 2013. Cuprous iodide: A p-type transparent semiconductor, history, and novel applications. Physica status solidi A 210(9): 1-33.
  • Hebbache M, Zemzemi M, 2004. Ab initio study of high-pressure behavior of a low compressibility metal and a hard material: Osmium and diamond. Physical Review B Condensed Matter and Materials Physics 70(22): 5-10.
  • Hull S, Keen D, 1999. Pressure-induced phase transitions in AgCl, AgBr, and AgI. Physical Review B 59(2): 750-761.
  • Jiang H, 2018. Revisiting the GW approach to d - And f -electron oxides. Physical Review B 97(24): 1-9.
  • Jossou E, Malakkal L, Szpunar B, Oladimeji D, Szpunar J, 2017. A first principles study of the electronic structure, elastic and thermal properties of UB2. Journal of Nuclear Materials 490: 41-48.
  • Kirchhoff F, Holender J, Gillan M, 1994. Energetics and electronic structure of silver chloride. Physical Review B 49(24):17420-17423.
  • Klimes J, Bowler D, Michaelides A, 2010. Chemical accuracy for the van der Waals density functional. Journal of Physics: Condensed Matter 22(2): 022201.
  • Li Y, Zhang L J, Cui T, Li Y W, Wang Y, Ma Y M, Zou G T, 2008. First-principles studies of phonon instabilities in AgI under high pressure. Journal of Physics: Condensed Matter 20(19): 195218.
  • Li Y, Zhang L, Cui T, Ma Y, Zou G, Klug D, 2006. Phonon instabilities in rocksalt AgCl and AgBr under pressure studied within density functional theory. Physical Review B 74(5): 054102.
  • Masumoto Y, Wamura T, Iwaki A, 1989. Homogeneous width of exciton absorption spectra in CuCl microcrystals. Applied Physics Letters 55(24): 2535-2537.
  • Mellander B E, 1982. Electrical conductivity and activation volume of the solid electrolyte phase AgI and the high-pressure phase fcc AgI. Physical Review B 26(10): 5886-5896.
  • Mellander B E, Lunden A, Friesel M, 1981. High pressure studies of silver iodide and copper iodide. Solid State Ionics 5(C): 477-479.
  • Mukhopadhyay S, Bansal D, Delaire O, Perrodin D, Bourret-Courchesne D, Singh D J, Lindsay L, 2017. The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting. Physical Review B 96(10): 100301.
  • Nunes G S, Allen P B, Martins J L, 1998. Pressure-induced phase transitions in silver halides. Physical Review B 57(9): 5098-5105.
  • Okoye C, 2004. Investigation of the pressure dependence of band gaps for silver halides within a first-principles method. Solid State Communications 129(1): 69-73.
  • Palomino-Rojas L, L´opez-Fuentes M, Cocoletzi G, Murrieta G, Coss R, Takeuchi N, 2008. Density functional study of the structural properties of silver halides: LDA vs GGA calculations. Solid State Sciences 10(9): 1228-1235.
  • Patnaik J, Sunandana C, 1998. Studies on gamma silver iodide. Journal of Physics and Chemistry of Solids 3697(97): 1059-1069.
  • Perdew J, Burke K, Ernzerhof M, 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters 77(18): 3865-3868.
  • Saito K, Hasuo M, Hatano T, Nagasawa N, 1995. Band gap energy and binding energies of Z3-excitions in CuCl. Solid State Communications 94(1): 33-35.
  • Smith P, 1976. A tight-binding approach to the electronic structure of the silver halides. Journal of Physics and Chemistry of Solids 37(6): 581-587.
  • Tejeda J, Braun W, Goldmann A, Cardona M, 1974. Valence bands of silver halides de- termined by X-ray and UV photoemission. Journal of Electron Spectroscopy and Related Phenomena 5(1): 583-592.
  • Tejeda J, Shevchik N, Braun W, Goldmann A, Cardona M, 1975. Valence bands of AgCl and AgBr: Uv photoemission and theory. Physical Review B 12(4): 1557-1566.
  • Tolba S, Gameel K, Ali B, Almossalami H, Allam N, 2018. The DFT+U: Approaches, Accuracy, and Applications. Density Functional Calculations-Recent Progresses of Theory and Application (InTech) pp.3-30. DOI: https://doi.org/10.5772/intechopen.72020
  • Vanderbilt D, 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B 41(11): 7892-7895.
  • Vijayaraghavan P, Nicklow R, Smith H, Wilkinson M, 1970. Lattice Dynamics of Silver Chloride. Physical Review B 1(12): 4819-4826.
  • Victora R, 1997. Calculated electronic structure of silver halide crystals. Physical Review B 56(8): 4417-4421.
  • Vogel D, Kruger P, Pollmann J, 1998. Ab initio electronic structure of silver halides calculated with self-interaction and relaxation-corrected pseudopotentials. Physical Review B - Condensed Matter and Materials Physics 58(7): 3865-3869.
  • Wang Y, Ye C, Wang G, Zhang L, Liu Y, Zhao Z, 2003. In situ x-ray diffraction study on AgI nanowire arrays. Applied Physics Letters 82(24): 4253-4255.
  • Yang C, et al, 2017. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nature Communications 8: 16076.
  • Yang X, Dai Z, Zhao Y, Meng S, 2019. Superhigh thermoelectric figure of merit in silver halides AgCl and AgBr from first principles. arXiv:1904.06010.
  • Zhang G, Tkatchenko A, Paier J, Appel H, Scheffler M, 2011. van der Waals Interactions in Ionic and Semiconductor Solids. Physical Review Letters 107(24): 245501.
  • Zhang M, Jiang H, 2019. Electronic band structure of cuprous and silver halides: An all- electron GW study. Physical Review B 100(20): 205123.
  • Zhu H, Liu A, Noh Y, 2019. Transparent Inorganic Copper Bromide (CuBr) p-Channel Transistors Synthesized From Solution at Room Temperature. IEEE Electron Device Letters 40(5): 769-772.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Pınar Bulut 0000-0001-5818-2263

Erken Görünüm Tarihi 25 Kasım 2022
Yayımlanma Tarihi 1 Aralık 2022
Gönderilme Tarihi 11 Haziran 2022
Kabul Tarihi 16 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 4

Kaynak Göster

APA Bulut, P. (2022). Effects of Van der Waals Interaction and Hubbard Term Correction on First Principles Calculations of Structural and Lattice Dynamical Properties of AgCl. Journal of the Institute of Science and Technology, 12(4), 2166-2174. https://doi.org/10.21597/jist.1129531
AMA Bulut P. Effects of Van der Waals Interaction and Hubbard Term Correction on First Principles Calculations of Structural and Lattice Dynamical Properties of AgCl. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2022;12(4):2166-2174. doi:10.21597/jist.1129531
Chicago Bulut, Pınar. “Effects of Van Der Waals Interaction and Hubbard Term Correction on First Principles Calculations of Structural and Lattice Dynamical Properties of AgCl”. Journal of the Institute of Science and Technology 12, sy. 4 (Aralık 2022): 2166-74. https://doi.org/10.21597/jist.1129531.
EndNote Bulut P (01 Aralık 2022) Effects of Van der Waals Interaction and Hubbard Term Correction on First Principles Calculations of Structural and Lattice Dynamical Properties of AgCl. Journal of the Institute of Science and Technology 12 4 2166–2174.
IEEE P. Bulut, “Effects of Van der Waals Interaction and Hubbard Term Correction on First Principles Calculations of Structural and Lattice Dynamical Properties of AgCl”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 4, ss. 2166–2174, 2022, doi: 10.21597/jist.1129531.
ISNAD Bulut, Pınar. “Effects of Van Der Waals Interaction and Hubbard Term Correction on First Principles Calculations of Structural and Lattice Dynamical Properties of AgCl”. Journal of the Institute of Science and Technology 12/4 (Aralık 2022), 2166-2174. https://doi.org/10.21597/jist.1129531.
JAMA Bulut P. Effects of Van der Waals Interaction and Hubbard Term Correction on First Principles Calculations of Structural and Lattice Dynamical Properties of AgCl. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:2166–2174.
MLA Bulut, Pınar. “Effects of Van Der Waals Interaction and Hubbard Term Correction on First Principles Calculations of Structural and Lattice Dynamical Properties of AgCl”. Journal of the Institute of Science and Technology, c. 12, sy. 4, 2022, ss. 2166-74, doi:10.21597/jist.1129531.
Vancouver Bulut P. Effects of Van der Waals Interaction and Hubbard Term Correction on First Principles Calculations of Structural and Lattice Dynamical Properties of AgCl. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(4):2166-74.