Araştırma Makalesi
BibTex RIS Kaynak Göster

A Work On Bitopologies Associated With Knots

Yıl 2023, Cilt: 13 Sayı: 3, 2105 - 2119, 01.09.2023
https://doi.org/10.21597/jist.1278267

Öz

The bitopologies have been associated with some knots in the literature with the help of a method called the knot digraph notation. The knot graphs and quasi pseudo metric spaces were used to obtain these bitopologies. With the help of quasi pseudo metrics, two topologies were obtained on a set. In this way, an association between some knots and bitopologies was established. The authors sought an answer to the question “Given the bitopologies associated with knots, can the knot itself be obtained ?” and they gave a method. This mentioned method consists of 6 steps.. In this work, it is shown in detail that according to the Alexander-Briggs notation, the reverse of the knot digraph notation is provided for the knots 3(1), 5(1), 5(2), 6(1), 6(2), 7(1), 7(2), 7(3), 8(1), 8(2), 8(3), 9(1), 9(2), 9(3), 10(1), 10(2), 10(3).

Kaynakça

  • Elmalı, C. S., Uğur, T. & Kunduracı, T. (2018). On New Knot Tables, The Third International Conference on Computational Mathematics and Engineering Sciences, Girne/Kıbrıs, https://doi.org/10.1051/itmconf/20182201019
  • Girija, B. & Pilakkat, R. (2013). Bitopological spaces associated with digraphs, South Asian Journal of Mathematics, Vol.3 (1), 56-65.
  • Kelley J.C. (1963). Bitopological Spaces, Proc. London Math., 13, 71-89.
  • Kunduracı, T. (2017) Düğüm Tabloları için Yeni Bir Metod: Düğüm Digraf Notasyonu, (Yüksek Lisans Tezi), Erzurum Teknik Üniversitesi, Matematik Anabilim Dalı, Erzurum. Murasugi K. (1993), Knot Theory and Its Application, Boston: Birkhauser.
  • Uğur T., Elmalı C. S. & Yalaz F. (2018). The Reverse Operation Of Knot Digraph Notation, The Third International Conference on Computational Mathematics and Engineering Sciences, Girne/Kıbrıs, https://doi.org/10.1051/itmconf/20182201031.
  • Yalaz, F. (2017). Düğümlerle Eşlenen Bitopolojiler ve Ayırma Aksiyomları (Yüksek Lisans Tezi), Atatürk Üniversitesi Fen Bilimleri Enstütüsü, Matematik Anabilim Dalı, Topoloji Bilim Dalı, Erzurum.
  • Yajima T., & Kinoshita S. (1957). On the graphs of knots. Osaka Math. J., 9, 155-163.

Düğümlerle Eşlenen Bitopolojiler Üzerine Bir Çalışma

Yıl 2023, Cilt: 13 Sayı: 3, 2105 - 2119, 01.09.2023
https://doi.org/10.21597/jist.1278267

Öz

Literatürde, düğüm digraf notasyonu olarak isimlendirilen bir yöntem yardımıyla bazı düğümlerle bitopolojiler eşlendi. Bu bitopolojileri elde etmek için düğüm grafları ve quasi pseudo metrik uzaylar kullanıldı. Quasi pseudo metrikler yardımıyla bir küme üzerinde iki yeni topoloji elde edildi. Bu sayede bazı düğümler ile bitopolojiler arasında bir eşleme kurulmuş oldu.Yazarlar “Düğümlerle eşlenen bitopolojiler verildiğinde, düğümün kendisi elde edilebilir mi?” sorusuna cevap aradılar ve bir yöntem verdiler. Bu bahsedilen yöntem 6 adımdan oluşmaktadır. Bu çalışmada ise düğüm digraf notasyonun tersinin, Alexander-Briggs notasyonuna göre 3(1), 5(1), 5(2), 6(1), 6(2), 7(1), 7(2), 7(3), 8(1), 8(2), 8(3), 9(1), 9(2), 9(3), 10(1), 10(2), 10(3) düğümleri için sağlandığı detaylı bir şekilde gösterilmektedir.

Kaynakça

  • Elmalı, C. S., Uğur, T. & Kunduracı, T. (2018). On New Knot Tables, The Third International Conference on Computational Mathematics and Engineering Sciences, Girne/Kıbrıs, https://doi.org/10.1051/itmconf/20182201019
  • Girija, B. & Pilakkat, R. (2013). Bitopological spaces associated with digraphs, South Asian Journal of Mathematics, Vol.3 (1), 56-65.
  • Kelley J.C. (1963). Bitopological Spaces, Proc. London Math., 13, 71-89.
  • Kunduracı, T. (2017) Düğüm Tabloları için Yeni Bir Metod: Düğüm Digraf Notasyonu, (Yüksek Lisans Tezi), Erzurum Teknik Üniversitesi, Matematik Anabilim Dalı, Erzurum. Murasugi K. (1993), Knot Theory and Its Application, Boston: Birkhauser.
  • Uğur T., Elmalı C. S. & Yalaz F. (2018). The Reverse Operation Of Knot Digraph Notation, The Third International Conference on Computational Mathematics and Engineering Sciences, Girne/Kıbrıs, https://doi.org/10.1051/itmconf/20182201031.
  • Yalaz, F. (2017). Düğümlerle Eşlenen Bitopolojiler ve Ayırma Aksiyomları (Yüksek Lisans Tezi), Atatürk Üniversitesi Fen Bilimleri Enstütüsü, Matematik Anabilim Dalı, Topoloji Bilim Dalı, Erzurum.
  • Yajima T., & Kinoshita S. (1957). On the graphs of knots. Osaka Math. J., 9, 155-163.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik / Mathematics
Yazarlar

Ferit Yalaz 0000-0001-6805-9357

Tamer Uğur 0000-0002-4620-870X

Ceren Sultan Elmalı 0000-0002-2553-4733

Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 1 Eylül 2023
Gönderilme Tarihi 6 Nisan 2023
Kabul Tarihi 4 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 3

Kaynak Göster

APA Yalaz, F., Uğur, T., & Elmalı, C. S. (2023). A Work On Bitopologies Associated With Knots. Journal of the Institute of Science and Technology, 13(3), 2105-2119. https://doi.org/10.21597/jist.1278267
AMA Yalaz F, Uğur T, Elmalı CS. A Work On Bitopologies Associated With Knots. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2023;13(3):2105-2119. doi:10.21597/jist.1278267
Chicago Yalaz, Ferit, Tamer Uğur, ve Ceren Sultan Elmalı. “A Work On Bitopologies Associated With Knots”. Journal of the Institute of Science and Technology 13, sy. 3 (Eylül 2023): 2105-19. https://doi.org/10.21597/jist.1278267.
EndNote Yalaz F, Uğur T, Elmalı CS (01 Eylül 2023) A Work On Bitopologies Associated With Knots. Journal of the Institute of Science and Technology 13 3 2105–2119.
IEEE F. Yalaz, T. Uğur, ve C. S. Elmalı, “A Work On Bitopologies Associated With Knots”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 3, ss. 2105–2119, 2023, doi: 10.21597/jist.1278267.
ISNAD Yalaz, Ferit vd. “A Work On Bitopologies Associated With Knots”. Journal of the Institute of Science and Technology 13/3 (Eylül 2023), 2105-2119. https://doi.org/10.21597/jist.1278267.
JAMA Yalaz F, Uğur T, Elmalı CS. A Work On Bitopologies Associated With Knots. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:2105–2119.
MLA Yalaz, Ferit vd. “A Work On Bitopologies Associated With Knots”. Journal of the Institute of Science and Technology, c. 13, sy. 3, 2023, ss. 2105-19, doi:10.21597/jist.1278267.
Vancouver Yalaz F, Uğur T, Elmalı CS. A Work On Bitopologies Associated With Knots. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):2105-19.