Crambe Orientalis Bitkisinin Hidrotermal Yöntemle NaF/Al2O3 Katalizörü Varlığında Sıvılaştırılması, Katalizör Oranının Sıvı Ürün İçeriğine Etkisi
Yıl 2023,
Cilt: 13 Sayı: 3, 1826 - 1837, 01.09.2023
Salih Genel
,
Halil Durak
Öz
Hidrotermal sıvılaştırma, yüksek basınç ve sıcaklık altında biyokütlenin sulu ortamda sıvılaştırılması işlemidir. Bu işlem, biyokütlenin enerji ve malzeme dönüşümü için çevre dostu bir yöntem olarak kabul edilmektedir. HTL işlemi için uygun katalizörlerin seçimi oldukça önemlidir. Katalizörler, HTL işlemi verimliliğini artırarak daha yüksek kaliteli ürünler elde etmeyi ve aynı zamanda enerji tüketimini azaltarak çevre dostu bir süreç sağlamayı mümkün kılar. Yapılan çalışmada Crambe orientalis bitkisinin hidrotermal sıvılaştırılmasında katalizör olarak NaF/Al2O3 kullanılmıştır. Alüminaya yüklenen NaF miktarına göre 3 farklı katalizör sentezlenmiştir. Reaksiyon sıcaklığı 325 oC bekleme süresi 30 dakika olarak belirlenmiştir. Katalizörlerin ağırlıkça miktarlarının sıvı ürün elementel içeriği üzerindeki etkisi incelenmiştir. En yüksek enerji değeri, NaF-2 katalizörü varlığında ağırlıkça %25’lik oranda elde edilmiştir.
Destekleyen Kurum
Van Yüzüncü Yıl Üniversitesi
Proje Numarası
FDK-2020-9219
Kaynakça
- Alper, K., Tekin, K., ve Karagöz, S. (2019). Hydrothermal Liquefaction of Lignocellulosic Biomass Using Potassium Fluoride-Doped Alumina. Energy ve Fuels, 33(4), 3248–3256. https://doi.org/10.1021/acs.energyfuels.8b04381
- Bo, X., Guomin, X., Lingfeng, C., Ruiping, W., ve Lijing, G. (2007). Transesterification of Palm Oil with Methanol to Biodiesel over a KF/Al2O3 Heterogeneous Base Catalyst. Energy ve Fuels, 21(6), 3109–3112. https://doi.org/10.1021/ef7005035
- Boz, N., Degirmenbasi, N., ve Kalyon, D. M. (2009). Conversion of biomass to fuel: Transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst. Applied Catalysis B: Environmental, 89(3), 590–596. https://doi.org/https://doi.org/10.1016/j.apcatb.2009.01.026
- Çolak, U., Durak, H., ve Genel, S. (2018). Hydrothermal liquefaction of Syrian mesquite (Prosopis farcta): Effects of operating parameters on product yields and characterization by different analysis methods. The Journal of Supercritical Fluids, 140, 53–61. https://doi.org/https://doi.org/10.1016/j.supflu.2018.05.027
- de Caprariis, B., Bracciale, M. P., Bavasso, I., Chen, G., Damizia, M., Genova, V., Marra, F., Paglia, L., Pulci, G., Scarsella, M., Tai, L., ve De Filippis, P. (2020). Unsupported Ni metal catalyst in hydrothermal liquefaction of oak wood: Effect of catalyst surface modification. Science of The Total Environment, 709, 136215. https://doi.org/10.1016/J.SCITOTENV.2019.136215
- Durak, H. (2020). Hydrothermal liquefaction of Glycyrrhiza glabra L. (Liquorice): Effects of catalyst on variety compounds and chromatographic characterization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(20), 2471–2484. https://doi.org/10.1080/15567036.2019.1607947
- Durak, H., ve Genel, S. (2020). Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts. Bioresource Technology, 309, 123375. https://doi.org/10.1016/J.BIORTECH.2020.123375
- Durak, H., ve Genel, Y. (2018). Hydrothermal conversion of biomass (Xanthium strumarium) to energetic materials and comparison with other thermochemical methods. The Journal of Supercritical Fluids, 140, 290–301. https://doi.org/https://doi.org/10.1016/j.supflu.2018.07.005
- Elliott, D. C., Beckman, D., Bridgwater, A. V, Diebold, J. P., Gevert, S. B., ve Solantausta, Y. (1991). Developments in direct thermochemical liquefaction of biomass: 1983-1990. Energy ve Fuels, 5(3), 399–410.
- Genel, S. (2022). Biyokütlenin piroliz ve hidrotermal yöntemle farkli katalizör sistemleri kullanilarak sivilaştirilmasi, elde edilen ürünlerin karakterizasyonu. Fen Bilimleri Enstitüsü.
- Durak, H., Genel, S., Durak, E. D., Özçimen, D., ve Koçer, A. T. (2022). Hydrothermal liquefaction process of Ammi visnaga and a new approach for recycling of the waste process water: cultivation of algae and fungi. Biomass Conversion and Biorefinery, 1-17. https://doi.org/10.1007/s13399-022-03221-6
- Genel, S., Durak, H., Durak, E. D., Güneş, H., ve Genel, Y. (2023). Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation. Renewable Energy, 203, 20-32. https://doi.org/10.1016/j.renene.2022.12.030
- Kumar, M., Olajire Oyedun, A., ve Kumar, A. (2018). A review on the current status of various hydrothermal technologies on biomass feedstock. Renewable and Sustainable Energy Reviews, 81, 1742–1770. https://doi.org/https://doi.org/10.1016/j.rser.2017.05.270
- Liu, A., Park, Y., Huang, Z., Wang, B., Ankumah, R. O., ve Biswas, P. K. (2006). Product Identification and Distribution from Hydrothermal Conversion of Walnut Shells. Energy ve Fuels, 20(2), 446–454. https://doi.org/10.1021/ef050192p
- Pongsiriyakul, K., Kiatkittipong, W., Adhikari, S., Lim, J. W., Lam, S. S., Kiatkittipong, K., Dankeaw, A., Reubroycharoen, P., Laosiripojana, N., Faungnawakij, K., ve Assabumrungrat, S. (2021). Effective Cu/Re promoted Ni-supported γ-Al2O3 catalyst for upgrading algae bio-crude oil produced by hydrothermal liquefaction. Fuel Processing Technology, 216, 106670. https://doi.org/https://doi.org/10.1016/j.fuproc.2020.106670
- Wang, G., Zhang, J., Yu, J., Zhu, Z., Guo, X., Chen, G., Pedersen, T., Rosendahl, L., Yu, X., ve Wang, H. (2022). Catalytic hydrothermal liquefaction of sewage sludge over alumina-based and attapulgite-based heterogeneous catalysts. Fuel, 323, 124329. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124329
- Wang, H., Tian, W., Zeng, F., Du, H., Zhang, J., ve Li, X. (2020). Catalytic hydrothermal liquefaction of Spirulina over bifunctional catalyst to produce high-quality biofuel. Fuel, 282, 118807. https://doi.org/https://doi.org/10.1016/j.fuel.2020.118807
Liquefaction of Crambe Orientalis Plant in The Presence of NaF/Al2O3 Catalyst by Hydrothermal Method, The Effect of Catalyst Ratio on Liquid Product Content
Yıl 2023,
Cilt: 13 Sayı: 3, 1826 - 1837, 01.09.2023
Salih Genel
,
Halil Durak
Öz
Hydrothermal liquefaction is the process of liquefying biomass in an aqueous medium under high pressure and temperature. This process is recognized as an environmentally friendly method for energy and material conversion of biomass. The selection of suitable catalysts for the HTL process is very important. Catalysts make it possible to obtain higher quality products by increasing the efficiency of the HTL process and at the same time to provide an environmentally friendly process by reducing energy consumption. In the study, NaF/Al2O3 was used as a catalyst in the hydrothermal liquefaction of Crambe orientalis plant. Three different catalysts were synthesized according to the amount of NaF loaded on the alumina. The reaction temperature was determined as 325 oC and the holding time was 30 minutes. The effect of the amount by weight of the catalysts on the elemental content of the liquid product was investigated. The highest energy value was obtained at a rate of 25% by weight in the presence of NaF-2 catalyst.
Proje Numarası
FDK-2020-9219
Kaynakça
- Alper, K., Tekin, K., ve Karagöz, S. (2019). Hydrothermal Liquefaction of Lignocellulosic Biomass Using Potassium Fluoride-Doped Alumina. Energy ve Fuels, 33(4), 3248–3256. https://doi.org/10.1021/acs.energyfuels.8b04381
- Bo, X., Guomin, X., Lingfeng, C., Ruiping, W., ve Lijing, G. (2007). Transesterification of Palm Oil with Methanol to Biodiesel over a KF/Al2O3 Heterogeneous Base Catalyst. Energy ve Fuels, 21(6), 3109–3112. https://doi.org/10.1021/ef7005035
- Boz, N., Degirmenbasi, N., ve Kalyon, D. M. (2009). Conversion of biomass to fuel: Transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst. Applied Catalysis B: Environmental, 89(3), 590–596. https://doi.org/https://doi.org/10.1016/j.apcatb.2009.01.026
- Çolak, U., Durak, H., ve Genel, S. (2018). Hydrothermal liquefaction of Syrian mesquite (Prosopis farcta): Effects of operating parameters on product yields and characterization by different analysis methods. The Journal of Supercritical Fluids, 140, 53–61. https://doi.org/https://doi.org/10.1016/j.supflu.2018.05.027
- de Caprariis, B., Bracciale, M. P., Bavasso, I., Chen, G., Damizia, M., Genova, V., Marra, F., Paglia, L., Pulci, G., Scarsella, M., Tai, L., ve De Filippis, P. (2020). Unsupported Ni metal catalyst in hydrothermal liquefaction of oak wood: Effect of catalyst surface modification. Science of The Total Environment, 709, 136215. https://doi.org/10.1016/J.SCITOTENV.2019.136215
- Durak, H. (2020). Hydrothermal liquefaction of Glycyrrhiza glabra L. (Liquorice): Effects of catalyst on variety compounds and chromatographic characterization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(20), 2471–2484. https://doi.org/10.1080/15567036.2019.1607947
- Durak, H., ve Genel, S. (2020). Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts. Bioresource Technology, 309, 123375. https://doi.org/10.1016/J.BIORTECH.2020.123375
- Durak, H., ve Genel, Y. (2018). Hydrothermal conversion of biomass (Xanthium strumarium) to energetic materials and comparison with other thermochemical methods. The Journal of Supercritical Fluids, 140, 290–301. https://doi.org/https://doi.org/10.1016/j.supflu.2018.07.005
- Elliott, D. C., Beckman, D., Bridgwater, A. V, Diebold, J. P., Gevert, S. B., ve Solantausta, Y. (1991). Developments in direct thermochemical liquefaction of biomass: 1983-1990. Energy ve Fuels, 5(3), 399–410.
- Genel, S. (2022). Biyokütlenin piroliz ve hidrotermal yöntemle farkli katalizör sistemleri kullanilarak sivilaştirilmasi, elde edilen ürünlerin karakterizasyonu. Fen Bilimleri Enstitüsü.
- Durak, H., Genel, S., Durak, E. D., Özçimen, D., ve Koçer, A. T. (2022). Hydrothermal liquefaction process of Ammi visnaga and a new approach for recycling of the waste process water: cultivation of algae and fungi. Biomass Conversion and Biorefinery, 1-17. https://doi.org/10.1007/s13399-022-03221-6
- Genel, S., Durak, H., Durak, E. D., Güneş, H., ve Genel, Y. (2023). Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation. Renewable Energy, 203, 20-32. https://doi.org/10.1016/j.renene.2022.12.030
- Kumar, M., Olajire Oyedun, A., ve Kumar, A. (2018). A review on the current status of various hydrothermal technologies on biomass feedstock. Renewable and Sustainable Energy Reviews, 81, 1742–1770. https://doi.org/https://doi.org/10.1016/j.rser.2017.05.270
- Liu, A., Park, Y., Huang, Z., Wang, B., Ankumah, R. O., ve Biswas, P. K. (2006). Product Identification and Distribution from Hydrothermal Conversion of Walnut Shells. Energy ve Fuels, 20(2), 446–454. https://doi.org/10.1021/ef050192p
- Pongsiriyakul, K., Kiatkittipong, W., Adhikari, S., Lim, J. W., Lam, S. S., Kiatkittipong, K., Dankeaw, A., Reubroycharoen, P., Laosiripojana, N., Faungnawakij, K., ve Assabumrungrat, S. (2021). Effective Cu/Re promoted Ni-supported γ-Al2O3 catalyst for upgrading algae bio-crude oil produced by hydrothermal liquefaction. Fuel Processing Technology, 216, 106670. https://doi.org/https://doi.org/10.1016/j.fuproc.2020.106670
- Wang, G., Zhang, J., Yu, J., Zhu, Z., Guo, X., Chen, G., Pedersen, T., Rosendahl, L., Yu, X., ve Wang, H. (2022). Catalytic hydrothermal liquefaction of sewage sludge over alumina-based and attapulgite-based heterogeneous catalysts. Fuel, 323, 124329. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124329
- Wang, H., Tian, W., Zeng, F., Du, H., Zhang, J., ve Li, X. (2020). Catalytic hydrothermal liquefaction of Spirulina over bifunctional catalyst to produce high-quality biofuel. Fuel, 282, 118807. https://doi.org/https://doi.org/10.1016/j.fuel.2020.118807