Araştırma Makalesi
BibTex RIS Kaynak Göster

Phycoremediation of Thallium Toxic Metal Present in Gallery Water of an Abandoned Mine Area by Algae Cladophora fracta

Yıl 2023, Cilt: 13 Sayı: 4, 2546 - 2554, 01.12.2023
https://doi.org/10.21597/jist.1243880

Öz

In this study, phycoremediation of thallium toxic metal present in galery water of an abandoned mine area was investigated by using Cladophora fracta. Within the scope of the study, a reactor containing Cladophora fracta was used and it was determined whether the Cladophora fracta accumulated thallium depending on time. Additionally, the bioconcentration factor was calculated. According to research findings; the accumulations of thallium by Cladophora fracta, compared with uncontaminated alga, were 225% at 5 min, 450% at 10 min, 550% at 20 min, 575% at 40 min, 700% at 60 min, and 900% at 120 min, respectively. BCF values were between 1000-5000. This indicated that Cladophora fracta had bioaccumulation potential. As a result, this research carried out in mining area has documented the phycoremediation of thallium in gallery water of an abandoned mine area.

Kaynakça

  • Ahmad, F., Khan, A. U. and Yasar, A. (2013). Comparative phycoremediation of sewage water by various species of algae. Proc. Pak. Acad. Sci., 50, 131-139.
  • Ahmad, F., Khan, A. U. and Yasar, A. (2013). Comparative phycoremediation of sewage water by various species of algae. Proc. Pak. Acad. Sci., 50, 131-139.
  • Amarasinghe, B. M. P. K. and Williams, R. A. (2007). Tea waste as a low adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J., 132, 299-309.
  • Amarasinghe, B. M. P. K. and Williams, R. A. (2007). Tea waste as a low adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J., 132, 299-309.
  • Ayangbenro, A. S. and Babalola, O. O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International journal of environmental research and public health, 14 (1), 94.
  • Ayangbenro, A. S. and Babalola, O. O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International journal of environmental research and public health, 14 (1), 94.
  • BA, Bioaccumulation. (2019). Bio-concentration Criteria and Chemical Risk Assessment, https://www.chemsafetypro.com/Topics/CRA/Bioconcentration_Factor_BCF.html (Access: 20.12.2019)
  • BA, Bioaccumulation. (2019). Bio-concentration Criteria and Chemical Risk Assessment, https://www.chemsafetypro.com/Topics/CRA/Bioconcentration_Factor_BCF.html (Access: 20.12.2019)
  • Belzile, N., Chen, Y.W. (2017). Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry, 84, 218-243.
  • Belzile, N., Chen, Y.W. (2017). Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry, 84, 218-243.
  • Birungi, Z.S., E M N Chirwa, E.M.N. (2015). The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources. J Hazard Mater, 299:67-77
  • Birungi, Z.S., E M N Chirwa, E.M.N. (2015). The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources. J Hazard Mater, 299:67-77
  • Chung, N. H., Nishimoto, J., Kato, O. and Tabata, M. (2003). Selective extraction of thallium (III) in the presence of gallium (III), indium (III), bismuth (III) and antimony (III) by salting-out of an aqueous mixture of 2-propanol. Anal. Chim. Acta., 477, 243-249.
  • Chung, N. H., Nishimoto, J., Kato, O. and Tabata, M. (2003). Selective extraction of thallium (III) in the presence of gallium (III), indium (III), bismuth (III) and antimony (III) by salting-out of an aqueous mixture of 2-propanol. Anal. Chim. Acta., 477, 243-249.
  • Gardea-Torresdeya, J. L. Arenas, J. L., Francisco, N. M. C., Tiemanna, K. J. and Webb, R. (1998). Ability of Immobilized Cyanobacteria To Remove Metal Ions From Solution And Demonstration of The Presence of Metallothionein Genes In Various Strains. Journal of Hazardous Substance Research, 1 (2), 1-18.
  • Gardea-Torresdeya, J. L. Arenas, J. L., Francisco, N. M. C., Tiemanna, K. J. and Webb, R. (1998). Ability of Immobilized Cyanobacteria To Remove Metal Ions From Solution And Demonstration of The Presence of Metallothionein Genes In Various Strains. Journal of Hazardous Substance Research, 1 (2), 1-18.
  • Hassanien, M. M., Mortada, W. I., Kenawy, I. M. and El-Daly, H. (2017). Solid phase extraction and preconcentration of trace gallium, indium, and thallium using new modified amino silica. Appl. Spectrosc, 71 (2), 288-299.
  • Hassanien, M. M., Mortada, W. I., Kenawy, I. M. and El-Daly, H. (2017). Solid phase extraction and preconcentration of trace gallium, indium, and thallium using new modified amino silica. Appl. Spectrosc, 71 (2), 288-299.
  • Huangfu, X., Ma, C., Ma, J., He, Q., Yang, C., Jiang, J., Wang, Y. and Wu, Z. (2017). Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide. Chemosphere, 168, 264-271.
  • Huangfu, X., Ma, C., Ma, J., He, Q., Yang, C., Jiang, J., Wang, Y. and Wu, Z. (2017). Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide. Chemosphere, 168, 264-271.
  • Kalpana, C. Lakra, B. Lal and T.K., Banerjee (2017). Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology. International Journal of Phytoremediation, 19, 530-536.
  • Kalpana, C. Lakra, B. Lal and T.K., Banerjee (2017). Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology. International Journal of Phytoremediation, 19, 530-536.
  • Kamal, O., Pochat-Bohatier, C. and Sanchez-Marcano, J. (2017). Development and stability of gelatin cross-linked membranes for copper (II) ions removal from acid waters. Separation and Purification Technology, 183, 153-161.
  • Kamal, O., Pochat-Bohatier, C. and Sanchez-Marcano, J. (2017). Development and stability of gelatin cross-linked membranes for copper (II) ions removal from acid waters. Separation and Purification Technology, 183, 153-161.
  • Karigar, C. S. and Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme research, Article 805187.
  • Karigar, C. S. and Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme research, Article 805187.
  • Li, H. S., Zhang, H. G., Long, J. Y., Zhang, P. and Chen, H.Y. (2019). Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: bench and pilot scale studies focusing on in-depth thallium removal. Front. Environ. Sci. Eng, 13, 49-61.
  • Li, H. S., Zhang, H. G., Long, J. Y., Zhang, P. and Chen, H.Y. (2019). Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: bench and pilot scale studies focusing on in-depth thallium removal. Front. Environ. Sci. Eng, 13, 49-61.
  • Li, H., Chen, Y., Long, J., Jiang, D., Liu, J., Li, S., Qi, J., Zhang, P., Wang, J., Gong, J., Wu, Q. and Chen, D. (2017). Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins. Journal of Hazardous Materials, 333, 179-185.
  • Li, H., Chen, Y., Long, J., Jiang, D., Liu, J., Li, S., Qi, J., Zhang, P., Wang, J., Gong, J., Wu, Q. and Chen, D. (2017). Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins. Journal of Hazardous Materials, 333, 179-185.
  • Li, H., Lin, M., Xiao, T., Long, J., Liu, F., Li, Y., Liu, Y., Liao, D., Chen, Z., Zhang, P., Chen, Y. and Zhang, G. (2020a). Highly efficient removal of thallium(I) from wastewater via hypochlorite catalytic oxidation coupled with adsorption by hydrochar coated nickel ferrite composite. Journal of Hazardous Materials, 388:Article 122016.
  • Li, H., Lin, M., Xiao, T., Long, J., Liu, F., Li, Y., Liu, Y., Liao, D., Chen, Z., Zhang, P., Chen, Y. and Zhang, G. (2020a). Highly efficient removal of thallium(I) from wastewater via hypochlorite catalytic oxidation coupled with adsorption by hydrochar coated nickel ferrite composite. Journal of Hazardous Materials, 388:Article 122016.
  • Li, H., Xiong, J., Zhang, G., Liang, A., Long, J., Xiao, T., Chen, Y., Zhang, P., Liao, D., Lin, L. and Zhang, H. (2020b). Enhanced thallium(I) removal from wastewater using hypochlorite oxidation coupled with magnetite-based biochar adsorption. Science of The Total Environment, 698 : Article 134166.
  • Li, H., Xiong, J., Zhang, G., Liang, A., Long, J., Xiao, T., Chen, Y., Zhang, P., Liao, D., Lin, L. and Zhang, H. (2020b). Enhanced thallium(I) removal from wastewater using hypochlorite oxidation coupled with magnetite-based biochar adsorption. Science of The Total Environment, 698 : Article 134166.
  • Li, T., Lin, G., Podola, B. and Melkonian, M. (2015). Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. Journal of Hazardous Materials, 297, 112-118.
  • Li, T., Lin, G., Podola, B. and Melkonian, M. (2015). Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. Journal of Hazardous Materials, 297, 112-118.
  • Liu, J., Li, N., Zhang, W., Wei, X., Tsang, D. C. W., Sun, Y., Luo, X., Bao, Z., Zheng, W., Wang, J., Xu, G., Hou, L., Chen, Y. and Feng, Y. (2019). Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environmental Pollution, 248, 906-915.
  • Liu, J., Li, N., Zhang, W., Wei, X., Tsang, D. C. W., Sun, Y., Luo, X., Bao, Z., Zheng, W., Wang, J., Xu, G., Hou, L., Chen, Y. and Feng, Y. (2019). Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environmental Pollution, 248, 906-915.
  • Liu, J., Wang, J., Tsang, D. C. W., Xiao, T., Chen, Y. and Hou, L. (2018). Emerging thallium pollution in China and source tracing by thallium isotopes. Environ. Sci. Technol, 52, 11977-11979.
  • Liu, J., Wang, J., Tsang, D. C. W., Xiao, T., Chen, Y. and Hou, L. (2018). Emerging thallium pollution in China and source tracing by thallium isotopes. Environ. Sci. Technol, 52, 11977-11979.
  • Liu, Y., Wang, L., Wang, X., Huang, Z., Xu, C., Yang, T., Zhao, X., Qi, J. and Ma, J. (2017). Highly efficient removal of trace thallium from contaminated source waters with ferrate: role of in situ formed ferric nanoparticle. Water Research, 124, 149-157.
  • Liu, Y., Wang, L., Wang, X., Huang, Z., Xu, C., Yang, T., Zhao, X., Qi, J. and Ma, J. (2017). Highly efficient removal of trace thallium from contaminated source waters with ferrate: role of in situ formed ferric nanoparticle. Water Research, 124, 149-157.
  • Lovley, D. R. and Coates, J. D. (1997). Bioremediation of metal contamination. Curr. Opin. Biotechnol, 8, 285-289.
  • Lovley, D. R. and Coates, J. D. (1997). Bioremediation of metal contamination. Curr. Opin. Biotechnol, 8, 285-289.
  • Malik, A. (2004). Metal bioremediation through growing cells. Environ. Int, 30, 261-278.
  • Malik, A. (2004). Metal bioremediation through growing cells. Environ. Int, 30, 261-278.
  • Michalak, I. and Messyasz, B. (2021). Concise review of Cladophora spp.: macroalgae of commercial interest. Journal of Applied Phycology, 33:133–166.
  • Michalak, I. and Messyasz, B. (2021). Concise review of Cladophora spp.: macroalgae of commercial interest. Journal of Applied Phycology, 33:133–166.
  • Mwandira, W., Nakashima, K., Togo, Y., Sato, T. and Kawasaki, S. (2020). Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water. Chemosphere, 246: Article 125733.
  • Mwandira, W., Nakashima, K., Togo, Y., Sato, T. and Kawasaki, S. (2020). Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water. Chemosphere, 246: Article 125733.
  • Palmer, K., Ronkanen, A.-K. and Kløve, B. (2015). Efficient removal of arsenic, antimony, and nickel from mine wastewaters in Northern treatment peatlands and potential risks in their long-term use. Ecological Engineering, 75, 350-364.
  • Palmer, K., Ronkanen, A.-K. and Kløve, B. (2015). Efficient removal of arsenic, antimony, and nickel from mine wastewaters in Northern treatment peatlands and potential risks in their long-term use. Ecological Engineering, 75, 350-364.
  • Peter, A. and Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environ. Int, 31, 493-501.
  • Peter, A. and Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environ. Int, 31, 493-501.
  • Podder, M. S. and Majumder, C. B. (2016). Arsenic toxicity to Chlorella pyrenoidosa and its phycoremediation. Acta Ecologica Sinica, 36 (4), 256-268.
  • Podder, M. S. and Majumder, C. B. (2016). Arsenic toxicity to Chlorella pyrenoidosa and its phycoremediation. Acta Ecologica Sinica, 36 (4), 256-268.
  • Queirolo, F., Stegen, S., Contreras-Ortega, C., Ostapczuk, P., Queirolo, A., Paredes, B. (2009). Thallium levels and bioaccumulation in environmental samples of northern chile: human health risks. J. Chil. Chem. Soc., 54(4), 464-469.
  • Queirolo, F., Stegen, S., Contreras-Ortega, C., Ostapczuk, P., Queirolo, A., Paredes, B. (2009). Thallium levels and bioaccumulation in environmental samples of northern chile: human health risks. J. Chil. Chem. Soc., 54(4), 464-469.
  • Rajesh, N. and Subramanian, M. S. (2006). A study of the extraction behavior of thallium with tribenzylamine as the extractant. J. Hazard. Mater., 135, 74-77.
  • Rajesh, N. and Subramanian, M. S. (2006). A study of the extraction behavior of thallium with tribenzylamine as the extractant. J. Hazard. Mater., 135, 74-77.
  • Samal, D. P. K., Sukla, L. B., Pattanaik, A. and Pradhan, D. (2020). Role of microalgae in treatment of acid mine drainage and recovery of valuable metals. Materials Today: Proceedings. 30, 346-350.
  • Samal, D. P. K., Sukla, L. B., Pattanaik, A. and Pradhan, D. (2020). Role of microalgae in treatment of acid mine drainage and recovery of valuable metals. Materials Today: Proceedings. 30, 346-350.
  • Şentürk, İ., Eyceyurt Divarcı, N.S., Öztürk, M. (2023). Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce (Pistia stratiotes). International Journal of Phytoremediation, 25, 550-561.
  • Şentürk, İ., Eyceyurt Divarcı, N.S., Öztürk, M. (2023). Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce (Pistia stratiotes). International Journal of Phytoremediation, 25, 550-561.
  • Topal, M., Öbek, E., Arslan Topal, E.I. (2020). Phycoremediation of Precious Metals by Cladophora fracta From Mine Gallery Waters Causing Environmental Contamination. Bulletin of Environmental Contamination and Toxicology, 105:134–138.
  • Topal, M., Öbek, E., Arslan Topal, E.I. (2020). Phycoremediation of Precious Metals by Cladophora fracta From Mine Gallery Waters Causing Environmental Contamination. Bulletin of Environmental Contamination and Toxicology, 105:134–138.
  • Turner, A. and Furniss, O. (2012). An evaluation of the toxicity and bioaccumulation of thallium in the coastal marine environment using the macroalga, Ulva lactuca. Mar. Poll. Bull., 64: 2720-2724.
  • Turner, A. and Furniss, O. (2012). An evaluation of the toxicity and bioaccumulation of thallium in the coastal marine environment using the macroalga, Ulva lactuca. Mar. Poll. Bull., 64: 2720-2724.
  • Turner, A., Turner, D. and Braungardt, C. (2013). Biomonitoring of thallium availability in two estuaries of southwest England. Marine Pollution Bulletin, 69 (1–2), 172-177.
  • Turner, A., Turner, D. and Braungardt, C. (2013). Biomonitoring of thallium availability in two estuaries of southwest England. Marine Pollution Bulletin, 69 (1–2), 172-177.
  • Wan, S., Ma, M., Lv, L., Qian, L., Xu, S., Xue, Y., Ma, Z. (2014). Selective capture of thallium (I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chem. Eng. J., 239, 200-206.
  • Wan, S., Ma, M., Lv, L., Qian, L., Xu, S., Xue, Y., Ma, Z. (2014). Selective capture of thallium (I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chem. Eng. J., 239, 200-206.
  • Wang, N., Su, Z., Deng, N., Qiu, Y., Ma, L., Wang, J., Chen, Y., Hu, K., Huang, C. and Xiao, T. (2020). Removal of thallium(I) from aqueous solutions using titanate nanomaterials: The performance and the influence of morphology. Science of The Total Environment, 717, Article 137090.
  • Wang, N., Su, Z., Deng, N., Qiu, Y., Ma, L., Wang, J., Chen, Y., Hu, K., Huang, C. and Xiao, T. (2020). Removal of thallium(I) from aqueous solutions using titanate nanomaterials: The performance and the influence of morphology. Science of The Total Environment, 717, Article 137090.
  • Wilde, E. W. and Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv., 11, 781-812.
  • Wilde, E. W. and Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv., 11, 781-812.
  • Żbikowski, R., Szefer, P. and Latała, A. (2007). Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic. Sci Total Environ 387: 320–332.
  • Żbikowski, R., Szefer, P. and Latała, A. (2007). Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic. Sci Total Environ 387: 320–332.
  • Zhang, G., Fan, F., Li, X., Qi, J. and Chen, Y. (2018). Superior adsorption of thallium(I) on titanium peroxide: performance and mechanism. Chem. Eng. J., 331, 471-479.
  • Zhang, G., Fan, F., Li, X., Qi, J. and Chen, Y. (2018). Superior adsorption of thallium(I) on titanium peroxide: performance and mechanism. Chem. Eng. J., 331, 471-479.
  • Zhang, H. M., Geng, G., Wang, J.J., Xin, Y., Zhang, Q., Cao, D.J. and Ma, Y.H. (2019). The remediation potential and kinetics of cadmium in the green alga Cladophora rupestris. Environ Sci Pollut Res 26:775–783.
  • Zhang, H. M., Geng, G., Wang, J.J., Xin, Y., Zhang, Q., Cao, D.J. and Ma, Y.H. (2019). The remediation potential and kinetics of cadmium in the green alga Cladophora rupestris. Environ Sci Pollut Res 26:775–783.
  • Zvinowanda, C. M., Okonkwo, J. O., Sekhula, M. M., Agyei, N. M. and Sadiku, R. (2009). Application of maize tassel for the removal of Pb, Se, Sr, U and V from borehole water contaminated with mine wastewater in the presence of alkaline metals. Journal of Hazardous Materials, 164 (2–3), 884-891.
  • Zvinowanda, C. M., Okonkwo, J. O., Sekhula, M. M., Agyei, N. M. and Sadiku, R. (2009). Application of maize tassel for the removal of Pb, Se, Sr, U and V from borehole water contaminated with mine wastewater in the presence of alkaline metals. Journal of Hazardous Materials, 164 (2–3), 884-891.
Yıl 2023, Cilt: 13 Sayı: 4, 2546 - 2554, 01.12.2023
https://doi.org/10.21597/jist.1243880

Öz

Kaynakça

  • Ahmad, F., Khan, A. U. and Yasar, A. (2013). Comparative phycoremediation of sewage water by various species of algae. Proc. Pak. Acad. Sci., 50, 131-139.
  • Ahmad, F., Khan, A. U. and Yasar, A. (2013). Comparative phycoremediation of sewage water by various species of algae. Proc. Pak. Acad. Sci., 50, 131-139.
  • Amarasinghe, B. M. P. K. and Williams, R. A. (2007). Tea waste as a low adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J., 132, 299-309.
  • Amarasinghe, B. M. P. K. and Williams, R. A. (2007). Tea waste as a low adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J., 132, 299-309.
  • Ayangbenro, A. S. and Babalola, O. O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International journal of environmental research and public health, 14 (1), 94.
  • Ayangbenro, A. S. and Babalola, O. O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International journal of environmental research and public health, 14 (1), 94.
  • BA, Bioaccumulation. (2019). Bio-concentration Criteria and Chemical Risk Assessment, https://www.chemsafetypro.com/Topics/CRA/Bioconcentration_Factor_BCF.html (Access: 20.12.2019)
  • BA, Bioaccumulation. (2019). Bio-concentration Criteria and Chemical Risk Assessment, https://www.chemsafetypro.com/Topics/CRA/Bioconcentration_Factor_BCF.html (Access: 20.12.2019)
  • Belzile, N., Chen, Y.W. (2017). Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry, 84, 218-243.
  • Belzile, N., Chen, Y.W. (2017). Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry, 84, 218-243.
  • Birungi, Z.S., E M N Chirwa, E.M.N. (2015). The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources. J Hazard Mater, 299:67-77
  • Birungi, Z.S., E M N Chirwa, E.M.N. (2015). The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources. J Hazard Mater, 299:67-77
  • Chung, N. H., Nishimoto, J., Kato, O. and Tabata, M. (2003). Selective extraction of thallium (III) in the presence of gallium (III), indium (III), bismuth (III) and antimony (III) by salting-out of an aqueous mixture of 2-propanol. Anal. Chim. Acta., 477, 243-249.
  • Chung, N. H., Nishimoto, J., Kato, O. and Tabata, M. (2003). Selective extraction of thallium (III) in the presence of gallium (III), indium (III), bismuth (III) and antimony (III) by salting-out of an aqueous mixture of 2-propanol. Anal. Chim. Acta., 477, 243-249.
  • Gardea-Torresdeya, J. L. Arenas, J. L., Francisco, N. M. C., Tiemanna, K. J. and Webb, R. (1998). Ability of Immobilized Cyanobacteria To Remove Metal Ions From Solution And Demonstration of The Presence of Metallothionein Genes In Various Strains. Journal of Hazardous Substance Research, 1 (2), 1-18.
  • Gardea-Torresdeya, J. L. Arenas, J. L., Francisco, N. M. C., Tiemanna, K. J. and Webb, R. (1998). Ability of Immobilized Cyanobacteria To Remove Metal Ions From Solution And Demonstration of The Presence of Metallothionein Genes In Various Strains. Journal of Hazardous Substance Research, 1 (2), 1-18.
  • Hassanien, M. M., Mortada, W. I., Kenawy, I. M. and El-Daly, H. (2017). Solid phase extraction and preconcentration of trace gallium, indium, and thallium using new modified amino silica. Appl. Spectrosc, 71 (2), 288-299.
  • Hassanien, M. M., Mortada, W. I., Kenawy, I. M. and El-Daly, H. (2017). Solid phase extraction and preconcentration of trace gallium, indium, and thallium using new modified amino silica. Appl. Spectrosc, 71 (2), 288-299.
  • Huangfu, X., Ma, C., Ma, J., He, Q., Yang, C., Jiang, J., Wang, Y. and Wu, Z. (2017). Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide. Chemosphere, 168, 264-271.
  • Huangfu, X., Ma, C., Ma, J., He, Q., Yang, C., Jiang, J., Wang, Y. and Wu, Z. (2017). Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide. Chemosphere, 168, 264-271.
  • Kalpana, C. Lakra, B. Lal and T.K., Banerjee (2017). Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology. International Journal of Phytoremediation, 19, 530-536.
  • Kalpana, C. Lakra, B. Lal and T.K., Banerjee (2017). Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology. International Journal of Phytoremediation, 19, 530-536.
  • Kamal, O., Pochat-Bohatier, C. and Sanchez-Marcano, J. (2017). Development and stability of gelatin cross-linked membranes for copper (II) ions removal from acid waters. Separation and Purification Technology, 183, 153-161.
  • Kamal, O., Pochat-Bohatier, C. and Sanchez-Marcano, J. (2017). Development and stability of gelatin cross-linked membranes for copper (II) ions removal from acid waters. Separation and Purification Technology, 183, 153-161.
  • Karigar, C. S. and Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme research, Article 805187.
  • Karigar, C. S. and Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme research, Article 805187.
  • Li, H. S., Zhang, H. G., Long, J. Y., Zhang, P. and Chen, H.Y. (2019). Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: bench and pilot scale studies focusing on in-depth thallium removal. Front. Environ. Sci. Eng, 13, 49-61.
  • Li, H. S., Zhang, H. G., Long, J. Y., Zhang, P. and Chen, H.Y. (2019). Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: bench and pilot scale studies focusing on in-depth thallium removal. Front. Environ. Sci. Eng, 13, 49-61.
  • Li, H., Chen, Y., Long, J., Jiang, D., Liu, J., Li, S., Qi, J., Zhang, P., Wang, J., Gong, J., Wu, Q. and Chen, D. (2017). Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins. Journal of Hazardous Materials, 333, 179-185.
  • Li, H., Chen, Y., Long, J., Jiang, D., Liu, J., Li, S., Qi, J., Zhang, P., Wang, J., Gong, J., Wu, Q. and Chen, D. (2017). Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins. Journal of Hazardous Materials, 333, 179-185.
  • Li, H., Lin, M., Xiao, T., Long, J., Liu, F., Li, Y., Liu, Y., Liao, D., Chen, Z., Zhang, P., Chen, Y. and Zhang, G. (2020a). Highly efficient removal of thallium(I) from wastewater via hypochlorite catalytic oxidation coupled with adsorption by hydrochar coated nickel ferrite composite. Journal of Hazardous Materials, 388:Article 122016.
  • Li, H., Lin, M., Xiao, T., Long, J., Liu, F., Li, Y., Liu, Y., Liao, D., Chen, Z., Zhang, P., Chen, Y. and Zhang, G. (2020a). Highly efficient removal of thallium(I) from wastewater via hypochlorite catalytic oxidation coupled with adsorption by hydrochar coated nickel ferrite composite. Journal of Hazardous Materials, 388:Article 122016.
  • Li, H., Xiong, J., Zhang, G., Liang, A., Long, J., Xiao, T., Chen, Y., Zhang, P., Liao, D., Lin, L. and Zhang, H. (2020b). Enhanced thallium(I) removal from wastewater using hypochlorite oxidation coupled with magnetite-based biochar adsorption. Science of The Total Environment, 698 : Article 134166.
  • Li, H., Xiong, J., Zhang, G., Liang, A., Long, J., Xiao, T., Chen, Y., Zhang, P., Liao, D., Lin, L. and Zhang, H. (2020b). Enhanced thallium(I) removal from wastewater using hypochlorite oxidation coupled with magnetite-based biochar adsorption. Science of The Total Environment, 698 : Article 134166.
  • Li, T., Lin, G., Podola, B. and Melkonian, M. (2015). Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. Journal of Hazardous Materials, 297, 112-118.
  • Li, T., Lin, G., Podola, B. and Melkonian, M. (2015). Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. Journal of Hazardous Materials, 297, 112-118.
  • Liu, J., Li, N., Zhang, W., Wei, X., Tsang, D. C. W., Sun, Y., Luo, X., Bao, Z., Zheng, W., Wang, J., Xu, G., Hou, L., Chen, Y. and Feng, Y. (2019). Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environmental Pollution, 248, 906-915.
  • Liu, J., Li, N., Zhang, W., Wei, X., Tsang, D. C. W., Sun, Y., Luo, X., Bao, Z., Zheng, W., Wang, J., Xu, G., Hou, L., Chen, Y. and Feng, Y. (2019). Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environmental Pollution, 248, 906-915.
  • Liu, J., Wang, J., Tsang, D. C. W., Xiao, T., Chen, Y. and Hou, L. (2018). Emerging thallium pollution in China and source tracing by thallium isotopes. Environ. Sci. Technol, 52, 11977-11979.
  • Liu, J., Wang, J., Tsang, D. C. W., Xiao, T., Chen, Y. and Hou, L. (2018). Emerging thallium pollution in China and source tracing by thallium isotopes. Environ. Sci. Technol, 52, 11977-11979.
  • Liu, Y., Wang, L., Wang, X., Huang, Z., Xu, C., Yang, T., Zhao, X., Qi, J. and Ma, J. (2017). Highly efficient removal of trace thallium from contaminated source waters with ferrate: role of in situ formed ferric nanoparticle. Water Research, 124, 149-157.
  • Liu, Y., Wang, L., Wang, X., Huang, Z., Xu, C., Yang, T., Zhao, X., Qi, J. and Ma, J. (2017). Highly efficient removal of trace thallium from contaminated source waters with ferrate: role of in situ formed ferric nanoparticle. Water Research, 124, 149-157.
  • Lovley, D. R. and Coates, J. D. (1997). Bioremediation of metal contamination. Curr. Opin. Biotechnol, 8, 285-289.
  • Lovley, D. R. and Coates, J. D. (1997). Bioremediation of metal contamination. Curr. Opin. Biotechnol, 8, 285-289.
  • Malik, A. (2004). Metal bioremediation through growing cells. Environ. Int, 30, 261-278.
  • Malik, A. (2004). Metal bioremediation through growing cells. Environ. Int, 30, 261-278.
  • Michalak, I. and Messyasz, B. (2021). Concise review of Cladophora spp.: macroalgae of commercial interest. Journal of Applied Phycology, 33:133–166.
  • Michalak, I. and Messyasz, B. (2021). Concise review of Cladophora spp.: macroalgae of commercial interest. Journal of Applied Phycology, 33:133–166.
  • Mwandira, W., Nakashima, K., Togo, Y., Sato, T. and Kawasaki, S. (2020). Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water. Chemosphere, 246: Article 125733.
  • Mwandira, W., Nakashima, K., Togo, Y., Sato, T. and Kawasaki, S. (2020). Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water. Chemosphere, 246: Article 125733.
  • Palmer, K., Ronkanen, A.-K. and Kløve, B. (2015). Efficient removal of arsenic, antimony, and nickel from mine wastewaters in Northern treatment peatlands and potential risks in their long-term use. Ecological Engineering, 75, 350-364.
  • Palmer, K., Ronkanen, A.-K. and Kløve, B. (2015). Efficient removal of arsenic, antimony, and nickel from mine wastewaters in Northern treatment peatlands and potential risks in their long-term use. Ecological Engineering, 75, 350-364.
  • Peter, A. and Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environ. Int, 31, 493-501.
  • Peter, A. and Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environ. Int, 31, 493-501.
  • Podder, M. S. and Majumder, C. B. (2016). Arsenic toxicity to Chlorella pyrenoidosa and its phycoremediation. Acta Ecologica Sinica, 36 (4), 256-268.
  • Podder, M. S. and Majumder, C. B. (2016). Arsenic toxicity to Chlorella pyrenoidosa and its phycoremediation. Acta Ecologica Sinica, 36 (4), 256-268.
  • Queirolo, F., Stegen, S., Contreras-Ortega, C., Ostapczuk, P., Queirolo, A., Paredes, B. (2009). Thallium levels and bioaccumulation in environmental samples of northern chile: human health risks. J. Chil. Chem. Soc., 54(4), 464-469.
  • Queirolo, F., Stegen, S., Contreras-Ortega, C., Ostapczuk, P., Queirolo, A., Paredes, B. (2009). Thallium levels and bioaccumulation in environmental samples of northern chile: human health risks. J. Chil. Chem. Soc., 54(4), 464-469.
  • Rajesh, N. and Subramanian, M. S. (2006). A study of the extraction behavior of thallium with tribenzylamine as the extractant. J. Hazard. Mater., 135, 74-77.
  • Rajesh, N. and Subramanian, M. S. (2006). A study of the extraction behavior of thallium with tribenzylamine as the extractant. J. Hazard. Mater., 135, 74-77.
  • Samal, D. P. K., Sukla, L. B., Pattanaik, A. and Pradhan, D. (2020). Role of microalgae in treatment of acid mine drainage and recovery of valuable metals. Materials Today: Proceedings. 30, 346-350.
  • Samal, D. P. K., Sukla, L. B., Pattanaik, A. and Pradhan, D. (2020). Role of microalgae in treatment of acid mine drainage and recovery of valuable metals. Materials Today: Proceedings. 30, 346-350.
  • Şentürk, İ., Eyceyurt Divarcı, N.S., Öztürk, M. (2023). Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce (Pistia stratiotes). International Journal of Phytoremediation, 25, 550-561.
  • Şentürk, İ., Eyceyurt Divarcı, N.S., Öztürk, M. (2023). Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce (Pistia stratiotes). International Journal of Phytoremediation, 25, 550-561.
  • Topal, M., Öbek, E., Arslan Topal, E.I. (2020). Phycoremediation of Precious Metals by Cladophora fracta From Mine Gallery Waters Causing Environmental Contamination. Bulletin of Environmental Contamination and Toxicology, 105:134–138.
  • Topal, M., Öbek, E., Arslan Topal, E.I. (2020). Phycoremediation of Precious Metals by Cladophora fracta From Mine Gallery Waters Causing Environmental Contamination. Bulletin of Environmental Contamination and Toxicology, 105:134–138.
  • Turner, A. and Furniss, O. (2012). An evaluation of the toxicity and bioaccumulation of thallium in the coastal marine environment using the macroalga, Ulva lactuca. Mar. Poll. Bull., 64: 2720-2724.
  • Turner, A. and Furniss, O. (2012). An evaluation of the toxicity and bioaccumulation of thallium in the coastal marine environment using the macroalga, Ulva lactuca. Mar. Poll. Bull., 64: 2720-2724.
  • Turner, A., Turner, D. and Braungardt, C. (2013). Biomonitoring of thallium availability in two estuaries of southwest England. Marine Pollution Bulletin, 69 (1–2), 172-177.
  • Turner, A., Turner, D. and Braungardt, C. (2013). Biomonitoring of thallium availability in two estuaries of southwest England. Marine Pollution Bulletin, 69 (1–2), 172-177.
  • Wan, S., Ma, M., Lv, L., Qian, L., Xu, S., Xue, Y., Ma, Z. (2014). Selective capture of thallium (I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chem. Eng. J., 239, 200-206.
  • Wan, S., Ma, M., Lv, L., Qian, L., Xu, S., Xue, Y., Ma, Z. (2014). Selective capture of thallium (I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chem. Eng. J., 239, 200-206.
  • Wang, N., Su, Z., Deng, N., Qiu, Y., Ma, L., Wang, J., Chen, Y., Hu, K., Huang, C. and Xiao, T. (2020). Removal of thallium(I) from aqueous solutions using titanate nanomaterials: The performance and the influence of morphology. Science of The Total Environment, 717, Article 137090.
  • Wang, N., Su, Z., Deng, N., Qiu, Y., Ma, L., Wang, J., Chen, Y., Hu, K., Huang, C. and Xiao, T. (2020). Removal of thallium(I) from aqueous solutions using titanate nanomaterials: The performance and the influence of morphology. Science of The Total Environment, 717, Article 137090.
  • Wilde, E. W. and Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv., 11, 781-812.
  • Wilde, E. W. and Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv., 11, 781-812.
  • Żbikowski, R., Szefer, P. and Latała, A. (2007). Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic. Sci Total Environ 387: 320–332.
  • Żbikowski, R., Szefer, P. and Latała, A. (2007). Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic. Sci Total Environ 387: 320–332.
  • Zhang, G., Fan, F., Li, X., Qi, J. and Chen, Y. (2018). Superior adsorption of thallium(I) on titanium peroxide: performance and mechanism. Chem. Eng. J., 331, 471-479.
  • Zhang, G., Fan, F., Li, X., Qi, J. and Chen, Y. (2018). Superior adsorption of thallium(I) on titanium peroxide: performance and mechanism. Chem. Eng. J., 331, 471-479.
  • Zhang, H. M., Geng, G., Wang, J.J., Xin, Y., Zhang, Q., Cao, D.J. and Ma, Y.H. (2019). The remediation potential and kinetics of cadmium in the green alga Cladophora rupestris. Environ Sci Pollut Res 26:775–783.
  • Zhang, H. M., Geng, G., Wang, J.J., Xin, Y., Zhang, Q., Cao, D.J. and Ma, Y.H. (2019). The remediation potential and kinetics of cadmium in the green alga Cladophora rupestris. Environ Sci Pollut Res 26:775–783.
  • Zvinowanda, C. M., Okonkwo, J. O., Sekhula, M. M., Agyei, N. M. and Sadiku, R. (2009). Application of maize tassel for the removal of Pb, Se, Sr, U and V from borehole water contaminated with mine wastewater in the presence of alkaline metals. Journal of Hazardous Materials, 164 (2–3), 884-891.
  • Zvinowanda, C. M., Okonkwo, J. O., Sekhula, M. M., Agyei, N. M. and Sadiku, R. (2009). Application of maize tassel for the removal of Pb, Se, Sr, U and V from borehole water contaminated with mine wastewater in the presence of alkaline metals. Journal of Hazardous Materials, 164 (2–3), 884-891.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği / Environment Engineering
Yazarlar

Murat Topal 0000-0003-0222-5409

Emine Işıl Arslan Topal 0000-0003-0309-7787

Erdal Öbek 0000-0002-4595-572X

Erken Görünüm Tarihi 30 Kasım 2023
Yayımlanma Tarihi 1 Aralık 2023
Gönderilme Tarihi 28 Ocak 2023
Kabul Tarihi 29 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 4

Kaynak Göster

APA Topal, M., Arslan Topal, E. I., & Öbek, E. (2023). Phycoremediation of Thallium Toxic Metal Present in Gallery Water of an Abandoned Mine Area by Algae Cladophora fracta. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(4), 2546-2554. https://doi.org/10.21597/jist.1243880
AMA Topal M, Arslan Topal EI, Öbek E. Phycoremediation of Thallium Toxic Metal Present in Gallery Water of an Abandoned Mine Area by Algae Cladophora fracta. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2023;13(4):2546-2554. doi:10.21597/jist.1243880
Chicago Topal, Murat, Emine Işıl Arslan Topal, ve Erdal Öbek. “Phycoremediation of Thallium Toxic Metal Present in Gallery Water of an Abandoned Mine Area by Algae Cladophora Fracta”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13, sy. 4 (Aralık 2023): 2546-54. https://doi.org/10.21597/jist.1243880.
EndNote Topal M, Arslan Topal EI, Öbek E (01 Aralık 2023) Phycoremediation of Thallium Toxic Metal Present in Gallery Water of an Abandoned Mine Area by Algae Cladophora fracta. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13 4 2546–2554.
IEEE M. Topal, E. I. Arslan Topal, ve E. Öbek, “Phycoremediation of Thallium Toxic Metal Present in Gallery Water of an Abandoned Mine Area by Algae Cladophora fracta”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 4, ss. 2546–2554, 2023, doi: 10.21597/jist.1243880.
ISNAD Topal, Murat vd. “Phycoremediation of Thallium Toxic Metal Present in Gallery Water of an Abandoned Mine Area by Algae Cladophora Fracta”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13/4 (Aralık 2023), 2546-2554. https://doi.org/10.21597/jist.1243880.
JAMA Topal M, Arslan Topal EI, Öbek E. Phycoremediation of Thallium Toxic Metal Present in Gallery Water of an Abandoned Mine Area by Algae Cladophora fracta. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:2546–2554.
MLA Topal, Murat vd. “Phycoremediation of Thallium Toxic Metal Present in Gallery Water of an Abandoned Mine Area by Algae Cladophora Fracta”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 13, sy. 4, 2023, ss. 2546-54, doi:10.21597/jist.1243880.
Vancouver Topal M, Arslan Topal EI, Öbek E. Phycoremediation of Thallium Toxic Metal Present in Gallery Water of an Abandoned Mine Area by Algae Cladophora fracta. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(4):2546-54.