Araştırma Makalesi
BibTex RIS Kaynak Göster

Co+2/Klor İleri Oksidasyon Prosesi Vasıtasıyla Bemacid Blue Giderimi, Reaktif Radikallerin Tespiti ve Kinetik Çalışmalar

Yıl 2024, Cilt: 14 Sayı: 1, 156 - 167, 01.03.2024
https://doi.org/10.21597/jist.1261438

Öz

Çalışmada Bemacid Blue (BB) sentetik tekstil boyasının gideriminde oksidant olarak kullanılan klorun Co+2, Ultraviyole-C (UV-C) ve görünür ışık ile kombinasyonları oluşturularak en etkili proses seçilmiş ve optimizasyonu yapılmıştır. Deneyler sonucunda boya giderim verimi ve işletme maliyeti göz önüne alındığında Co+2/Klor prosesi seçilmiş ve C0: 50 mg/L BB (0.84mM), pH:3, klor: 0.8mM ve Co+2: 50µM 20 dk reaksiyon süresi optimum şartlarında %97.78 giderim verimine ulaşılmıştır. Proseste %46.1 katkı ile •OH en etkin ve baskın radikaldir, ancak reaktif klor radikallerinin (•Cl2-, •Cl ve •ClO (RCS – Reactive Chlorine Species)) %51.68 toplam katkı ile BB gideriminde etkin bir rol oynadığı belirlenmiştir. Optimum şartlarda gerçek tekstil atık suyu ile yapılan çalışmalar sonucunda, dalga boyu taramasında oluşan 1 ve 2 nolu ana piklerde sırasıyla %83.2 ve %88.6 oranında azalma gerçekleşerek etkin bir boya giderimi sağlanmıştır. Bununla birlikte, Behnajady–Modirshahla–Ghanbery (BMG) modeli için korelasyon katsayısı değeri (R2=0.9999), birinci ve ikinci derece modellerden daha yüksek olduğundan BB’nun Co+2/Klor prosesi ile giderimini açıklayan en iyi modeldir.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Behin, J., Akbari, A., Mahmoudi, M., & Khajeh, M. (2017). Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale. Water research, 121, 120-128.
  • Behnajady, M., Modirshahla, N., & Ghanbary, F. (2007). A kinetic model for the decolorization of CI Acid Yellow 23 by Fenton process. Journal of hazardous materials, 148(1-2), 98-102.
  • Dehghani, M., Kamali, Y., Jamshidi, F., Shiri, M. A., & Nozari, M. (2018). Contribution of H2O2 in ultrasonic systems for degradation of DR-81 dye from aqueous solutions. Desalination and Water Treatment, 107, 332-339. Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14), 4497-4531.
  • Ertugay, N., & Acar, F. N. (2017). Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, 10, S1158-S1163.
  • Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment international, 30(7), 953-971.
  • Gao, Y.-q., Chen, J.-x., Zhang, J., & Yin, D.-q. (2020). Oxidation of β-blocker atenolol by a combination of UV light and chlorine: kinetics, degradation pathways and toxicity assessment. Separation and Purification Technology, 231, 115927.
  • Ghanbari, F., Yaghoot-Nezhad, A., Wacławek, S., Lin, K.-Y. A., Rodríguez-Chueca, J., & Mehdipour, F. (2021).
  • Comparative investigation of acetaminophen degradation in aqueous solution by UV/Chlorine and UV/H2O2 processes: kinetics and toxicity assessment, process feasibility and products identification. Chemosphere, 285, 131455.
  • He, T., Deng, L., Lai, B., Xu, S., Wang, L., Zhang, Y., Hu, C. (2022). The performance of Fe2+/ClO− system in advanced removal of fulvic acid under mild conditions. Journal of Environmental Chemical Engineering, 10(3), 107515.
  • Kim, T.-K., Kim, T., Cha, Y., & Zoh, K.-D. (2020). Energy-efficient erythromycin degradation using UV-LED (275 nm)/chlorine process: radical contribution, transformation products, and toxicity evaluation. Water research, 185, 116159.
  • Kläning, U. K., & Wolff, T. (1985). Laser flash photolysis of HCIO, CIO−, HBrO, and BrO− in aqueous solution. Reactions of Cl‐and Br‐atoms. Berichte der Bunsengesellschaft für physikalische Chemie, 89(3), 243-245.
  • Lacene Necer, I., Oukebdane, K., & Didi, M. A. (2022). Central composite design optimization study of the sorption of Bemacid blue Anthraquinone dye by Fe3O4-bentonite from a cupric medium. International Journal of Environmental Analytical Chemistry, 1-20.
  • Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., Zhang, M. (2021). Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere, 275, 130104.
  • Meghlaoui, F. Z., Merouani, S., Hamdaoui, O., Bouhelassa, M., & Ashokkumar, M. (2019). Rapid catalytic degradation of refractory textile dyes in Fe (II)/chlorine system at near neutral pH: radical mechanism involving chlorine radical anion (Cl2−)-mediated transformation pathways and impact of environmental matrices. Separation and Purification Technology, 227, 115685.
  • Nidheesh, P., Zhou, M., & Oturan, M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197, 210-227.
  • Nikravesh, B., Shomalnasab, A., Nayyer, A., Aghababaei, N., Zarebi, R., & Ghanbari, F. (2020). UV/Chlorine process for dye degradation in aqueous solution: Mechanism, affecting factors and toxicity evaluation for textile wastewater. Journal of Environmental Chemical Engineering, 8(5), 104244.
  • Pueyo, N., Miguel, N., Ovelleiro, J., & Ormad, M. (2016). Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process. Water science and technology, 74(2), 482-490.
  • Qiao, M., Zhao, X., & Wei, X. (2018). Characterization and treatment of landfill leachate membrane concentrate by Fe2+/NaClO combined with advanced oxidation processes. Scientific reports, 8(1), 1-9.
  • Rafiei, N., Fatehizadeh, A., Amin, M. M., Pourzamani, H. R., Ebrahimi, A., Taheri, E., & Aminabhavi, T. M. (2021). Application of UV/chlorine processes for the DR83: 1 degradation from wastewater: Effect of coexisting anions. Journal of environmental management, 297, 113349.
  • Rodriguez-Peña, M., Barrios, J., Becerril-Bravo, E., Rodrigo, M., & Barrera-Díaz, C. (2020). Degradation of endosulfan by a coupled treatments in a batch reactor with three electrodes. Fuel, 281, 118741.
  • Sun, S.-P., Li, C.-J., Sun, J.-H., Shi, S.-H., Fan, M.-H., & Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of hazardous materials, 161(2-3), 1052-1057.
  • Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222.
  • Tosik, R., Jóźwiak, A., & Mitros, M. (2004). Application of oxidation process with the use of H2O2 and NaClO to dyes aqueous solutions. Ann. Univ. Mariae Curie-Sklodowska Lublin-Polonia, 6, 58-66.
  • Tunç, S., Gürkan, T., & Duman, O. (2012). On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process. Chemical Engineering Journal, 181, 431-442.
  • Türkyılmaz, M. (2022). A comparative study of free chlorine activated by Fe+ 2 and UV C light catalysts in the treatment of real and simulated textile wastewater: Optimization, reactive species and phytotoxicity assessment. Journal of Water Process Engineering, 49, 103161.
  • White, G. C. (2010). White's handbook of chlorination and alternative disinfectants: Wiley. Xiang, Y., Fang, J., & Shang, C. (2016). Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water research, 90, 301-308.
  • Xiong, R., Lu, Z., Tang, Q., Huang, X., Ruan, H., Jiang, W., Liu, D. (2020). UV-LED/chlorine degradation of propranolol in water: degradation pathway and product toxicity. Chemosphere, 248, 125957.
  • Yang, W., Tang, Y., Liu, L., Peng, X., Zhong, Y., Chen, Y., & Huang, Y. (2020). Chemical behaviors and toxic effects of ametryn during the UV/chlorine process. Chemosphere, 240, 124941.
  • Yaseen, D., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International journal of environmental science and technology, 16, 1193-1226.
  • Zhao, X., Wei, X., Xia, P., Liu, H., & Qu, J. (2013). Removal and transformation characterization of refractory components from biologically treated landfill leachate by Fe2+/NaClO and Fenton oxidation. Separation and Purification Technology, 116, 107-113.

Bemacid Blue Removal by Co+2/Chlorine Advanced Oxidation Process, Detection of Reactive Radicals and Kinetic Studies

Yıl 2024, Cilt: 14 Sayı: 1, 156 - 167, 01.03.2024
https://doi.org/10.21597/jist.1261438

Öz

In the study, the most effective process was selected and optimized by creating combinations of chlorine, which is used as an oxidant in the removal of BB synthetic textile dye, with Co+2, UV-C and visible light. Considering the dye removal efficiency and operating cost as a result of the experiments, the Co+2/Chlorine process was chosen. Under optimum operating conditions (C0: 50 mg/L BB (0.84mM), pH:3, chlorine: 0.8mM and Co+2: 50 µM 20 min reaction time), 97.78% removal efficiency was achieved. In the process, •OH is the most active and dominant radical with 46.1% contribution. However, it was determined that reactive chlorine radicals (•Cl2-, •Cl and •ClO) played an active role in BB removal with a total contribution of 51.68%. As a result of the studies carried out with real textile wastewater under optimum conditions, an effective dye removal was achieved by reducing the main peaks 1 and 2 in wavelength scanning, respectively, by 83.2% and 88.6%. However, since the correlation coefficient value (R2=0.9999) for the Behnajady–Modirshahla–Ghanbery (BMG) model is higher than the first and second order models, it is the best model to explain the removal of BB by the Co+2/Chlorine process.

Proje Numarası

-

Kaynakça

  • Behin, J., Akbari, A., Mahmoudi, M., & Khajeh, M. (2017). Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale. Water research, 121, 120-128.
  • Behnajady, M., Modirshahla, N., & Ghanbary, F. (2007). A kinetic model for the decolorization of CI Acid Yellow 23 by Fenton process. Journal of hazardous materials, 148(1-2), 98-102.
  • Dehghani, M., Kamali, Y., Jamshidi, F., Shiri, M. A., & Nozari, M. (2018). Contribution of H2O2 in ultrasonic systems for degradation of DR-81 dye from aqueous solutions. Desalination and Water Treatment, 107, 332-339. Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14), 4497-4531.
  • Ertugay, N., & Acar, F. N. (2017). Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, 10, S1158-S1163.
  • Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment international, 30(7), 953-971.
  • Gao, Y.-q., Chen, J.-x., Zhang, J., & Yin, D.-q. (2020). Oxidation of β-blocker atenolol by a combination of UV light and chlorine: kinetics, degradation pathways and toxicity assessment. Separation and Purification Technology, 231, 115927.
  • Ghanbari, F., Yaghoot-Nezhad, A., Wacławek, S., Lin, K.-Y. A., Rodríguez-Chueca, J., & Mehdipour, F. (2021).
  • Comparative investigation of acetaminophen degradation in aqueous solution by UV/Chlorine and UV/H2O2 processes: kinetics and toxicity assessment, process feasibility and products identification. Chemosphere, 285, 131455.
  • He, T., Deng, L., Lai, B., Xu, S., Wang, L., Zhang, Y., Hu, C. (2022). The performance of Fe2+/ClO− system in advanced removal of fulvic acid under mild conditions. Journal of Environmental Chemical Engineering, 10(3), 107515.
  • Kim, T.-K., Kim, T., Cha, Y., & Zoh, K.-D. (2020). Energy-efficient erythromycin degradation using UV-LED (275 nm)/chlorine process: radical contribution, transformation products, and toxicity evaluation. Water research, 185, 116159.
  • Kläning, U. K., & Wolff, T. (1985). Laser flash photolysis of HCIO, CIO−, HBrO, and BrO− in aqueous solution. Reactions of Cl‐and Br‐atoms. Berichte der Bunsengesellschaft für physikalische Chemie, 89(3), 243-245.
  • Lacene Necer, I., Oukebdane, K., & Didi, M. A. (2022). Central composite design optimization study of the sorption of Bemacid blue Anthraquinone dye by Fe3O4-bentonite from a cupric medium. International Journal of Environmental Analytical Chemistry, 1-20.
  • Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., Zhang, M. (2021). Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere, 275, 130104.
  • Meghlaoui, F. Z., Merouani, S., Hamdaoui, O., Bouhelassa, M., & Ashokkumar, M. (2019). Rapid catalytic degradation of refractory textile dyes in Fe (II)/chlorine system at near neutral pH: radical mechanism involving chlorine radical anion (Cl2−)-mediated transformation pathways and impact of environmental matrices. Separation and Purification Technology, 227, 115685.
  • Nidheesh, P., Zhou, M., & Oturan, M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197, 210-227.
  • Nikravesh, B., Shomalnasab, A., Nayyer, A., Aghababaei, N., Zarebi, R., & Ghanbari, F. (2020). UV/Chlorine process for dye degradation in aqueous solution: Mechanism, affecting factors and toxicity evaluation for textile wastewater. Journal of Environmental Chemical Engineering, 8(5), 104244.
  • Pueyo, N., Miguel, N., Ovelleiro, J., & Ormad, M. (2016). Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process. Water science and technology, 74(2), 482-490.
  • Qiao, M., Zhao, X., & Wei, X. (2018). Characterization and treatment of landfill leachate membrane concentrate by Fe2+/NaClO combined with advanced oxidation processes. Scientific reports, 8(1), 1-9.
  • Rafiei, N., Fatehizadeh, A., Amin, M. M., Pourzamani, H. R., Ebrahimi, A., Taheri, E., & Aminabhavi, T. M. (2021). Application of UV/chlorine processes for the DR83: 1 degradation from wastewater: Effect of coexisting anions. Journal of environmental management, 297, 113349.
  • Rodriguez-Peña, M., Barrios, J., Becerril-Bravo, E., Rodrigo, M., & Barrera-Díaz, C. (2020). Degradation of endosulfan by a coupled treatments in a batch reactor with three electrodes. Fuel, 281, 118741.
  • Sun, S.-P., Li, C.-J., Sun, J.-H., Shi, S.-H., Fan, M.-H., & Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of hazardous materials, 161(2-3), 1052-1057.
  • Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222.
  • Tosik, R., Jóźwiak, A., & Mitros, M. (2004). Application of oxidation process with the use of H2O2 and NaClO to dyes aqueous solutions. Ann. Univ. Mariae Curie-Sklodowska Lublin-Polonia, 6, 58-66.
  • Tunç, S., Gürkan, T., & Duman, O. (2012). On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process. Chemical Engineering Journal, 181, 431-442.
  • Türkyılmaz, M. (2022). A comparative study of free chlorine activated by Fe+ 2 and UV C light catalysts in the treatment of real and simulated textile wastewater: Optimization, reactive species and phytotoxicity assessment. Journal of Water Process Engineering, 49, 103161.
  • White, G. C. (2010). White's handbook of chlorination and alternative disinfectants: Wiley. Xiang, Y., Fang, J., & Shang, C. (2016). Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water research, 90, 301-308.
  • Xiong, R., Lu, Z., Tang, Q., Huang, X., Ruan, H., Jiang, W., Liu, D. (2020). UV-LED/chlorine degradation of propranolol in water: degradation pathway and product toxicity. Chemosphere, 248, 125957.
  • Yang, W., Tang, Y., Liu, L., Peng, X., Zhong, Y., Chen, Y., & Huang, Y. (2020). Chemical behaviors and toxic effects of ametryn during the UV/chlorine process. Chemosphere, 240, 124941.
  • Yaseen, D., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International journal of environmental science and technology, 16, 1193-1226.
  • Zhao, X., Wei, X., Xia, P., Liu, H., & Qu, J. (2013). Removal and transformation characterization of refractory components from biologically treated landfill leachate by Fe2+/NaClO and Fenton oxidation. Separation and Purification Technology, 116, 107-113.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği / Environment Engineering
Yazarlar

Mehmet Türkyılmaz 0000-0001-5484-571X

Proje Numarası -
Erken Görünüm Tarihi 20 Şubat 2024
Yayımlanma Tarihi 1 Mart 2024
Gönderilme Tarihi 7 Mart 2023
Kabul Tarihi 31 Temmuz 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Türkyılmaz, M. (2024). Co+2/Klor İleri Oksidasyon Prosesi Vasıtasıyla Bemacid Blue Giderimi, Reaktif Radikallerin Tespiti ve Kinetik Çalışmalar. Journal of the Institute of Science and Technology, 14(1), 156-167. https://doi.org/10.21597/jist.1261438
AMA Türkyılmaz M. Co+2/Klor İleri Oksidasyon Prosesi Vasıtasıyla Bemacid Blue Giderimi, Reaktif Radikallerin Tespiti ve Kinetik Çalışmalar. Iğdır Üniv. Fen Bil Enst. Der. Mart 2024;14(1):156-167. doi:10.21597/jist.1261438
Chicago Türkyılmaz, Mehmet. “Co+2/Klor İleri Oksidasyon Prosesi Vasıtasıyla Bemacid Blue Giderimi, Reaktif Radikallerin Tespiti Ve Kinetik Çalışmalar”. Journal of the Institute of Science and Technology 14, sy. 1 (Mart 2024): 156-67. https://doi.org/10.21597/jist.1261438.
EndNote Türkyılmaz M (01 Mart 2024) Co+2/Klor İleri Oksidasyon Prosesi Vasıtasıyla Bemacid Blue Giderimi, Reaktif Radikallerin Tespiti ve Kinetik Çalışmalar. Journal of the Institute of Science and Technology 14 1 156–167.
IEEE M. Türkyılmaz, “Co+2/Klor İleri Oksidasyon Prosesi Vasıtasıyla Bemacid Blue Giderimi, Reaktif Radikallerin Tespiti ve Kinetik Çalışmalar”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 1, ss. 156–167, 2024, doi: 10.21597/jist.1261438.
ISNAD Türkyılmaz, Mehmet. “Co+2/Klor İleri Oksidasyon Prosesi Vasıtasıyla Bemacid Blue Giderimi, Reaktif Radikallerin Tespiti Ve Kinetik Çalışmalar”. Journal of the Institute of Science and Technology 14/1 (Mart 2024), 156-167. https://doi.org/10.21597/jist.1261438.
JAMA Türkyılmaz M. Co+2/Klor İleri Oksidasyon Prosesi Vasıtasıyla Bemacid Blue Giderimi, Reaktif Radikallerin Tespiti ve Kinetik Çalışmalar. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:156–167.
MLA Türkyılmaz, Mehmet. “Co+2/Klor İleri Oksidasyon Prosesi Vasıtasıyla Bemacid Blue Giderimi, Reaktif Radikallerin Tespiti Ve Kinetik Çalışmalar”. Journal of the Institute of Science and Technology, c. 14, sy. 1, 2024, ss. 156-67, doi:10.21597/jist.1261438.
Vancouver Türkyılmaz M. Co+2/Klor İleri Oksidasyon Prosesi Vasıtasıyla Bemacid Blue Giderimi, Reaktif Radikallerin Tespiti ve Kinetik Çalışmalar. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(1):156-67.