Araştırma Makalesi
BibTex RIS Kaynak Göster

Tunca Nehri (Edirne-Türkiye) Kıyı Şeridi Boyunca Sediment ve Topraklardaki Radyoaktivite Seviyelerinin ve İlgili Sağlık Tehlikelerinin Değerlendirilmesi

Yıl 2024, Cilt: 14 Sayı: 1, 231 - 243, 01.03.2024
https://doi.org/10.21597/jist.1367826

Öz

Bu çalışmada, Tunca Nehri’nin Türkiye’nin Edirne ilinde bulunan uzantısından toplanan toprak ve sediment örneklerinde doğal ve (226Ra, 232Th ve 40K) ve yapay (137Cs) radyonüklid aktivite konsantrasyonları mevsimsel olarak belirlenmiştir. Örnekler, yüksek saflıkta germanyum dedektörlü (HPGe) gama spektrometre sistemi kullanılarak analiz edilmiştir. Toprak örnekleri için ortalama 226Ra, 232Th, 40K ve 137Cs aktivite konsantrasyonları sırasıyla 39.94±0.95 Bq/kg, 55.42±1.02 Bq/kg, 688.21±8.12 Bq/kg ve 7.67±0.44 Bq/kg bulunmuştur. Sediment örnekleri için ortalama 226Ra, 232Th, 40K ve 137Cs aktivite konsantrasyonları sırasıyla 40.32±1.39 Bq/kg, 46.90±1.11 Bq/kg, 651.43±7.95 Bq/kg ve 7.92±0.41 Bq/kg olarak belirlenmiştir. Radyolojik etkinin belirlenmesi için radyum eşdeğer aktivitesi, karasal soğurulan gama doz hızı, yıllık etkin doz eşdeğeri ve dış tehlike indeksi hesaplandı. Toprak örnekleri için ortalama radyum eşdeğer aktivitesi, karasal soğurulan gama doz hızı, yıllık etkin doz eşdeğeri ve dış tehlike indeksi sırasıyla 172.19 Bq/kg, 80.86 nGy/h, 99.16 μSv/y ve 0.47 olarak hesaplandı. Sediment örnekleri için ortalama radyum eşdeğer aktivitesi, karasal soğurulan gama doz hızı, yıllık etkin doz eşdeğeri ve dış tehlike indeksi sırasıyla 157.55 Bq/kg, 74.36 nGy/h, 91.19 μSv/y ve 0.43 olarak belirlendi. Elde edilen değerler dünya ortalamaları ve önerilen değerler açısından değerlendirildi.

Kaynakça

  • Abdi, M. R., Kamali, M., & Vaezifar, S. (2008). Distribution of radioactive pollution of 238U, 232Th, 40K and 137Cs in northwestern coasts of Persian Gulf, Iran. Marine Pollution Bulletin, 56(4), 751-757.
  • Abdullahi, M. A., Mohammed, S. S., & Iheakanwa, I. A. (2013). Measurement of natural radioactivity in soil along the Bank of River Kaduna–Nigeria. Department of Applied Sciences of Science and Technology Kaduuna polytechnic, Kaduna-NIGERIA.
  • Afzal, I., Chaudhary, M. Z., Khan, E. U., Nasir, T., & Yaqoob, N. (2022). Radiological risk assessment in sediment of Namal Lake, Mianwali, Pakistan. Environmental Monitoring and Assessment, 194(3), 223.
  • Agbalagba, E. O., & Onoja, R. A. (2011). Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. Journal of environmental radioactivity, 102(7), 667-671.
  • Aközcan, S. (2012). Distribution of natural radionuclide concentrations in sediment samples in Didim and Izmir Bay (Aegean Sea-Turkey). Journal of Environmental Radioactivity, 112, 60-63.
  • Aközcan, S. (2014). Natural and artificial radioactivity levels and hazards of soils in the Kücük Menderes Basin, Turkey. Environmental earth sciences, 71(10), 4611-4614.
  • Aközcan, S. (2014). Annual effective dose of naturally occurring radionuclides in soil and sediment. Toxicological & Environmental Chemistry, 96(3), 379-386.
  • Aközcan, S., Külahcı, F., Günay, O., & Özden, S. (2021). Radiological risk from activity concentrations of natural radionuclides: Cumulative Hazard Index. Journal of Radioanalytical and Nuclear Chemistry, 327, 105-122.
  • Aközcan, S., Yılmaz, M., & Külahcı, F. (2014). Dose rates and seasonal variations of 238 U, 232 Th, 226 Ra 40 K and 137 Cs radionuclides in soils along Thrace, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 299, 95-101.
  • Akuo-Ko, E. O., Adelikhah, M., Amponsem, E., Csordás, A., & Kovács, T. (2023). Radiological assessment in beach sediment of coastline, Ghana. Heliyon, 9(6).
  • Alajeeli A, Elmahroug Y, Mohammed S, Trabelsi A (2019) Determination of natural radioactivity and radiological hazards in soil samples: Alhadba and Abuscabh agriculture projects in Libya. Environ Earth Sci 78(6):194.
  • Al-Azri, H., Al-Riyami, H., Al-Amri, F., Oraba, A. A. B., Al-Subhi, R., & Al-Yahyai, S. (2022). Measuring of natural and artificial radioactivity in Al-Dakhiliya governorate, Sultanate of Oman. In IOP Conference Series: Earth and Environmental Science (Vol. 1055, No. 1, p. 012016). IOP Publishing.
  • Al Shaaibi, M., Ali, J., Tsikouras, B., & Masri, Z. (2023). Environmental radioactivity assessment of the Brunei Darussalam coastline of the South China Sea. Environmental Pollution, 323, 121288.
  • Amwaalanga, M. N., Onjefu, S. A., Zivuku, M., & Hamunyela, R. H. (2019). Assessment of natural radioactivity levels and radiation hazards in shore sediments from the Zambezi River, Namibia. 13:75–83.
  • Arnedo, M. A., Rubiano, J. G., Alonso, H., Tejera, A., González, A., González, J., ... & Bolivar, J. P. (2017). Mapping natural radioactivity of soils in the eastern Canary Islands. Journal of environmental radioactivity, 166, 242-258.
  • Aytas, S., Yusan, S., Aslani, M. A., Karali, T., Turkozu, D. A., Gok, C., ... & Oguz, K. F. (2012). Natural radioactivity of riverbank sediments of the Maritza and Tundja Rivers in Turkey. Journal of Environmental Science and Health, Part A, 47(13), 2163-2172.
  • Azeez, H. H., Mansour, H. H., & Ahmad, S. T. (2020). Effect of Using Chemical Fertilizers on Natural Radioactivity Levels in Agricultural Soil in the Iraqi Kurdistan Region. Polish Journal of Environmental Studies, 29(2).
  • Belyaeva, O., Movsisyan, N., Pyuskyulyan, K., Sahakyan, L., Tepanosyan, G., & Saghatelyan, A. (2021). Yerevan soil radioactivity: Radiological and geochemical assessment. Chemosphere, 265, 129173.
  • Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health physics, 48(1), 87-95.
  • Çelik, N., Çevik, U., Çelik, A., & Kucukomeroglu, B. (2008). Determination of indoor radon and soil radioactivity levels in Giresun, Turkey. Journal of environmental radioactivity, 99(8), 1349-1354.
  • Chussetijowati, J., Seno, H., & Muliawan, D. (2022). Environmental Radioactivity Concentrations and Assessment of Radiological Hazards in Soil Around Bandung Nuclear Area. Computational And Experimental Research In Materials And Renewable Energy, 5(2), 92-104.
  • Dizman, S., Akdemir, T., Yeşilkanat, C. M., Nevruzoglu, V., Bal, E., & Keser, R. (2022). Radiometric mapping and radiation dose assessments in sediments from Şavşat Black Lake, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 331(6), 2533-2544.
  • Dizman, S., Akdemir, T., Yeşilkanat, C. M., Nevruzoglu, V., Bal, E., & Keser, R. (2022). Investigation and mapping of natural and artificial radioactivity in sediment samples from Borçka Black Lake, Artvin-Turkey. International Journal of Environmental Analytical Chemistry, 1-15.
  • Duong, V. H., Duong, D. T., Bui, L. V., Kim, T. T., Bui, H. M., Tran, T. D., ... & Nguyen, T. D. (2023). Radiological Hazard Assessment of High-Level Natural Radionuclides in Surface Sediments Along Red River, Vietnam. Archives of Environmental Contamination and Toxicology, 1-12.
  • El Samad, O., Baydoun, R., Nsouli, B., & Darwish, T. (2013). Determination of natural and artificial radioactivity in soil at North Lebanon province. Journal of environmental radioactivity, 125, 36-39.
  • Evrard, O., Chaboche, P. A., Ramon, R., Foucher, A., & Laceby, J. P. (2020). A global review of sediment source fingerprinting research incorporating fallout radiocesium (137Cs). Geomorphology, 362, 107103.
  • Guagliardi, I., Rovella, N., Apollaro, C., Bloise, A., Rosa, R. D., Scarciglia, F., & Buttafuoco, G. (2016). Modelling seasonal variations of natural radioactivity in soils: A case study in southern Italy. Journal of Earth System Science, 125, 1569-1578.
  • Güher, H., & Demir, Y. (2018). Tunca Nehri’nin (Edirne) Rotifera Faunası ve Kommunite Yapısı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(2), 125-137.
  • Hannan, M., Wahid, K., & Nguyen, N. (2015). Assessment of natural and artificial radionuclides in Mission (Texas) surface soils. Journal of Radioanalytical and Nuclear Chemistry, 305, 573-582.
  • İsel, P., Sahin, L., Hafızoğlu, N., Ganioğlu, E., & Mülayim, A. (2023). Natural and artificial radioactive pollution in sediment and soil samples of the Bosphorus, Istanbul. Environmental Science and Pollution Research, 30(27), 70937-70949.
  • Isinkaye, M. O., & Emelue, H. U. (2015). Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. Journal of Radiation Research and Applied Sciences, 8(3), 459-469.
  • Jahan, I., Ali, M. L., Haydar, M. A., Ali, M. I., Paul, D., & Islam, S. M. A. (2016). Distribution of natural and probable artificial radioactivity in the sediment and water samples collected from low-lying areas of Savar industrial zone, Bangladesh. Journal of Nuclear and Particle Physics, 6(2), 25-34.
  • Jasaitis, D., Klima, V., Pečiulienė, M., Vasiliauskienė, V., & Konstantinova, M. (2020). Comparative assessment of radiation background due to natural and artificial radionuclides in soil in specific areas on the territories of state of Washington (USA) and Lithuania. Water, Air, & Soil Pollution, 231, 1-10.
  • Kang, T. W., Park, W. P., Han, Y. U., Bong, K. M., & Kim, K. (2020). Natural and artificial radioactivity in volcanic ash soils of Jeju Island, Republic of Korea, and assessment of the radiation hazards: importance of soil properties. Journal of Radioanalytical and Nuclear Chemistry, 323, 1113-1124.
  • Kibaroglu, A., Klaphake, A., Kramer, A., Scheumann, W., & Carius, A. (2005). Cooperation on Turkey’s transboundary waters. Status Report commissioned by the German Federal Ministry for Environment Nature Conservation and Nuclear Safety, F+ E. Project, (903), 19.
  • Kumar, D., Gautam, Y., Sharma, A., Kumar, V., Tripathi, A., Kumar, S., ... & Kumar, A. (2021). Distribution of natural and artificial radioactivity concentration in soils of two districts (Ballia and Deoria) of Uttar Pradesh, India. Radiation Protection & Environment, 44(2).
  • Lopez-Perez, M., Martin-Luis, C., Hernandez, F., Liger, E., Fernandez-Aldecoa, J. C., Lorenzo-Salazar, J. M., ... & Salazar-Carballo, P. A. (2021). Natural and artificial gamma-emitting radionuclides in volcanic soils of the Western Canary Islands. Journal of Geochemical Exploration, 229, 106840.
  • Margineanu, R. M., Ranca, A., Bolos, P., Gomoiu, M. C., Simion, C., Tobosaru, V., & Blebea-Apostu, A. M. (2018). Natural and artificial radionuclides distribution in soil in Murfatlar area, Dobrogea region, Romania. Romanian Journal in Physics, 63(809), 1-10.
  • Özden, S., & Aközcan, S. (2021). Natural radioactivity measurements and evaluation of radiological hazards in sediment of Aliağa Bay, İzmir (Turkey). Arabian Journal of Geosciences, 14, 1-14.
  • Özden, S., & Aközcan Pehlivanoğlu S. (2023). Natural and Artificial Radioactivity Concentrations and Health Risks due to Radionuclides in the Soil of Nevşehir (Cappadocia). International Journal on Applied Physics and Engineering, 2, 144-151.
  • Özkan, N. (2019). Tunca Nehri’nde (Edirne, Türkiye) Trichoptera ve Ephemeroptera (Insecta) Faunasının Farklı Yaprak Paketlerinde Koloni Oluşumlarının İncelenmesi. Acta Aquatica Turcica, 16(3), 423-432.
  • Pelić, M., Mihaljev, Ž., Živkov Baloš, M., Popov, N., Gavrilović, A., Jug-Dujaković, J., & Ljubojević Pelić, D. (2023). The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse. Sustainability, 15(16), 12352.
  • Rahman, R., Rahman, M. M., & Khanam, T. (2020). Corresponding Estimation of Activity Concentration of 232 Th, 137 Cs, and 40 K in soil in Bangladesh. Journal of Nuclear and Particle Physics.
  • Saç, M. M., Ortabuk, F., Kumru, M. N., Ichedef, M., & Sert, Ş. (2012). Determination of radioactivity and heavy metals of Bakirçay river in Western Turkey. Applied Radiation and Isotopes, 70(10), 2494-2499.
  • Shahroudi, S. M. M., & Pourimani, R. (2023). Pollution distribution caused by natural and artificial radionuclide in water and sediments of the International Miankaleh Lagoon in north of Iran. Environmental Advances, 100413.
  • Smail, J. M., Mansour, H. H., & Ahmad, S. T. (2023). Evaluation of radiological hazards in lower zab river sediments. Radiation Effects and Defects in Solids, 1-17.
  • Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., & Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of environmental radioactivity, 100(1), 49-53.
  • UNSCEAR (2000). “Sources and biological effects of ionizing radiation,” Report to general assembly, with scientific annexes, United Nations, New York.
  • Yablokov, A. V., Nesterenko, V. B., & Nesterenko, A. V. (2009). Chapter III. Consequences of the Chernobyl catastrophe for the environment. Annals of the New York Academy of Sciences, 1181(1), 221-286.
  • Yakovlev, E., & Puchkov, A. (2020). Assessment of current natural and anthropogenic radionuclide activity concentrations in the bottom sediments from the Barents Sea. Marine Pollution Bulletin, 160, 111571.
  • Zaim, N., & Atlas, H. (2016). Assessment of radioactivity levels and radiation hazards using gamma spectrometry in soil samples of Edirne, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 310, 959-967.

Assessment of Radioactivity Levels and Associated Health Hazards in Shore Sediments and Soils Along the Coastline of the Tunca River (Edirne-Turkey)

Yıl 2024, Cilt: 14 Sayı: 1, 231 - 243, 01.03.2024
https://doi.org/10.21597/jist.1367826

Öz

In this study, natural (226Ra, 232Th and 40K) and artificial (137Cs) radionuclide activity concentrations were determined seasonally in soil and sediment samples from the extension of the Tunca River in Edirne province of Turkey. Samples were analyzed using a gamma spectrometer system with a high-purity germanium detector (HPGe). The average 226Ra, 232Th, 40K and 137Cs activity concentrations for soil samples were found to be 39.94±0.95 Bq/kg, 55.42±1.02 Bq/kg, 688.21±8.12 Bq/kg and 7.67±0.44 Bq/kg, respectively. The average 226Ra, 232Th, 40K and 137Cs activity concentrations for sediment samples were determined as 40.32±1.39 Bq/kg, 46.90±1.11 Bq/kg, 651.43±7.95 Bq/kg and 7.92±0.41 Bq/kg, respectively. In order to determine the radiological effect; radium equivalent activity, terrestrial absorbed gamma dose rate, annual effective dose equivalent and external hazard index were calculated. The average radium equivalent activity, terrestrial absorbed gamma dose rate, annual effective dose equivalent and external hazard index for soil samples were calculated as 172.19 Bq/kg, 80.86 nGy/h, 99.16 μSv/y and 0.47, respectively. The average radium equivalent activity, terrestrial absorbed gamma dose rate, annual effective dose equivalent and external hazard index for sediment samples were determined as 157.55 Bq/kg, 74.36 nGy/h, 91.19 μSv/y and 0.43, respectively. The obtained values were evaluated in terms of world averages and recommended values.

Kaynakça

  • Abdi, M. R., Kamali, M., & Vaezifar, S. (2008). Distribution of radioactive pollution of 238U, 232Th, 40K and 137Cs in northwestern coasts of Persian Gulf, Iran. Marine Pollution Bulletin, 56(4), 751-757.
  • Abdullahi, M. A., Mohammed, S. S., & Iheakanwa, I. A. (2013). Measurement of natural radioactivity in soil along the Bank of River Kaduna–Nigeria. Department of Applied Sciences of Science and Technology Kaduuna polytechnic, Kaduna-NIGERIA.
  • Afzal, I., Chaudhary, M. Z., Khan, E. U., Nasir, T., & Yaqoob, N. (2022). Radiological risk assessment in sediment of Namal Lake, Mianwali, Pakistan. Environmental Monitoring and Assessment, 194(3), 223.
  • Agbalagba, E. O., & Onoja, R. A. (2011). Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. Journal of environmental radioactivity, 102(7), 667-671.
  • Aközcan, S. (2012). Distribution of natural radionuclide concentrations in sediment samples in Didim and Izmir Bay (Aegean Sea-Turkey). Journal of Environmental Radioactivity, 112, 60-63.
  • Aközcan, S. (2014). Natural and artificial radioactivity levels and hazards of soils in the Kücük Menderes Basin, Turkey. Environmental earth sciences, 71(10), 4611-4614.
  • Aközcan, S. (2014). Annual effective dose of naturally occurring radionuclides in soil and sediment. Toxicological & Environmental Chemistry, 96(3), 379-386.
  • Aközcan, S., Külahcı, F., Günay, O., & Özden, S. (2021). Radiological risk from activity concentrations of natural radionuclides: Cumulative Hazard Index. Journal of Radioanalytical and Nuclear Chemistry, 327, 105-122.
  • Aközcan, S., Yılmaz, M., & Külahcı, F. (2014). Dose rates and seasonal variations of 238 U, 232 Th, 226 Ra 40 K and 137 Cs radionuclides in soils along Thrace, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 299, 95-101.
  • Akuo-Ko, E. O., Adelikhah, M., Amponsem, E., Csordás, A., & Kovács, T. (2023). Radiological assessment in beach sediment of coastline, Ghana. Heliyon, 9(6).
  • Alajeeli A, Elmahroug Y, Mohammed S, Trabelsi A (2019) Determination of natural radioactivity and radiological hazards in soil samples: Alhadba and Abuscabh agriculture projects in Libya. Environ Earth Sci 78(6):194.
  • Al-Azri, H., Al-Riyami, H., Al-Amri, F., Oraba, A. A. B., Al-Subhi, R., & Al-Yahyai, S. (2022). Measuring of natural and artificial radioactivity in Al-Dakhiliya governorate, Sultanate of Oman. In IOP Conference Series: Earth and Environmental Science (Vol. 1055, No. 1, p. 012016). IOP Publishing.
  • Al Shaaibi, M., Ali, J., Tsikouras, B., & Masri, Z. (2023). Environmental radioactivity assessment of the Brunei Darussalam coastline of the South China Sea. Environmental Pollution, 323, 121288.
  • Amwaalanga, M. N., Onjefu, S. A., Zivuku, M., & Hamunyela, R. H. (2019). Assessment of natural radioactivity levels and radiation hazards in shore sediments from the Zambezi River, Namibia. 13:75–83.
  • Arnedo, M. A., Rubiano, J. G., Alonso, H., Tejera, A., González, A., González, J., ... & Bolivar, J. P. (2017). Mapping natural radioactivity of soils in the eastern Canary Islands. Journal of environmental radioactivity, 166, 242-258.
  • Aytas, S., Yusan, S., Aslani, M. A., Karali, T., Turkozu, D. A., Gok, C., ... & Oguz, K. F. (2012). Natural radioactivity of riverbank sediments of the Maritza and Tundja Rivers in Turkey. Journal of Environmental Science and Health, Part A, 47(13), 2163-2172.
  • Azeez, H. H., Mansour, H. H., & Ahmad, S. T. (2020). Effect of Using Chemical Fertilizers on Natural Radioactivity Levels in Agricultural Soil in the Iraqi Kurdistan Region. Polish Journal of Environmental Studies, 29(2).
  • Belyaeva, O., Movsisyan, N., Pyuskyulyan, K., Sahakyan, L., Tepanosyan, G., & Saghatelyan, A. (2021). Yerevan soil radioactivity: Radiological and geochemical assessment. Chemosphere, 265, 129173.
  • Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health physics, 48(1), 87-95.
  • Çelik, N., Çevik, U., Çelik, A., & Kucukomeroglu, B. (2008). Determination of indoor radon and soil radioactivity levels in Giresun, Turkey. Journal of environmental radioactivity, 99(8), 1349-1354.
  • Chussetijowati, J., Seno, H., & Muliawan, D. (2022). Environmental Radioactivity Concentrations and Assessment of Radiological Hazards in Soil Around Bandung Nuclear Area. Computational And Experimental Research In Materials And Renewable Energy, 5(2), 92-104.
  • Dizman, S., Akdemir, T., Yeşilkanat, C. M., Nevruzoglu, V., Bal, E., & Keser, R. (2022). Radiometric mapping and radiation dose assessments in sediments from Şavşat Black Lake, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 331(6), 2533-2544.
  • Dizman, S., Akdemir, T., Yeşilkanat, C. M., Nevruzoglu, V., Bal, E., & Keser, R. (2022). Investigation and mapping of natural and artificial radioactivity in sediment samples from Borçka Black Lake, Artvin-Turkey. International Journal of Environmental Analytical Chemistry, 1-15.
  • Duong, V. H., Duong, D. T., Bui, L. V., Kim, T. T., Bui, H. M., Tran, T. D., ... & Nguyen, T. D. (2023). Radiological Hazard Assessment of High-Level Natural Radionuclides in Surface Sediments Along Red River, Vietnam. Archives of Environmental Contamination and Toxicology, 1-12.
  • El Samad, O., Baydoun, R., Nsouli, B., & Darwish, T. (2013). Determination of natural and artificial radioactivity in soil at North Lebanon province. Journal of environmental radioactivity, 125, 36-39.
  • Evrard, O., Chaboche, P. A., Ramon, R., Foucher, A., & Laceby, J. P. (2020). A global review of sediment source fingerprinting research incorporating fallout radiocesium (137Cs). Geomorphology, 362, 107103.
  • Guagliardi, I., Rovella, N., Apollaro, C., Bloise, A., Rosa, R. D., Scarciglia, F., & Buttafuoco, G. (2016). Modelling seasonal variations of natural radioactivity in soils: A case study in southern Italy. Journal of Earth System Science, 125, 1569-1578.
  • Güher, H., & Demir, Y. (2018). Tunca Nehri’nin (Edirne) Rotifera Faunası ve Kommunite Yapısı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(2), 125-137.
  • Hannan, M., Wahid, K., & Nguyen, N. (2015). Assessment of natural and artificial radionuclides in Mission (Texas) surface soils. Journal of Radioanalytical and Nuclear Chemistry, 305, 573-582.
  • İsel, P., Sahin, L., Hafızoğlu, N., Ganioğlu, E., & Mülayim, A. (2023). Natural and artificial radioactive pollution in sediment and soil samples of the Bosphorus, Istanbul. Environmental Science and Pollution Research, 30(27), 70937-70949.
  • Isinkaye, M. O., & Emelue, H. U. (2015). Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. Journal of Radiation Research and Applied Sciences, 8(3), 459-469.
  • Jahan, I., Ali, M. L., Haydar, M. A., Ali, M. I., Paul, D., & Islam, S. M. A. (2016). Distribution of natural and probable artificial radioactivity in the sediment and water samples collected from low-lying areas of Savar industrial zone, Bangladesh. Journal of Nuclear and Particle Physics, 6(2), 25-34.
  • Jasaitis, D., Klima, V., Pečiulienė, M., Vasiliauskienė, V., & Konstantinova, M. (2020). Comparative assessment of radiation background due to natural and artificial radionuclides in soil in specific areas on the territories of state of Washington (USA) and Lithuania. Water, Air, & Soil Pollution, 231, 1-10.
  • Kang, T. W., Park, W. P., Han, Y. U., Bong, K. M., & Kim, K. (2020). Natural and artificial radioactivity in volcanic ash soils of Jeju Island, Republic of Korea, and assessment of the radiation hazards: importance of soil properties. Journal of Radioanalytical and Nuclear Chemistry, 323, 1113-1124.
  • Kibaroglu, A., Klaphake, A., Kramer, A., Scheumann, W., & Carius, A. (2005). Cooperation on Turkey’s transboundary waters. Status Report commissioned by the German Federal Ministry for Environment Nature Conservation and Nuclear Safety, F+ E. Project, (903), 19.
  • Kumar, D., Gautam, Y., Sharma, A., Kumar, V., Tripathi, A., Kumar, S., ... & Kumar, A. (2021). Distribution of natural and artificial radioactivity concentration in soils of two districts (Ballia and Deoria) of Uttar Pradesh, India. Radiation Protection & Environment, 44(2).
  • Lopez-Perez, M., Martin-Luis, C., Hernandez, F., Liger, E., Fernandez-Aldecoa, J. C., Lorenzo-Salazar, J. M., ... & Salazar-Carballo, P. A. (2021). Natural and artificial gamma-emitting radionuclides in volcanic soils of the Western Canary Islands. Journal of Geochemical Exploration, 229, 106840.
  • Margineanu, R. M., Ranca, A., Bolos, P., Gomoiu, M. C., Simion, C., Tobosaru, V., & Blebea-Apostu, A. M. (2018). Natural and artificial radionuclides distribution in soil in Murfatlar area, Dobrogea region, Romania. Romanian Journal in Physics, 63(809), 1-10.
  • Özden, S., & Aközcan, S. (2021). Natural radioactivity measurements and evaluation of radiological hazards in sediment of Aliağa Bay, İzmir (Turkey). Arabian Journal of Geosciences, 14, 1-14.
  • Özden, S., & Aközcan Pehlivanoğlu S. (2023). Natural and Artificial Radioactivity Concentrations and Health Risks due to Radionuclides in the Soil of Nevşehir (Cappadocia). International Journal on Applied Physics and Engineering, 2, 144-151.
  • Özkan, N. (2019). Tunca Nehri’nde (Edirne, Türkiye) Trichoptera ve Ephemeroptera (Insecta) Faunasının Farklı Yaprak Paketlerinde Koloni Oluşumlarının İncelenmesi. Acta Aquatica Turcica, 16(3), 423-432.
  • Pelić, M., Mihaljev, Ž., Živkov Baloš, M., Popov, N., Gavrilović, A., Jug-Dujaković, J., & Ljubojević Pelić, D. (2023). The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse. Sustainability, 15(16), 12352.
  • Rahman, R., Rahman, M. M., & Khanam, T. (2020). Corresponding Estimation of Activity Concentration of 232 Th, 137 Cs, and 40 K in soil in Bangladesh. Journal of Nuclear and Particle Physics.
  • Saç, M. M., Ortabuk, F., Kumru, M. N., Ichedef, M., & Sert, Ş. (2012). Determination of radioactivity and heavy metals of Bakirçay river in Western Turkey. Applied Radiation and Isotopes, 70(10), 2494-2499.
  • Shahroudi, S. M. M., & Pourimani, R. (2023). Pollution distribution caused by natural and artificial radionuclide in water and sediments of the International Miankaleh Lagoon in north of Iran. Environmental Advances, 100413.
  • Smail, J. M., Mansour, H. H., & Ahmad, S. T. (2023). Evaluation of radiological hazards in lower zab river sediments. Radiation Effects and Defects in Solids, 1-17.
  • Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., & Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of environmental radioactivity, 100(1), 49-53.
  • UNSCEAR (2000). “Sources and biological effects of ionizing radiation,” Report to general assembly, with scientific annexes, United Nations, New York.
  • Yablokov, A. V., Nesterenko, V. B., & Nesterenko, A. V. (2009). Chapter III. Consequences of the Chernobyl catastrophe for the environment. Annals of the New York Academy of Sciences, 1181(1), 221-286.
  • Yakovlev, E., & Puchkov, A. (2020). Assessment of current natural and anthropogenic radionuclide activity concentrations in the bottom sediments from the Barents Sea. Marine Pollution Bulletin, 160, 111571.
  • Zaim, N., & Atlas, H. (2016). Assessment of radioactivity levels and radiation hazards using gamma spectrometry in soil samples of Edirne, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 310, 959-967.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klasik Fizik (Diğer)
Bölüm Fizik / Physics
Yazarlar

Selin Özden 0000-0003-3860-8444

Serpil Aközcan 0000-0001-6661-5540

Erken Görünüm Tarihi 20 Şubat 2024
Yayımlanma Tarihi 1 Mart 2024
Gönderilme Tarihi 29 Eylül 2023
Kabul Tarihi 1 Kasım 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Özden, S., & Aközcan, S. (2024). Tunca Nehri (Edirne-Türkiye) Kıyı Şeridi Boyunca Sediment ve Topraklardaki Radyoaktivite Seviyelerinin ve İlgili Sağlık Tehlikelerinin Değerlendirilmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(1), 231-243. https://doi.org/10.21597/jist.1367826
AMA Özden S, Aközcan S. Tunca Nehri (Edirne-Türkiye) Kıyı Şeridi Boyunca Sediment ve Topraklardaki Radyoaktivite Seviyelerinin ve İlgili Sağlık Tehlikelerinin Değerlendirilmesi. Iğdır Üniv. Fen Bil Enst. Der. Mart 2024;14(1):231-243. doi:10.21597/jist.1367826
Chicago Özden, Selin, ve Serpil Aközcan. “Tunca Nehri (Edirne-Türkiye) Kıyı Şeridi Boyunca Sediment Ve Topraklardaki Radyoaktivite Seviyelerinin Ve İlgili Sağlık Tehlikelerinin Değerlendirilmesi”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14, sy. 1 (Mart 2024): 231-43. https://doi.org/10.21597/jist.1367826.
EndNote Özden S, Aközcan S (01 Mart 2024) Tunca Nehri (Edirne-Türkiye) Kıyı Şeridi Boyunca Sediment ve Topraklardaki Radyoaktivite Seviyelerinin ve İlgili Sağlık Tehlikelerinin Değerlendirilmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14 1 231–243.
IEEE S. Özden ve S. Aközcan, “Tunca Nehri (Edirne-Türkiye) Kıyı Şeridi Boyunca Sediment ve Topraklardaki Radyoaktivite Seviyelerinin ve İlgili Sağlık Tehlikelerinin Değerlendirilmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 1, ss. 231–243, 2024, doi: 10.21597/jist.1367826.
ISNAD Özden, Selin - Aközcan, Serpil. “Tunca Nehri (Edirne-Türkiye) Kıyı Şeridi Boyunca Sediment Ve Topraklardaki Radyoaktivite Seviyelerinin Ve İlgili Sağlık Tehlikelerinin Değerlendirilmesi”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14/1 (Mart 2024), 231-243. https://doi.org/10.21597/jist.1367826.
JAMA Özden S, Aközcan S. Tunca Nehri (Edirne-Türkiye) Kıyı Şeridi Boyunca Sediment ve Topraklardaki Radyoaktivite Seviyelerinin ve İlgili Sağlık Tehlikelerinin Değerlendirilmesi. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:231–243.
MLA Özden, Selin ve Serpil Aközcan. “Tunca Nehri (Edirne-Türkiye) Kıyı Şeridi Boyunca Sediment Ve Topraklardaki Radyoaktivite Seviyelerinin Ve İlgili Sağlık Tehlikelerinin Değerlendirilmesi”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 14, sy. 1, 2024, ss. 231-43, doi:10.21597/jist.1367826.
Vancouver Özden S, Aközcan S. Tunca Nehri (Edirne-Türkiye) Kıyı Şeridi Boyunca Sediment ve Topraklardaki Radyoaktivite Seviyelerinin ve İlgili Sağlık Tehlikelerinin Değerlendirilmesi. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(1):231-43.