Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss

Yıl 2024, Cilt: 14 Sayı: 3, 1200 - 1208, 01.09.2024
https://doi.org/10.21597/jist.1456434

Öz

Sorbus subfusca (ledeb. ex. nordm.) boiss. (Sorbus subfusca) belongs to the Rosacese family. It is commonly referred to as highland rowan. It is an endemic species found only in the eastern Black Sea Region of Turkey and in a few countries on the Asian Continent. Both water (WESS) and ethyl alcohol (EESS) lyophilized forms were used as extracts. Different reducing capacity methods and radical scavenging activity methods were used to study the antioxidant activities of the extracts. Total phenolic compounds were calculated as 43.5 (WESS) and 43.0 (EESS) μg GAE/mg extract. This value is an indication that it can take place in plants with high phenolic content. Peroxidation inhibition percentages of linoleic acid emulsion at 20 μg mL-1 concentration for WESS and EESS; WESS was calculated as 70.93% and EESS as 82.63%. The high antioxidant capacity of Sorbus subfusca, an endemic species, brings up the preference of natural products as antioxidants. It is thought that these studies will draw a new path to the literature, especially alternative medicine and pharmacological studies.

Kaynakça

  • Akkemik, Ü. (2018). Natural-exotic trees and bushes of Türkiye. General Directorate of Forestry Publications, Ankara, 684.
  • Apak, R., Calokerinos, A., Gorinstein, S., Segundo, M. A., Hibbert, D. B., Gülçin, İ., . . . Çelik, S. E. (2022). Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). Pure and Applied Chemistry, 94(1), 87-144.
  • Ekin, H. N., Gokbulut, A., Aydin, Z. U., Donmez, A. A., & Orhan, I. E. (2016). Insight into anticholinesterase and antioxidant potential of thirty-four Rosaceae samples and phenolic characterization of the active extracts by HPLC. Industrial Crops and Products, 91, 104-113.
  • Göçer, H., Akıncıoğlu, A., Öztaşkın, N., Göksu, S., & Gülçin, İ. (2013). Synthesis, Antioxidant, and antiacetylcholinesterase activities of sulfonamide derivatives of dopamine‐related compounds. Archiv der Pharmazie, 346(11), 783-792.
  • Gökşin, A. (1982). Research on the Distribution and Some Important Morphological and Anatomical Characteristics of Rowan (Sorbus L.) Taxa Growing Naturally in Türkiye. Forestry Research Institute Publications, Technical Bulletin, 120, 84.
  • Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651-715.
  • Gülcin, İ. (2012). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345-391.
  • Gülçin, İ., Topal, F., Çakmakçı, R., Bilsel, M., Gören, A. C., & Erdogan, U. (2011). Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). Journal of Food Science, 76(4), C585-C593.
  • Gültekin, H., Gülcü, S., Çelik, S., Gürlevik, N., & Öztürk, G. (2007). Katlama Sürelerinin Üvez (Sorbus L.) Tohumlarının Çimlenmesi Üzerine Etkisi. Turkish Journal of Forestry, 8(2), 42-50.
  • Han, H., Yılmaz, H., & Gülçin, I. (2018). Antioxidant activity of flaxseed (Linum usitatissimum L.) shell and analysis of its polyphenol contents by LC-MS/MS. Records of Natural Products, 12(4), 397-402.
  • Hendek Ertop, M., & Öztürk Sarikaya, S. B. (2017). The Relations Between Hydroxymethylfurfural Content, Antioxidant Activity and Colorimetric Properties of Various Bakery Products. The Journal of Food, 42(6).
  • Kalın, R., Koksal, Z., Kalin, P., Karaman, M., Gulcin, İ., & Ozdemir, H. (2020). In vitro effects of standard antioxidants on lactoperoxidase enzyme-A molecular docking approach. Journal of Biochemical and Molecular Toxicology, 34(1), e22421.
  • Kalkman, C. (2004). Rosaceae Flowering Plants·Dicotyledons (pp. 343-386): Springer.
  • Mutlu, M., Bingol, Z., Uc, E. M., Köksal, E., Goren, A. C., Alwasel, S. H., & Gulcin, İ. (2023). Comprehensive Metabolite Profiling of Cinnamon (Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life, 13(1), 136.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
  • Özaslan, M. S., Sağlamtaş, R., Demir, Y., Genç, Y., Saraçoğlu, İ., & Gülçin, İ. (2022). Isolation of Some Phenolic Compounds from Plantago subulata L. and Determination of Their Antidiabetic, Anticholinesterase, Antiepileptic and Antioxidant Activity. Chemistry & Biodiversity, 19(8), e202200280.
  • Özler, E., Topal, F., Topal, M., & Öztürk Sarıkaya, S. B. (2023). LC‐HRMS Profiling and Phenolic Content, Cholinesterase, and Antioxidant Activities of Terminalia citrina. Chemistry & Biodiversity, 20(6), e202201250.
  • Sarıkaya, S., & Gülçin, I. (2013). Radical scavenging and antioxidant capacity of serotonin. Current Bioactive Compounds, 9(2), 143-152.
  • Topal, F. (2019a). Anticholinergic and antidiabetic effects of isoeugenol from clove (Eugenia caryophylata) oil. International Journal of Food Properties, 22(1), 583-592.
  • Topal, F. (2019b). Inhibition profiles of Voriconazole against acetylcholinesterase, α‐glycosidase, and human carbonic anhydrase I and II isoenzymes. Journal of Biochemical and Molecular Toxicology, 33(10), e22385.
  • Topal, M. (2019). The inhibition profile of sesamol against α-glycosidase and acetylcholinesterase enzymes. International Journal of Food Properties, 22(1), 1527-1535.
  • Topal, M. (2020). Secondary metabolites of ethanol extracts of pinus sylvestris cones from eastern anatolia and their antioxidant, cholinesterase and α-glucosidase activities. Records of Natural Products, 14, 129-138.
  • Topal, M., & Gülçin, İ. (2022). Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). Biocatalysis and Agricultural Biotechnology, 43, 102417.
  • Topal, M., Öztürk Sarıkaya, S. B., & Topal, F. (2021). Determination of Angelica archangelica’s Antioxidant Capacity and Mineral Content. ChemistrySelect, 6(31), 7976-7980.
  • Topal, M., Öztürk Sarıkaya , S. B., & Topal, F. (2021). COVID 19: The relationship among angiotensin-converting enzyme 2 (ACE 2), renin-angiotensin-aldesterone system (RAS), and chronic diseases. KTO Karatay Üniversitesi Sağlık Bilimleri Dergisi, 2(2), 61-72.
  • Türkan, F., Huyut, Z., Basbugan, Y., & Gülçin, İ. (2020). Influence of some β-lactam drugs on selected antioxidant enzyme and lipid peroxidation levels in different rat tissues. Drug and Chemical Toxicology, 43(1), 27-36.
  • Türkeş, C. (2019). Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: chemotherapeutic drugs. Protein and Peptide Letters, 26(6), 392-402.
  • Yen, G.-C., & Chen, H.-Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1), 27-32.
  • Zehiroglu, C., & Ozturk Sarikaya, S. B. (2019). The importance of antioxidants and place in today’s scientific and technological studies. Journal of Food Science and Technology, 56(11), 4757-4774.
Yıl 2024, Cilt: 14 Sayı: 3, 1200 - 1208, 01.09.2024
https://doi.org/10.21597/jist.1456434

Öz

Kaynakça

  • Akkemik, Ü. (2018). Natural-exotic trees and bushes of Türkiye. General Directorate of Forestry Publications, Ankara, 684.
  • Apak, R., Calokerinos, A., Gorinstein, S., Segundo, M. A., Hibbert, D. B., Gülçin, İ., . . . Çelik, S. E. (2022). Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). Pure and Applied Chemistry, 94(1), 87-144.
  • Ekin, H. N., Gokbulut, A., Aydin, Z. U., Donmez, A. A., & Orhan, I. E. (2016). Insight into anticholinesterase and antioxidant potential of thirty-four Rosaceae samples and phenolic characterization of the active extracts by HPLC. Industrial Crops and Products, 91, 104-113.
  • Göçer, H., Akıncıoğlu, A., Öztaşkın, N., Göksu, S., & Gülçin, İ. (2013). Synthesis, Antioxidant, and antiacetylcholinesterase activities of sulfonamide derivatives of dopamine‐related compounds. Archiv der Pharmazie, 346(11), 783-792.
  • Gökşin, A. (1982). Research on the Distribution and Some Important Morphological and Anatomical Characteristics of Rowan (Sorbus L.) Taxa Growing Naturally in Türkiye. Forestry Research Institute Publications, Technical Bulletin, 120, 84.
  • Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651-715.
  • Gülcin, İ. (2012). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345-391.
  • Gülçin, İ., Topal, F., Çakmakçı, R., Bilsel, M., Gören, A. C., & Erdogan, U. (2011). Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). Journal of Food Science, 76(4), C585-C593.
  • Gültekin, H., Gülcü, S., Çelik, S., Gürlevik, N., & Öztürk, G. (2007). Katlama Sürelerinin Üvez (Sorbus L.) Tohumlarının Çimlenmesi Üzerine Etkisi. Turkish Journal of Forestry, 8(2), 42-50.
  • Han, H., Yılmaz, H., & Gülçin, I. (2018). Antioxidant activity of flaxseed (Linum usitatissimum L.) shell and analysis of its polyphenol contents by LC-MS/MS. Records of Natural Products, 12(4), 397-402.
  • Hendek Ertop, M., & Öztürk Sarikaya, S. B. (2017). The Relations Between Hydroxymethylfurfural Content, Antioxidant Activity and Colorimetric Properties of Various Bakery Products. The Journal of Food, 42(6).
  • Kalın, R., Koksal, Z., Kalin, P., Karaman, M., Gulcin, İ., & Ozdemir, H. (2020). In vitro effects of standard antioxidants on lactoperoxidase enzyme-A molecular docking approach. Journal of Biochemical and Molecular Toxicology, 34(1), e22421.
  • Kalkman, C. (2004). Rosaceae Flowering Plants·Dicotyledons (pp. 343-386): Springer.
  • Mutlu, M., Bingol, Z., Uc, E. M., Köksal, E., Goren, A. C., Alwasel, S. H., & Gulcin, İ. (2023). Comprehensive Metabolite Profiling of Cinnamon (Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life, 13(1), 136.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
  • Özaslan, M. S., Sağlamtaş, R., Demir, Y., Genç, Y., Saraçoğlu, İ., & Gülçin, İ. (2022). Isolation of Some Phenolic Compounds from Plantago subulata L. and Determination of Their Antidiabetic, Anticholinesterase, Antiepileptic and Antioxidant Activity. Chemistry & Biodiversity, 19(8), e202200280.
  • Özler, E., Topal, F., Topal, M., & Öztürk Sarıkaya, S. B. (2023). LC‐HRMS Profiling and Phenolic Content, Cholinesterase, and Antioxidant Activities of Terminalia citrina. Chemistry & Biodiversity, 20(6), e202201250.
  • Sarıkaya, S., & Gülçin, I. (2013). Radical scavenging and antioxidant capacity of serotonin. Current Bioactive Compounds, 9(2), 143-152.
  • Topal, F. (2019a). Anticholinergic and antidiabetic effects of isoeugenol from clove (Eugenia caryophylata) oil. International Journal of Food Properties, 22(1), 583-592.
  • Topal, F. (2019b). Inhibition profiles of Voriconazole against acetylcholinesterase, α‐glycosidase, and human carbonic anhydrase I and II isoenzymes. Journal of Biochemical and Molecular Toxicology, 33(10), e22385.
  • Topal, M. (2019). The inhibition profile of sesamol against α-glycosidase and acetylcholinesterase enzymes. International Journal of Food Properties, 22(1), 1527-1535.
  • Topal, M. (2020). Secondary metabolites of ethanol extracts of pinus sylvestris cones from eastern anatolia and their antioxidant, cholinesterase and α-glucosidase activities. Records of Natural Products, 14, 129-138.
  • Topal, M., & Gülçin, İ. (2022). Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). Biocatalysis and Agricultural Biotechnology, 43, 102417.
  • Topal, M., Öztürk Sarıkaya, S. B., & Topal, F. (2021). Determination of Angelica archangelica’s Antioxidant Capacity and Mineral Content. ChemistrySelect, 6(31), 7976-7980.
  • Topal, M., Öztürk Sarıkaya , S. B., & Topal, F. (2021). COVID 19: The relationship among angiotensin-converting enzyme 2 (ACE 2), renin-angiotensin-aldesterone system (RAS), and chronic diseases. KTO Karatay Üniversitesi Sağlık Bilimleri Dergisi, 2(2), 61-72.
  • Türkan, F., Huyut, Z., Basbugan, Y., & Gülçin, İ. (2020). Influence of some β-lactam drugs on selected antioxidant enzyme and lipid peroxidation levels in different rat tissues. Drug and Chemical Toxicology, 43(1), 27-36.
  • Türkeş, C. (2019). Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: chemotherapeutic drugs. Protein and Peptide Letters, 26(6), 392-402.
  • Yen, G.-C., & Chen, H.-Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1), 27-32.
  • Zehiroglu, C., & Ozturk Sarikaya, S. B. (2019). The importance of antioxidants and place in today’s scientific and technological studies. Journal of Food Science and Technology, 56(11), 4757-4774.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi ve Biyomoleküler Kimya (Diğer)
Bölüm Kimya / Chemistry
Yazarlar

Selahattin Kocabaş Bu kişi benim 0000-0002-0360-4809

Fevzi Topal 0000-0002-2443-2372

Erken Görünüm Tarihi 27 Ağustos 2024
Yayımlanma Tarihi 1 Eylül 2024
Gönderilme Tarihi 22 Mart 2024
Kabul Tarihi 30 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 3

Kaynak Göster

APA Kocabaş, S., & Topal, F. (2024). Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss. Journal of the Institute of Science and Technology, 14(3), 1200-1208. https://doi.org/10.21597/jist.1456434
AMA Kocabaş S, Topal F. Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2024;14(3):1200-1208. doi:10.21597/jist.1456434
Chicago Kocabaş, Selahattin, ve Fevzi Topal. “Determination of Antioxidant Capacities of Extracts of Sorbus Subfusca (ledeb. Ex. Nordm.) Boiss”. Journal of the Institute of Science and Technology 14, sy. 3 (Eylül 2024): 1200-1208. https://doi.org/10.21597/jist.1456434.
EndNote Kocabaş S, Topal F (01 Eylül 2024) Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss. Journal of the Institute of Science and Technology 14 3 1200–1208.
IEEE S. Kocabaş ve F. Topal, “Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 3, ss. 1200–1208, 2024, doi: 10.21597/jist.1456434.
ISNAD Kocabaş, Selahattin - Topal, Fevzi. “Determination of Antioxidant Capacities of Extracts of Sorbus Subfusca (ledeb. Ex. Nordm.) Boiss”. Journal of the Institute of Science and Technology 14/3 (Eylül 2024), 1200-1208. https://doi.org/10.21597/jist.1456434.
JAMA Kocabaş S, Topal F. Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:1200–1208.
MLA Kocabaş, Selahattin ve Fevzi Topal. “Determination of Antioxidant Capacities of Extracts of Sorbus Subfusca (ledeb. Ex. Nordm.) Boiss”. Journal of the Institute of Science and Technology, c. 14, sy. 3, 2024, ss. 1200-8, doi:10.21597/jist.1456434.
Vancouver Kocabaş S, Topal F. Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(3):1200-8.