Araştırma Makalesi
BibTex RIS Kaynak Göster

Development Of Non-Enzymatic Electrochemical P-Nitrophenol Sensor Based On Carboxylated Graphene Oxide Modified Glassy Carbon Electrode

Yıl 2024, Cilt: 14 Sayı: 4, 1672 - 1683, 01.12.2024
https://doi.org/10.21597/jist.1514004

Öz

The current work reports a new electrochemical p-nitrophenol (p-NP) sensor which depends upon the carboxyl functionalized graphene oxide (GO-COOH) modified of glassy carbon electrode (GCE). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were performed to examine the morphology of GO-COOH. The GO-COOH/GCE sensor was electrochemically characterized by means of chronoamperometry, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). A distinct cathodic peak of p-NP was seen on the GO-COOH/GCE in 0.1 M phosphate buffer solution (pH 6.5). The sensor displayed three dynamic linear ranges for p-NP under optimum conductions. The linear detection ranges were 2.0×10-7 - 2.95×10-6 M, 2.95×10-6 – 2.74×10-4 M, and 2.74×10-4 – 7.25×10-4 M with the sensitivities of 39622.1 A/Mm2, 9959.3 A/Mm2, and 6395 A/Mm2, respectively. It was found that detection limit (LOD) was 5.3×10-8 M at a signal to noise ratio of 3. The GO-COOH/GCE demonstrated satisfactory performance factors such as selectivity and repeatability. Additionally, the GO-COOH/GCE sensor was demonstrated to be utilized to electrochemically determine p-NP in a variety of water samples.

Kaynakça

  • Almási, A., Fischer, E., & Perjesi, P. (2006). A simple and rapid ion-pair HPLC method for simultaneous quantitation of 4-nitrophenol and its glucuronide and sulfate conjugates. Journal of biochemical and biophysical methods, 69 (1-2), 43-50.
  • Anbumannan, V., Dinesh, M., Kumar, R. R., & Suresh, K. (2019). Hierarchical α-MnO2 wrapped MWCNTs sensor for low level detection of p-nitrophenol in water. Ceramics International, 45 (17), 23097-23103.
  • Chen, D., Tang, L., Li, J. (2010). Graphene-based materials in electrochemistry. Chemical Society Reviews, 39 (8), 3157-3180.
  • Compton, R. G., & Banks, C. E. (2018). Understanding voltammetry. World Scientific.
  • Dighole, R. P., Munde, A. V., Mulik, B. B., & Sathe, B. R. (2020). Bi2O3 nanoparticles decorated carbon nanotube: an effective nanoelectrode for enhanced electrocatalytic 4-nitrophenol reduction. Frontiers in Chemistry, 8, 325.
  • Fadillah, G., Wicaksono, W. P., Fatimah, I., & Saleh, T. A. (2020). A sensitive electrochemical sensor based on functionalized graphene oxide/SnO2 for the determination of eugenol. Microchemical Journal, 159, 105353.
  • Gandouzi, I., Tertis, M., Cernat, A., Bakhrouf, A., Coros, M., Pruneanu, S., Cristea, C. (2018). Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles. Bioelectrochemistry, 120, 94-103.
  • Gong, Y., Li, D., Fu, Q., & Pan, C. (2015). Influence of graphene microstructures on electrochemical performance for supercapacitors. Progress in Natural Science: Materials International, 25 (5), 379-385.
  • Zhang, H., Wang, M., Zhao, J., & Shi, Z. (2012). Sandwich-type spontaneous injection of nitrophenols for capillary electrophoresis analysis. Analytical Methods, 4 (7), 2177-2182.
  • He, Q., Wang, B., Liu, J., Li, G., Long, Y., Zhang, G., & Liu, H. (2022). Nickel/nitrogen-doped carbon nanocomposites: Synthesis and electrochemical sensor for determination of p-nitrophenol in local environment. Environmental Research, 214, 114007.
  • Hira, S. A., Nallal, M., & Park, K. H. (2019). Fabrication of PdAg nanoparticle infused metal-organic framework for electrochemical and solution-chemical reduction and detection of toxic 4-nitrophenol. Sensors and Actuators B: Chemical, 298, 126861.
  • Jahromi, M. N., Tayadon, F., & Bagheri, H. (2020). A new electrochemical sensor based on an Au-Pd/reduced graphene oxide nanocomposite for determination of Parathion. International Journal of Environmental Analytical Chemistry, 100 (10), 1101-1117.
  • Li, J., Kuang, D., Feng, Y., Zhang, F., Xu, Z., & Liu, M. (2012). A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. Journal of hazardous materials, 201, 250-259.
  • Leon-Gonzalez, M. E., Pérez-Arribas, L. V., Santos-Delgado, M. J., & Polo-Díez, L. M. (1992). Simultaneous flow-injection determination of o-and p-nitrophenol using a photodiode-array detector. Analytica chimica acta, 258 (2), 269-273.
  • Luo, L. Q., Zou, X. L., Ding, Y. P., & Wu, Q. S. (2008). Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sensors and Actuators B: Chemical, 135 (1), 61-65.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4 (8), 4806-4814.
  • Saadati, F., Ghahramani, F., Shayani-jam, H., Piri, F., & Yaftian, M. R. (2018). Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. Journal of the Taiwan Institute of Chemical Engineers, 86, 213-221.
  • Saleem, S. J., & Guler, M. (2019). Electroanalytical determination of paracetamol using Pd nanoparticles deposited on carboxylated graphene oxide modified glassy carbon electrode. Electroanalysis, 31 (11), 2187-2198.
  • Schummer, C., Groff, C., Al Chami, J., Jaber, F., & Millet, M. (2009). Analysis of phenols and nitrophenols in rainwater collected simultaneously on an urban and rural site in east of France. Science of the total environment, 407 (21), 5637-5643.
  • Shamkhalichenar, H., Choi, J. W. (2020). Non-enzymatic hydrogen peroxide electrochemical sensors based on reduced graphene oxide. Journal of the Electrochemical Society, 167 (3), 037531.
  • Tavakoli, M., Emadi, R., Salehi, H., Labbaf, S., Varshosaz, J. (2023). Incorporation of graphene oxide as a coupling agent in a 3D printed polylactic acid/hardystonite nanocomposite scaffold for bone tissue regeneration applications. International Journal of Biological Macromolecules, 253, 126510.
  • Tingry, S., Innocent, C., Touil, S., Deratani, A., & Seta, P. (2006). Carbon paste biosensor for phenol detection of impregnated tissue: modification of selectivity by using β-cyclodextrin-containing PVA membrane. Materials Science and Engineering: C, 26 (2-3), 222-226.
  • Xu, Q., Zeng, M., Feng, Z., Yin, D., Huang, Y., Chen, Y., Yan, C., Li, R., Gu, Y. (2016). Understanding the effects of carboxylated groups of functionalized graphene oxide on the curing behavior and intermolecular interactions of benzoxazine nanocomposites. RSC advances, 6 (37), 31484-31496.
  • Xu, X., Liu, Z., Zhang, X., Duan, S., Xu, S., & Zhou, C. (2011). β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: Simultaneous determination of nitrophenol isomers. Electrochimica Acta, 58, 142-149.
  • Yang, C. (2004). Electrochemical determination of 4-nitrophenol using a single-wall carbon nanotube film-coated glassy carbon electrode. Microchimica Acta, 148, 87-92.
  • Yang, J. M., Hu, X. W., Liu, Y. X., & Zhang, W. (2019). Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol. Microporous and Mesoporous Materials, 274, 149-154.
  • Yang, Y. L., Unnikrishnan, B., & Chen, S. M. (2011). Amperometric determination of 4-nitrophenol at multi-walled carbon nanotube-poly (diphenylamine) composite modified glassy carbon electrode. International Journal of Electrochemical Science, 6 (9), 3902-3912.
Yıl 2024, Cilt: 14 Sayı: 4, 1672 - 1683, 01.12.2024
https://doi.org/10.21597/jist.1514004

Öz

Kaynakça

  • Almási, A., Fischer, E., & Perjesi, P. (2006). A simple and rapid ion-pair HPLC method for simultaneous quantitation of 4-nitrophenol and its glucuronide and sulfate conjugates. Journal of biochemical and biophysical methods, 69 (1-2), 43-50.
  • Anbumannan, V., Dinesh, M., Kumar, R. R., & Suresh, K. (2019). Hierarchical α-MnO2 wrapped MWCNTs sensor for low level detection of p-nitrophenol in water. Ceramics International, 45 (17), 23097-23103.
  • Chen, D., Tang, L., Li, J. (2010). Graphene-based materials in electrochemistry. Chemical Society Reviews, 39 (8), 3157-3180.
  • Compton, R. G., & Banks, C. E. (2018). Understanding voltammetry. World Scientific.
  • Dighole, R. P., Munde, A. V., Mulik, B. B., & Sathe, B. R. (2020). Bi2O3 nanoparticles decorated carbon nanotube: an effective nanoelectrode for enhanced electrocatalytic 4-nitrophenol reduction. Frontiers in Chemistry, 8, 325.
  • Fadillah, G., Wicaksono, W. P., Fatimah, I., & Saleh, T. A. (2020). A sensitive electrochemical sensor based on functionalized graphene oxide/SnO2 for the determination of eugenol. Microchemical Journal, 159, 105353.
  • Gandouzi, I., Tertis, M., Cernat, A., Bakhrouf, A., Coros, M., Pruneanu, S., Cristea, C. (2018). Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles. Bioelectrochemistry, 120, 94-103.
  • Gong, Y., Li, D., Fu, Q., & Pan, C. (2015). Influence of graphene microstructures on electrochemical performance for supercapacitors. Progress in Natural Science: Materials International, 25 (5), 379-385.
  • Zhang, H., Wang, M., Zhao, J., & Shi, Z. (2012). Sandwich-type spontaneous injection of nitrophenols for capillary electrophoresis analysis. Analytical Methods, 4 (7), 2177-2182.
  • He, Q., Wang, B., Liu, J., Li, G., Long, Y., Zhang, G., & Liu, H. (2022). Nickel/nitrogen-doped carbon nanocomposites: Synthesis and electrochemical sensor for determination of p-nitrophenol in local environment. Environmental Research, 214, 114007.
  • Hira, S. A., Nallal, M., & Park, K. H. (2019). Fabrication of PdAg nanoparticle infused metal-organic framework for electrochemical and solution-chemical reduction and detection of toxic 4-nitrophenol. Sensors and Actuators B: Chemical, 298, 126861.
  • Jahromi, M. N., Tayadon, F., & Bagheri, H. (2020). A new electrochemical sensor based on an Au-Pd/reduced graphene oxide nanocomposite for determination of Parathion. International Journal of Environmental Analytical Chemistry, 100 (10), 1101-1117.
  • Li, J., Kuang, D., Feng, Y., Zhang, F., Xu, Z., & Liu, M. (2012). A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. Journal of hazardous materials, 201, 250-259.
  • Leon-Gonzalez, M. E., Pérez-Arribas, L. V., Santos-Delgado, M. J., & Polo-Díez, L. M. (1992). Simultaneous flow-injection determination of o-and p-nitrophenol using a photodiode-array detector. Analytica chimica acta, 258 (2), 269-273.
  • Luo, L. Q., Zou, X. L., Ding, Y. P., & Wu, Q. S. (2008). Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sensors and Actuators B: Chemical, 135 (1), 61-65.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4 (8), 4806-4814.
  • Saadati, F., Ghahramani, F., Shayani-jam, H., Piri, F., & Yaftian, M. R. (2018). Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. Journal of the Taiwan Institute of Chemical Engineers, 86, 213-221.
  • Saleem, S. J., & Guler, M. (2019). Electroanalytical determination of paracetamol using Pd nanoparticles deposited on carboxylated graphene oxide modified glassy carbon electrode. Electroanalysis, 31 (11), 2187-2198.
  • Schummer, C., Groff, C., Al Chami, J., Jaber, F., & Millet, M. (2009). Analysis of phenols and nitrophenols in rainwater collected simultaneously on an urban and rural site in east of France. Science of the total environment, 407 (21), 5637-5643.
  • Shamkhalichenar, H., Choi, J. W. (2020). Non-enzymatic hydrogen peroxide electrochemical sensors based on reduced graphene oxide. Journal of the Electrochemical Society, 167 (3), 037531.
  • Tavakoli, M., Emadi, R., Salehi, H., Labbaf, S., Varshosaz, J. (2023). Incorporation of graphene oxide as a coupling agent in a 3D printed polylactic acid/hardystonite nanocomposite scaffold for bone tissue regeneration applications. International Journal of Biological Macromolecules, 253, 126510.
  • Tingry, S., Innocent, C., Touil, S., Deratani, A., & Seta, P. (2006). Carbon paste biosensor for phenol detection of impregnated tissue: modification of selectivity by using β-cyclodextrin-containing PVA membrane. Materials Science and Engineering: C, 26 (2-3), 222-226.
  • Xu, Q., Zeng, M., Feng, Z., Yin, D., Huang, Y., Chen, Y., Yan, C., Li, R., Gu, Y. (2016). Understanding the effects of carboxylated groups of functionalized graphene oxide on the curing behavior and intermolecular interactions of benzoxazine nanocomposites. RSC advances, 6 (37), 31484-31496.
  • Xu, X., Liu, Z., Zhang, X., Duan, S., Xu, S., & Zhou, C. (2011). β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: Simultaneous determination of nitrophenol isomers. Electrochimica Acta, 58, 142-149.
  • Yang, C. (2004). Electrochemical determination of 4-nitrophenol using a single-wall carbon nanotube film-coated glassy carbon electrode. Microchimica Acta, 148, 87-92.
  • Yang, J. M., Hu, X. W., Liu, Y. X., & Zhang, W. (2019). Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol. Microporous and Mesoporous Materials, 274, 149-154.
  • Yang, Y. L., Unnikrishnan, B., & Chen, S. M. (2011). Amperometric determination of 4-nitrophenol at multi-walled carbon nanotube-poly (diphenylamine) composite modified glassy carbon electrode. International Journal of Electrochemical Science, 6 (9), 3902-3912.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sensör Teknolojisi
Bölüm Kimya / Chemistry
Yazarlar

Zhivan Tayeb Ali Husseın 0009-0002-0608-6047

Muhammet Güler 0000-0002-1040-8988

Yayımlanma Tarihi 1 Aralık 2024
Gönderilme Tarihi 10 Temmuz 2024
Kabul Tarihi 4 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Husseın, Z. T. A., & Güler, M. (2024). Development Of Non-Enzymatic Electrochemical P-Nitrophenol Sensor Based On Carboxylated Graphene Oxide Modified Glassy Carbon Electrode. Journal of the Institute of Science and Technology, 14(4), 1672-1683. https://doi.org/10.21597/jist.1514004
AMA Husseın ZTA, Güler M. Development Of Non-Enzymatic Electrochemical P-Nitrophenol Sensor Based On Carboxylated Graphene Oxide Modified Glassy Carbon Electrode. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2024;14(4):1672-1683. doi:10.21597/jist.1514004
Chicago Husseın, Zhivan Tayeb Ali, ve Muhammet Güler. “Development Of Non-Enzymatic Electrochemical P-Nitrophenol Sensor Based On Carboxylated Graphene Oxide Modified Glassy Carbon Electrode”. Journal of the Institute of Science and Technology 14, sy. 4 (Aralık 2024): 1672-83. https://doi.org/10.21597/jist.1514004.
EndNote Husseın ZTA, Güler M (01 Aralık 2024) Development Of Non-Enzymatic Electrochemical P-Nitrophenol Sensor Based On Carboxylated Graphene Oxide Modified Glassy Carbon Electrode. Journal of the Institute of Science and Technology 14 4 1672–1683.
IEEE Z. T. A. Husseın ve M. Güler, “Development Of Non-Enzymatic Electrochemical P-Nitrophenol Sensor Based On Carboxylated Graphene Oxide Modified Glassy Carbon Electrode”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 4, ss. 1672–1683, 2024, doi: 10.21597/jist.1514004.
ISNAD Husseın, Zhivan Tayeb Ali - Güler, Muhammet. “Development Of Non-Enzymatic Electrochemical P-Nitrophenol Sensor Based On Carboxylated Graphene Oxide Modified Glassy Carbon Electrode”. Journal of the Institute of Science and Technology 14/4 (Aralık 2024), 1672-1683. https://doi.org/10.21597/jist.1514004.
JAMA Husseın ZTA, Güler M. Development Of Non-Enzymatic Electrochemical P-Nitrophenol Sensor Based On Carboxylated Graphene Oxide Modified Glassy Carbon Electrode. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:1672–1683.
MLA Husseın, Zhivan Tayeb Ali ve Muhammet Güler. “Development Of Non-Enzymatic Electrochemical P-Nitrophenol Sensor Based On Carboxylated Graphene Oxide Modified Glassy Carbon Electrode”. Journal of the Institute of Science and Technology, c. 14, sy. 4, 2024, ss. 1672-83, doi:10.21597/jist.1514004.
Vancouver Husseın ZTA, Güler M. Development Of Non-Enzymatic Electrochemical P-Nitrophenol Sensor Based On Carboxylated Graphene Oxide Modified Glassy Carbon Electrode. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(4):1672-83.