Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazaltik Ponza ile Güçlendirilmiş Poliüretan Elastomer Bazlı Biyo-kompozitlerin Geliştirilmesi

Yıl 2024, Cilt: 14 Sayı: 4, 1645 - 1654, 01.12.2024
https://doi.org/10.21597/jist.1543279

Öz

Bazaltik pomza, demir ve magnezyum açısından zengin komatitik tüf bileşimi nedeniyle siyah veya gri bir görünüme sahiptir. Pomzanın gözenekli yapısı, biyomedikal uygulamalar için çeşitli polimer esaslı biyo-kompozit malzemelerin üretimine olanak tanır. Çalışmada, biyo-kompozit numuneler biyo-esaslı elastomerik poliüretan (EPU) matrisine %2.5, %5.0, %7.5 ve %10.0 konsantrasyonlarında bazaltik pomza tozu eklenerek geliştirilmiştir. Bazaltik pomza parçacıklarının yüzey ve element yapısı, SEM/enerji kırınımı X-ışını tekniği kullanılarak incelenmiştir. Biyo-kompozitlerin fiziksel, mekanik, ısısal, eriyik-akış ve morfolojik özellikleri deneysel olarak incelenmiştir. Ponza içeren kompozitler, doldurulmamış EPU ile karşılaştırıldığında, bulgular Shore sertliği ve çekme modülü parametrelerinde artış, çekme uzamada azalma olduğunu göstermiştir. Numunelerin termal çalışmasının sonuçlarına göre, bazaltik pomza eklenmesi EPU'nun ısısal kararlılığında az bir düşüşe ve mekanik deformasyona karşı kararlılıkta bir iyileşmeye neden olmuştur. Ponza yüklemeleri, EPU'nun eriyik akış ve ekstrüzyon torku değerlerini artırmıştır. Bu numunenin taramalı elektron mikroskobu fotoğraflarında EPU matrisinde homojen olarak dağılmış pomza parçacıklarının gözlemlenmesi, %7.5 pomza olan en düşük yükleme oranına sahip EPU numunesindeki kompozitler arasında en yüksek performansı araştırmak için görsel kanıt olarak sunulmuştur. Genel olarak, bazaltik pomza düşük katkı yüzdelerinde EPU biyo-kompozitlerde bir takviye maddesi olarak etkilidir.

Kaynakça

  • Akkaya, R. (2013). Uranium and thorium adsorption from aqueous solution using a novel polyhydroxyethylmethacrylate-pumice composite. Journal of Environmental Radioactivity, 120, 58-63.
  • Alvarado, S., Morales, K., Srubar, W., & Billington, S. (2011). Effects of natural porous additives on the tensile mechanical performance and moisture absorption behavior of PHBV-based composites for construction. Stanford Undergrad Res J, 10, 30-35.
  • Barendregt, R. B., & Van Den Berg, P. J. (1980). The degradation of polyurethane. Thermochimica Acta, 38(2), 181-195. Chattopadhyay, D. K., & Webster, D. C. (2009). Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 34(10), 1068-1133.
  • Çoban, O., & Yilmaz, T. (2022). Volcanic particle materials in polymer composites: a review. Journal of Materials Science, 57(36), 16989-17020.
  • da Silveira, M., da Conceição, M.D.N., de Pina, D.N., de Moraes Paes, P. A., Monteiro, S. N., Tapanes, N., ... & Bastos, D.C. (2024). Impact of Different Mineral Reinforcements on HDPE Composites: Effects of Melt Flow Index and Particle Size on Physical and Mechanical Properties. Polymers, 16(14), 2063.
  • Dayan, O., Kilicer, A., Bulut, A., Ceylan, E., Tayfun, U., Uzun, O., & Yurderi, M. (2022). Pumice-supported ruthenium nanoparticles as highly effective and recyclable catalyst in the hydrolysis of methylamine borane. International Journal of Hydrogen Energy, 52 (C), 1-10.
  • Dike, A. S. (2020). Türk pomza mineralinin modifikasyonu ve poli (laktik asit) bazlı biyo-kompozit malzemelerinde eklenti olarak kullanımı. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(1), 111-117.
  • El-Nemr, K. F., Radi, H., & Helal, R. H. (2022). Partial replacement of silica by naturally occurring pumice powder for enhancing mechanical and thermal properties of nitrile rubber cured by electron beam irradiation. Pigment & Resin Technology, 53(4), 442-449.
  • Fleischer, C. A., & Zupan, M. (2010). Mechanical performance of pumice-reinforced epoxy composites. Journal of composite materials, 44(23), 2679-2696.
  • Gök, A., Göde, F., & Türkaslan, B. E. (2006). Synthesis and characterization of polyaniline/pumice (PAn/Pmc) composite. Materials Science and Engineering: B, 133(1-3), 20-25.
  • Gündüz, L., & Kalkan, Ş. O. (2023). Use of pumice aggregate in cementitious rheoplastic lightweight concrete. Journal of Sustainable Construction Materials and Technologies, 8(1), 57-65.
  • Han B., Sun Z., Chen Y., Tian F., Wang X., Lei Q. (2009). Space charge distribution in low-density polyethylene (LDPE)/pumice composite. Proceedings of 9th International Conference on Properties and Applications of Dielectric Materials, China, 19-23.
  • Herrera, M., Matuschek, G., & Kettrup, A. (2002). Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polymer degradation and stability, 78(2), 323-331.
  • Jayakrishnan, P., & Ramesan, M. T. (2016). Synthesis, characterization and properties of poly (vinyl alcohol)/chemically modified and unmodified pumice composites. Journal of Chemical and Pharmaceutical Sciences ISSN, 974, 2115.
  • Karaaslan, C., Yener, E., Bağatur, T., Polat, R., & Gül, R. (2022). Uçucu kül ve kalsiyum alüminat çimentosu katkılı pomza esaslı geopolimer harçların sülfürik asit direnci. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12, 2302-2312.
  • Kiliçer, A. (2023). Thermal and surface area properties of micro and nano sized pumice. Journal of Nano Research, 79, 61-76.
  • Koc, S. (2020). Pumice and perlite co-substituted hydroxyapatite: Fabrication and characterization. MANAS Journal of Engineering, 8(2), 132-137.
  • Koyuncu, M., Ulay, G., & Şeker, U. (2023). Effect of pumice powder on mechanical, thermal, and water absorption properties of fiberboard composites. Fibres & Textiles in Eastern Europe.
  • Kucuk, F., Sismanoglu, S., Kanbur, Y., & Tayfun, U. (2020). Effect of silane-modification of diatomite on its composites with thermoplastic polyurethane. Materials Chemistry and Physics, 256, 123683.
  • Liang, J. Z. (2013). Reinforcement and quantitative description of inorganic particulate-filled polymer composites. Composites part B: engineering, 51, 224-232.
  • Maierová, P., Hasalová, P., Schulmann, K., Štípská, P., & Souček, O. (2023). Porous melt flow in continental crust—A numerical modeling study. Journal of Geophysical Research: Solid Earth, 128(8), e2023JB026523.
  • Mastura, M. T., & Noryani, M. (2022). Mineral-filled composite: A review on characteristics, applications, and potential materials selection process. Mineral-Filled Polymer Composites, 25-43.
  • Memis, S. (2018). Some properties of concrete produced with pumice powder. International Journal of Scientific and Technological Research, 4(5) 61-69.
  • Öz, H. Ö., Yücel, H. E., & Güneş, M. (2017). Bazik pomzanin kendiliğinden yerleşen betonlarin işlenebilirlik özellikleri üzerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(1), 90-97.
  • Petrović, Z. S., Zavargo, Z., Flyn, J. H., & Macknight, W. J. (1994). Thermal degradation of segmented polyurethanes. Journal of Applied Polymer Science, 51(6), 1087-1095.
  • Ramesan, M. T., George, A., Jayakrishnan, P., & Kalaprasad, G. (2016). Role of pumice particles in the thermal, electrical and mechanical properties of poly (vinyl alcohol)/poly (vinyl pyrrolidone) composites. Journal of Thermal Analysis and Calorimetry, 126, 511-519.
  • Ramesan, M. T., Jose, C., Jayakrishnan, P., & Anilkumar, T. (2018). Multifunctional ternary composites of poly (vinyl alcohol)/cashew tree gum/pumice particles. Polymer Composites, 39(1), 38-45.
  • Sahin, A., Karsli, N. G., & Sinmazcelik, T. (2016). Comparison of the mechanical, thermomechanical, thermal, and morphological properties of pumice and calcium carbonate‐filled poly (phenylene sulfide) composites. Polymer Composites, 37(11), 3160-3166.
  • Sahin, A., Yildiran, Y., Avcu, E., Fidan, S., & Sinmazcelik, T. (2014). Mechanical and thermal properties of pumice powder filled PPS composites. Acta Physica Polonica A, 125(2), 518-520.
  • Sever K, Atagür M, Tunçalp M, Altay L, Seki Y, Sarıkanat M. (2019). The effect of pumice powder on mechanical and thermal properties of polypropylene. Journal of Thermoplastic Composite Materials. 32(8),1092-1106.
  • Soyaslan, İ. İ. (2020). Thermal and sound insulation properties of pumice/polyurethane composite material. Emerging Materials Research, 9(3), 859-867.
  • Tayfun, Ü., & Kanbur, Y. (2018). Mechanical, physical and morphological properties of acidic and basic pumice containing polypropylene composites. Sakarya University Journal of Science, 22(2), 333-339.
  • Tayfun, Ü., Tirkeş, S., Doğan, M., Tirkeş, S., & Zahmakıran, M. (2024). Comparative performance study of acidic pumice and basic pumice ınclusions for acrylonitrile–butadiene–styrene-based composite filaments. 3D Printing and Additive Manufacturing, 11(1), 276-286.
  • Varola, O. O. (2016). Bitlis ve Van illerinde pomza madenciliğine genel bir bakiş. Bilimsel Madencilik Dergisi, 55(3), 27-34.
  • Yavuz, M., Gode, F., Pehlivan, E., Ozmert, S., & Sharma, Y. C. (2008). An economic removal of Cu2+ and Cr3+ on the new adsorbents: Pumice and polyacrylonitrile/pumice composite. Chemical Engineering Journal, 137(3), 453-461.
  • Yazıcıoğlu, S., Arıcı, E., & Gönen, T. (2003). Pomza taşının kullanım alanları ve ekonomiye etkisi. FÜ Daum Dergisi, 1, 118-123.
  • Yılmaz, K., Akgoz, A., Cabuk, M., Karaagac, H., Karabulut, O. R. H. A. N., & Yavuz, M. (2011). Electrical transport, optical and thermal properties of polyaniline–pumice composites. Materials Chemistry and Physics, 130(3), 956-961.

Development of Polyurethane Elastomer-Based Bio-Composites Reinforced with Basaltic Pumice

Yıl 2024, Cilt: 14 Sayı: 4, 1645 - 1654, 01.12.2024
https://doi.org/10.21597/jist.1543279

Öz

Basaltic pumice has a black or gray appearance due to its iron and magnesium-rich komatiitic tuff composition. Pumice's porous structure allows the production of various polymer-based bio-composite materials for biomedical applications. This study developed bio-composite samples by incorporating basaltic pumice powder at 2.5, 5.0, 7.5, and 10.0 percent concentrations into an elastomeric polyurethane (EPU) matrix. The surface and elemental structure of basaltic pumice particles were investigated using the SEM/energy diffraction X-ray technique. The physical, mechanical, thermal, melt-flow, and morphological properties of bio-composites were studied experimentally. Findings showed a rise in Shore hardness and tensile modulus parameters and declined tensile elongation. According to the thermal study, introducing basaltic pumice resulted in a modest drop in the thermal stability of the EPU and an improvement in stability against mechanical deformations. Pumice loadings raised the melt flow and extrusion torque values of the EPU. The observation of the homogeneously distributed pumice particles in the EPU matrix is used as visual evidence to investigate the highest performance among the composites in the EPU sample with the lowest loading rate of 7.5% pumice. Overall, BP is effective as a reinforcing agent in EPU-based bio-composites at low additive percentages.

Kaynakça

  • Akkaya, R. (2013). Uranium and thorium adsorption from aqueous solution using a novel polyhydroxyethylmethacrylate-pumice composite. Journal of Environmental Radioactivity, 120, 58-63.
  • Alvarado, S., Morales, K., Srubar, W., & Billington, S. (2011). Effects of natural porous additives on the tensile mechanical performance and moisture absorption behavior of PHBV-based composites for construction. Stanford Undergrad Res J, 10, 30-35.
  • Barendregt, R. B., & Van Den Berg, P. J. (1980). The degradation of polyurethane. Thermochimica Acta, 38(2), 181-195. Chattopadhyay, D. K., & Webster, D. C. (2009). Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 34(10), 1068-1133.
  • Çoban, O., & Yilmaz, T. (2022). Volcanic particle materials in polymer composites: a review. Journal of Materials Science, 57(36), 16989-17020.
  • da Silveira, M., da Conceição, M.D.N., de Pina, D.N., de Moraes Paes, P. A., Monteiro, S. N., Tapanes, N., ... & Bastos, D.C. (2024). Impact of Different Mineral Reinforcements on HDPE Composites: Effects of Melt Flow Index and Particle Size on Physical and Mechanical Properties. Polymers, 16(14), 2063.
  • Dayan, O., Kilicer, A., Bulut, A., Ceylan, E., Tayfun, U., Uzun, O., & Yurderi, M. (2022). Pumice-supported ruthenium nanoparticles as highly effective and recyclable catalyst in the hydrolysis of methylamine borane. International Journal of Hydrogen Energy, 52 (C), 1-10.
  • Dike, A. S. (2020). Türk pomza mineralinin modifikasyonu ve poli (laktik asit) bazlı biyo-kompozit malzemelerinde eklenti olarak kullanımı. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(1), 111-117.
  • El-Nemr, K. F., Radi, H., & Helal, R. H. (2022). Partial replacement of silica by naturally occurring pumice powder for enhancing mechanical and thermal properties of nitrile rubber cured by electron beam irradiation. Pigment & Resin Technology, 53(4), 442-449.
  • Fleischer, C. A., & Zupan, M. (2010). Mechanical performance of pumice-reinforced epoxy composites. Journal of composite materials, 44(23), 2679-2696.
  • Gök, A., Göde, F., & Türkaslan, B. E. (2006). Synthesis and characterization of polyaniline/pumice (PAn/Pmc) composite. Materials Science and Engineering: B, 133(1-3), 20-25.
  • Gündüz, L., & Kalkan, Ş. O. (2023). Use of pumice aggregate in cementitious rheoplastic lightweight concrete. Journal of Sustainable Construction Materials and Technologies, 8(1), 57-65.
  • Han B., Sun Z., Chen Y., Tian F., Wang X., Lei Q. (2009). Space charge distribution in low-density polyethylene (LDPE)/pumice composite. Proceedings of 9th International Conference on Properties and Applications of Dielectric Materials, China, 19-23.
  • Herrera, M., Matuschek, G., & Kettrup, A. (2002). Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polymer degradation and stability, 78(2), 323-331.
  • Jayakrishnan, P., & Ramesan, M. T. (2016). Synthesis, characterization and properties of poly (vinyl alcohol)/chemically modified and unmodified pumice composites. Journal of Chemical and Pharmaceutical Sciences ISSN, 974, 2115.
  • Karaaslan, C., Yener, E., Bağatur, T., Polat, R., & Gül, R. (2022). Uçucu kül ve kalsiyum alüminat çimentosu katkılı pomza esaslı geopolimer harçların sülfürik asit direnci. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12, 2302-2312.
  • Kiliçer, A. (2023). Thermal and surface area properties of micro and nano sized pumice. Journal of Nano Research, 79, 61-76.
  • Koc, S. (2020). Pumice and perlite co-substituted hydroxyapatite: Fabrication and characterization. MANAS Journal of Engineering, 8(2), 132-137.
  • Koyuncu, M., Ulay, G., & Şeker, U. (2023). Effect of pumice powder on mechanical, thermal, and water absorption properties of fiberboard composites. Fibres & Textiles in Eastern Europe.
  • Kucuk, F., Sismanoglu, S., Kanbur, Y., & Tayfun, U. (2020). Effect of silane-modification of diatomite on its composites with thermoplastic polyurethane. Materials Chemistry and Physics, 256, 123683.
  • Liang, J. Z. (2013). Reinforcement and quantitative description of inorganic particulate-filled polymer composites. Composites part B: engineering, 51, 224-232.
  • Maierová, P., Hasalová, P., Schulmann, K., Štípská, P., & Souček, O. (2023). Porous melt flow in continental crust—A numerical modeling study. Journal of Geophysical Research: Solid Earth, 128(8), e2023JB026523.
  • Mastura, M. T., & Noryani, M. (2022). Mineral-filled composite: A review on characteristics, applications, and potential materials selection process. Mineral-Filled Polymer Composites, 25-43.
  • Memis, S. (2018). Some properties of concrete produced with pumice powder. International Journal of Scientific and Technological Research, 4(5) 61-69.
  • Öz, H. Ö., Yücel, H. E., & Güneş, M. (2017). Bazik pomzanin kendiliğinden yerleşen betonlarin işlenebilirlik özellikleri üzerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(1), 90-97.
  • Petrović, Z. S., Zavargo, Z., Flyn, J. H., & Macknight, W. J. (1994). Thermal degradation of segmented polyurethanes. Journal of Applied Polymer Science, 51(6), 1087-1095.
  • Ramesan, M. T., George, A., Jayakrishnan, P., & Kalaprasad, G. (2016). Role of pumice particles in the thermal, electrical and mechanical properties of poly (vinyl alcohol)/poly (vinyl pyrrolidone) composites. Journal of Thermal Analysis and Calorimetry, 126, 511-519.
  • Ramesan, M. T., Jose, C., Jayakrishnan, P., & Anilkumar, T. (2018). Multifunctional ternary composites of poly (vinyl alcohol)/cashew tree gum/pumice particles. Polymer Composites, 39(1), 38-45.
  • Sahin, A., Karsli, N. G., & Sinmazcelik, T. (2016). Comparison of the mechanical, thermomechanical, thermal, and morphological properties of pumice and calcium carbonate‐filled poly (phenylene sulfide) composites. Polymer Composites, 37(11), 3160-3166.
  • Sahin, A., Yildiran, Y., Avcu, E., Fidan, S., & Sinmazcelik, T. (2014). Mechanical and thermal properties of pumice powder filled PPS composites. Acta Physica Polonica A, 125(2), 518-520.
  • Sever K, Atagür M, Tunçalp M, Altay L, Seki Y, Sarıkanat M. (2019). The effect of pumice powder on mechanical and thermal properties of polypropylene. Journal of Thermoplastic Composite Materials. 32(8),1092-1106.
  • Soyaslan, İ. İ. (2020). Thermal and sound insulation properties of pumice/polyurethane composite material. Emerging Materials Research, 9(3), 859-867.
  • Tayfun, Ü., & Kanbur, Y. (2018). Mechanical, physical and morphological properties of acidic and basic pumice containing polypropylene composites. Sakarya University Journal of Science, 22(2), 333-339.
  • Tayfun, Ü., Tirkeş, S., Doğan, M., Tirkeş, S., & Zahmakıran, M. (2024). Comparative performance study of acidic pumice and basic pumice ınclusions for acrylonitrile–butadiene–styrene-based composite filaments. 3D Printing and Additive Manufacturing, 11(1), 276-286.
  • Varola, O. O. (2016). Bitlis ve Van illerinde pomza madenciliğine genel bir bakiş. Bilimsel Madencilik Dergisi, 55(3), 27-34.
  • Yavuz, M., Gode, F., Pehlivan, E., Ozmert, S., & Sharma, Y. C. (2008). An economic removal of Cu2+ and Cr3+ on the new adsorbents: Pumice and polyacrylonitrile/pumice composite. Chemical Engineering Journal, 137(3), 453-461.
  • Yazıcıoğlu, S., Arıcı, E., & Gönen, T. (2003). Pomza taşının kullanım alanları ve ekonomiye etkisi. FÜ Daum Dergisi, 1, 118-123.
  • Yılmaz, K., Akgoz, A., Cabuk, M., Karaagac, H., Karabulut, O. R. H. A. N., & Yavuz, M. (2011). Electrical transport, optical and thermal properties of polyaniline–pumice composites. Materials Chemistry and Physics, 130(3), 956-961.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller, Polimer Bilimi ve Teknolojileri, Kompozit ve Hibrit Malzemeler, Polimerler ve Plastikler
Bölüm Kimya / Chemistry
Yazarlar

Mehmet Yurderi 0000-0002-0233-8940

Ümit Tayfun 0000-0001-5978-5162

Ahmet Bulut 0000-0002-1697-8623

Yayımlanma Tarihi 1 Aralık 2024
Gönderilme Tarihi 4 Eylül 2024
Kabul Tarihi 2 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Yurderi, M., Tayfun, Ü., & Bulut, A. (2024). Development of Polyurethane Elastomer-Based Bio-Composites Reinforced with Basaltic Pumice. Journal of the Institute of Science and Technology, 14(4), 1645-1654. https://doi.org/10.21597/jist.1543279
AMA Yurderi M, Tayfun Ü, Bulut A. Development of Polyurethane Elastomer-Based Bio-Composites Reinforced with Basaltic Pumice. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2024;14(4):1645-1654. doi:10.21597/jist.1543279
Chicago Yurderi, Mehmet, Ümit Tayfun, ve Ahmet Bulut. “Development of Polyurethane Elastomer-Based Bio-Composites Reinforced With Basaltic Pumice”. Journal of the Institute of Science and Technology 14, sy. 4 (Aralık 2024): 1645-54. https://doi.org/10.21597/jist.1543279.
EndNote Yurderi M, Tayfun Ü, Bulut A (01 Aralık 2024) Development of Polyurethane Elastomer-Based Bio-Composites Reinforced with Basaltic Pumice. Journal of the Institute of Science and Technology 14 4 1645–1654.
IEEE M. Yurderi, Ü. Tayfun, ve A. Bulut, “Development of Polyurethane Elastomer-Based Bio-Composites Reinforced with Basaltic Pumice”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 4, ss. 1645–1654, 2024, doi: 10.21597/jist.1543279.
ISNAD Yurderi, Mehmet vd. “Development of Polyurethane Elastomer-Based Bio-Composites Reinforced With Basaltic Pumice”. Journal of the Institute of Science and Technology 14/4 (Aralık 2024), 1645-1654. https://doi.org/10.21597/jist.1543279.
JAMA Yurderi M, Tayfun Ü, Bulut A. Development of Polyurethane Elastomer-Based Bio-Composites Reinforced with Basaltic Pumice. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:1645–1654.
MLA Yurderi, Mehmet vd. “Development of Polyurethane Elastomer-Based Bio-Composites Reinforced With Basaltic Pumice”. Journal of the Institute of Science and Technology, c. 14, sy. 4, 2024, ss. 1645-54, doi:10.21597/jist.1543279.
Vancouver Yurderi M, Tayfun Ü, Bulut A. Development of Polyurethane Elastomer-Based Bio-Composites Reinforced with Basaltic Pumice. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(4):1645-54.