Araştırma Makalesi
BibTex RIS Kaynak Göster

NVC-EMA Kopolimerinin ve Grafit ile Kompozitlerinin Hazırlanması, Karakterizasyonu, Termal ve Dielektrik Özellikleri

Yıl 2025, Cilt: 15 Sayı: 1, 204 - 216, 01.03.2025
https://doi.org/10.21597/jist.1487166

Öz

Bu çalışmada, işlenilebilirlik ve termal kararlılık gerektiren uygulamalar için polimer kompozit malzemeler çalışılmıştır. Aynı zamanda, enerji depolama uygulamaları için dielektrik özellikleri araştırılmıştır. Bu amaçla poli(N-vinil karbazol-ko-etil metakrilat), P(NVC-ko-EMA), kopolimeri serbest radikal polimerizasyonu yoluyla sentezlenmiş, termal ve dielektrik özelliklerini geliştirmek için grafit (GR) ile kompozitleri hazırlanmıştır. Kopolimerin bileşimi 1H-NMR spektroskopisi ile belirlenmiş, yapılan hesaplamalar bileşiminde %56 NVC ile %44 EMA birimlerinin olduğunu ortaya koymuştur. P(NVC0.56-ko-EMA) ve kompozitlerinin DSC analizleri, polimerin 119.98 oC olan camsı geçiş sıcaklığının, grafit eklenmesi ile düştüğünü göstermiştir. TGA analizlerinde, polimere kıyasla grafit katkılı kompozitlerin termal kararlılıklarının daha yüksek olduğu görülmüştür. Hem kopolimerin hem de ağırlıkça %10 grafit içeren kompozitinin termal bozunma kinetiği Flynn-Wall-Ozawa (FWO) ve Kissinger-Akahira-Sunose (KAS) yöntemleriyle incelenmiştir. Hesaplamalar, GR katkılamasının kopolimerin termal ayrışma aktivasyon enerjisi değerini düşürdüğünü göstermiştir. Yapılan dielektrik ölçümlerinde, kompozitlerde artan GR konsantrasyonu ile dielektrik sabiti (Ɛ') ve dielektrik kayıp (Ɛ'') değerlerinin arttığı belirlenmiştir.

Etik Beyan

-

Destekleyen Kurum

-

Teşekkür

-

Kaynakça

  • Ai, D., Han, Y., Xie, Z., Pang, X., Chang, Y., Li, H., Wu, C., Cheng Y. & Wu, G. (2024). High temperature polyimide nanocomposites containing two-dimensional nanofillers for improved thermal stability and capacitive energy storage performance. Nano Research, 17, 7746-7755. doi:10. 1007/s12274-024-6765-4
  • Agrebi, F., Hammami, H., Asim, M., Jawaid, M. & Kallel, A. (2020). Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. Journal of Composite Material, 54, 937-946. doi:10.1177/0021998319871351
  • Ain, Q. T., Haq, S. H., Alshammari, A., Al-Mutlaq, M. A. & Anjum, M. N. (2019). The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model. Beilstein Journal of Nanotechnology, 10, 901-911. doi:10.3762/bjnano.10.91
  • Aleksandra, B., Djurišić, E. & Herbert, Li., (1999). Optical properties of graphite. Journal of Applied Physics, 85, 7404-7410. doi:10.1063/1.369370
  • Barım, E. (2022). Synthesis, characterization, optical and thermal properties of P (NVC-co-BZMA) copolymer and its ZnO composites. Gazi University Journal of Science Part A: Engineering and Innovation, 9, 526-536. doi:10.54287/gujsa.1199767
  • Barim, G. & Yayla, M. G. (2014). Copolymerization of 4-acetylphenyl methacrylate with ethyl methacrylate: synthesis, characterization, monomer reactivity ratios, and thermal properties. International Journal of Polymer Science, 643789, 1-10. doi:10.1155/2014/643789
  • Bekkar, F., Bettahar, F., Moreno, I., Meghabar, R., Hamadouche, M., Hernáez, E., Vilas-Vilela J. L. & Ruiz-Rubio, L. (2020). Polycarbazole and its derivatives: Synthesis and applications. A review of the last 10 years. Polymers, 12(10), 2227. doi:10.3390/polym12102227
  • Biryan, F., & Demirelli, K. (2019). Thermal decomposition, kinetics and electrical measurements of Poly(3-Acetamidopropyl Methacrylate)/graphite composites. Ferroelectrics, 550(1), 51-75. doi:10.1080/00150193.2019.1652497
  • Campbell, D., Pethrick, R. A. & White, J. R. (2000). Polymer Characterization: Physical Techniques; CRC: Boca Raton, FL, USA.
  • Coskun, M. F., Erol, İ., Demirelli, K. & Coskun, M. (2002). A study of copolymerization with 4-bromobenzyl methacrylate and ethyl methacrylate. Journal Macromolecular Science Part A, 39(9), 889-900. doi:10.1081/MA-120013569
  • Dzulkurnain, N. A., Rani, M. S. A., Ahmad, A. & Mohamed, N. S. (2018). Effect of lithium salt on physicochemical properties of P(MMA-co-EMA) based copolymer electrolytes for dye-sensitized solar cell application. Ionics. 24, 269-276. doi:10.1007/s11581-017-2190-y
  • El-Khodary, S. A., El-Enany, G. M., El-Okr, M. & Ibrahim, M. (2014). Preparation and characterization of microwave reduced graphite oxide for high-performance supercapacitors. Electrochimica Acta, 150, 269- 278. doi:10.1016/j.electacta.2014.10.134
  • Flynn, J. H. & Wall L. A. (1996). General treatment of the thermogravimetry of polymers, Journal of research of the National Bureau of Standards. Section A, 70, 487 doi:10.6028/jres.070A.043
  • Gökçeören, A. T. & Erbil, C. (2013). Poly(V-vinyl carbazole)(PNVCz)-based composite materials: elctrical properties, morphologic, and thermal characterization of PNVCz/MWCNTs and PNVCz/o-GLs systems. Polymer Composites, 34, 1986-1998. doi:10.1002/pc.22606
  • Haldar, I., Kundu, A., Biswas, M. & Nayak, A. (2011). Preparation and evaluation of a poly(N-vinylcarbazole)-Fe3O4 (PNVC-Fe3O4) nanocomposite. Materials Chemistry and Physics, 128, 256-264. doi:10.1016/j.matchemphys.2011.03.008
  • Isusi, M., Rodrı´guez, M., Garay, T., Vilas, J. L. & Leo´n, L. M. (2002). Thermal properties of copolymers of N-vinylcarbazole with acrylic and methacrylic monomers. Journal of Macromolecular Science-Physics B, 41, 241-253. doi:10.1081/MB-120003083
  • Jayanthi, S., Shenbagavalli, S., Muthuvinayagam, M. & Sundaresan, B. (2022). Effect of nano TiO2 on the thransport, structural and thermal properties of PEMA-NaI solid polymer electrolytes for energy storage devices. Materials Science and Engineering: B, 285, 115942. doi:10.1016/j.mseb.2022.115942
  • Ji, X., Li, Y., Zheng, J. & Liu, Q. (2011). Solvent effects of ethyl methacrylate characterized by FTIR. Materials Chemistry and Physics. 130(3), 1151-1155. doi:10.1016/j.matchemphys.2011.08.046
  • Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29, 1702-1706. doi:10.1021/ac60131a045
  • Lai, Y. S., Tu, C. H., Kwong, D. L. & Chen, J. S. (2005). Bistable resistance switching of poly (N-vinylcarbazole) films for nonvolatile memory applications. Applied Physics Letters, 87(12), 122101. doi:10.1063/1.2051801
  • Maex, K., Baklanov, M. R., Brongersma, S. H., Yanovitskaya, Z. S. (2003). Low dielectric constant materials for microelectronics. Journal of Applied Physics, 93, 8793-8841. doi: 10.1063/1.1567460.
  • Mahmood, A., Naeem, A. & Mahmood, T. (2017). High-k polymer nanocomposites for energy storage applications. Properties and Applications of Polymer Dielectrics, 23-39. doi:10.5772/65944
  • Michael, M. S. & Prabaharan, S. R. S. (2004). Rechargeable lithium battery employing a new ambient temperature hybrid polymer electrolyte based on PVK+ PVdF–HFP (copolymer). Journal of power sources, 136(2), 408-415. doi:10.1016/j.jpowsour.2004.03.040
  • Ningaraju, S., Vinayakaprasanna, N. H., Gnana Prakash, A. P. & Ravikumar, H. B. (2018). Free volume dependence on electrical properties of Poly (styrene co-acrylonitrile)/Nickel oxide polymer nanocomposites. Chemical Physics Letters, 698, 24-35. doi:10.1016/j.cplett.2018.03.002
  • Ozawa, T. (1965). A new method of analyzing thermogravimetric data. BCSJ. 38 (11), 1881. doi:10.1246/bcsj.38.1881
  • Pearson, J. M. & Stolka, M. (1981). Poly(N-vinylcarbazole), Polymer Monographs, New York, Gordon and Breach.
  • Pearson, J. M. (1990). Concise Encyclopaedia of Polymer Science and Engineering, Wiley Interscience Publications, New York.
  • Ryttel, A. (1997). Thermomechanical and dielectrical properties of alkyl methacrylate with N-vinyl carbazole copolymers. Journal of Macromolecular Science, Part A, 34(1), 211-219. doi: 10.1080/10601329708014948
  • Sai Prasanna, C. M. & Austin Suthanthiraraj, S. (2017). Dielectric, thermal, and electrochemical properties of PVC/PEMA blended polymer electrolytes complexed with zinc triflate salt. Ionics, 23, 3137-3150. doi:10.1007/s11581-017-2109-7
  • Sarasini, F., Tirillò, J., Sergi, C., Seghini, M. C., Cozzarini, L. & Graupner N. (2018). Effect of basalt fiber hybridisation and sizing removal on mechanical and thermal properties of hemp fiber reinforced HDPE composites. Composite Structure, 188, 394-406. doi:10.1016/j.compstruct.2018.01.046
  • Yang, K., Huang, X., Huang, Y., Xie, L. & Jiang, P. (2013). Fluoro-Polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chemistry of Materials, 25(11), 2327-2338. doi: 10.1021/cm4010486
  • Young, R. J. & Lovell, P. A. (2011). Introduction to Polymers, 3rd ed.; CRC: Boca Raton, FL, USA.
  • Zhang, P., Yuan, S., Song, X., Tang, J., Lin, Q., Liu, X., Zuhang, Q., Mi, P. & Zuo, P. (2024). Three‐phase interfacial design in BaTiO3/rGO/polyetherimide composite enabling enhanced dielectric, thermal and mechanical properties. Polymer Composites, 45(11), 10220-10233. doi:/10.1002/pc.28468

Preparation, Characterization, Thermal, and Dielectric Properties of NVC-EMA Copolymer and Composites with Graphite

Yıl 2025, Cilt: 15 Sayı: 1, 204 - 216, 01.03.2025
https://doi.org/10.21597/jist.1487166

Öz

This study analyzed polymer composite materials for applications which require processability and thermal stability. At the same time, dielectric properties were investigated to determine their capacity for energy storage. For this purpose, poly(N-vinyl carbazole-co-ethyl methacrylate), P(NVC-co-EMA), copolymer was synthesized through free radical polymerization, and composites with graphite (GR) were prepared to improve its thermal and dielectric properties. The composition of the copolymer was determined with 1H-NMR spectroscopy, and calculations indicated that 56% NVC and 44% EMA units were present in its composition. DSC analysis of P(NVC0.56-co-EMA) and its composites showed that the glass transition temperature of the polymer, which was 119.98 °C, decreased with the addition of graphite. TGA analysis confirmed higher thermal stability of graphite-doped composites compared to polymer. The thermal degradation kinetics of both the copolymer and its composite containing 10 wt% graphite were studied through utilization of the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods. Calculations showed that GR doping decreased the thermal decomposition activation energy values of the copolymer. In the dielectric measurements, it was determined that the dielectric constant (Ɛ') and dielectric loss (Ɛ'') values increased when there was a higher concentration of GR in the composites.

Kaynakça

  • Ai, D., Han, Y., Xie, Z., Pang, X., Chang, Y., Li, H., Wu, C., Cheng Y. & Wu, G. (2024). High temperature polyimide nanocomposites containing two-dimensional nanofillers for improved thermal stability and capacitive energy storage performance. Nano Research, 17, 7746-7755. doi:10. 1007/s12274-024-6765-4
  • Agrebi, F., Hammami, H., Asim, M., Jawaid, M. & Kallel, A. (2020). Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. Journal of Composite Material, 54, 937-946. doi:10.1177/0021998319871351
  • Ain, Q. T., Haq, S. H., Alshammari, A., Al-Mutlaq, M. A. & Anjum, M. N. (2019). The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model. Beilstein Journal of Nanotechnology, 10, 901-911. doi:10.3762/bjnano.10.91
  • Aleksandra, B., Djurišić, E. & Herbert, Li., (1999). Optical properties of graphite. Journal of Applied Physics, 85, 7404-7410. doi:10.1063/1.369370
  • Barım, E. (2022). Synthesis, characterization, optical and thermal properties of P (NVC-co-BZMA) copolymer and its ZnO composites. Gazi University Journal of Science Part A: Engineering and Innovation, 9, 526-536. doi:10.54287/gujsa.1199767
  • Barim, G. & Yayla, M. G. (2014). Copolymerization of 4-acetylphenyl methacrylate with ethyl methacrylate: synthesis, characterization, monomer reactivity ratios, and thermal properties. International Journal of Polymer Science, 643789, 1-10. doi:10.1155/2014/643789
  • Bekkar, F., Bettahar, F., Moreno, I., Meghabar, R., Hamadouche, M., Hernáez, E., Vilas-Vilela J. L. & Ruiz-Rubio, L. (2020). Polycarbazole and its derivatives: Synthesis and applications. A review of the last 10 years. Polymers, 12(10), 2227. doi:10.3390/polym12102227
  • Biryan, F., & Demirelli, K. (2019). Thermal decomposition, kinetics and electrical measurements of Poly(3-Acetamidopropyl Methacrylate)/graphite composites. Ferroelectrics, 550(1), 51-75. doi:10.1080/00150193.2019.1652497
  • Campbell, D., Pethrick, R. A. & White, J. R. (2000). Polymer Characterization: Physical Techniques; CRC: Boca Raton, FL, USA.
  • Coskun, M. F., Erol, İ., Demirelli, K. & Coskun, M. (2002). A study of copolymerization with 4-bromobenzyl methacrylate and ethyl methacrylate. Journal Macromolecular Science Part A, 39(9), 889-900. doi:10.1081/MA-120013569
  • Dzulkurnain, N. A., Rani, M. S. A., Ahmad, A. & Mohamed, N. S. (2018). Effect of lithium salt on physicochemical properties of P(MMA-co-EMA) based copolymer electrolytes for dye-sensitized solar cell application. Ionics. 24, 269-276. doi:10.1007/s11581-017-2190-y
  • El-Khodary, S. A., El-Enany, G. M., El-Okr, M. & Ibrahim, M. (2014). Preparation and characterization of microwave reduced graphite oxide for high-performance supercapacitors. Electrochimica Acta, 150, 269- 278. doi:10.1016/j.electacta.2014.10.134
  • Flynn, J. H. & Wall L. A. (1996). General treatment of the thermogravimetry of polymers, Journal of research of the National Bureau of Standards. Section A, 70, 487 doi:10.6028/jres.070A.043
  • Gökçeören, A. T. & Erbil, C. (2013). Poly(V-vinyl carbazole)(PNVCz)-based composite materials: elctrical properties, morphologic, and thermal characterization of PNVCz/MWCNTs and PNVCz/o-GLs systems. Polymer Composites, 34, 1986-1998. doi:10.1002/pc.22606
  • Haldar, I., Kundu, A., Biswas, M. & Nayak, A. (2011). Preparation and evaluation of a poly(N-vinylcarbazole)-Fe3O4 (PNVC-Fe3O4) nanocomposite. Materials Chemistry and Physics, 128, 256-264. doi:10.1016/j.matchemphys.2011.03.008
  • Isusi, M., Rodrı´guez, M., Garay, T., Vilas, J. L. & Leo´n, L. M. (2002). Thermal properties of copolymers of N-vinylcarbazole with acrylic and methacrylic monomers. Journal of Macromolecular Science-Physics B, 41, 241-253. doi:10.1081/MB-120003083
  • Jayanthi, S., Shenbagavalli, S., Muthuvinayagam, M. & Sundaresan, B. (2022). Effect of nano TiO2 on the thransport, structural and thermal properties of PEMA-NaI solid polymer electrolytes for energy storage devices. Materials Science and Engineering: B, 285, 115942. doi:10.1016/j.mseb.2022.115942
  • Ji, X., Li, Y., Zheng, J. & Liu, Q. (2011). Solvent effects of ethyl methacrylate characterized by FTIR. Materials Chemistry and Physics. 130(3), 1151-1155. doi:10.1016/j.matchemphys.2011.08.046
  • Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29, 1702-1706. doi:10.1021/ac60131a045
  • Lai, Y. S., Tu, C. H., Kwong, D. L. & Chen, J. S. (2005). Bistable resistance switching of poly (N-vinylcarbazole) films for nonvolatile memory applications. Applied Physics Letters, 87(12), 122101. doi:10.1063/1.2051801
  • Maex, K., Baklanov, M. R., Brongersma, S. H., Yanovitskaya, Z. S. (2003). Low dielectric constant materials for microelectronics. Journal of Applied Physics, 93, 8793-8841. doi: 10.1063/1.1567460.
  • Mahmood, A., Naeem, A. & Mahmood, T. (2017). High-k polymer nanocomposites for energy storage applications. Properties and Applications of Polymer Dielectrics, 23-39. doi:10.5772/65944
  • Michael, M. S. & Prabaharan, S. R. S. (2004). Rechargeable lithium battery employing a new ambient temperature hybrid polymer electrolyte based on PVK+ PVdF–HFP (copolymer). Journal of power sources, 136(2), 408-415. doi:10.1016/j.jpowsour.2004.03.040
  • Ningaraju, S., Vinayakaprasanna, N. H., Gnana Prakash, A. P. & Ravikumar, H. B. (2018). Free volume dependence on electrical properties of Poly (styrene co-acrylonitrile)/Nickel oxide polymer nanocomposites. Chemical Physics Letters, 698, 24-35. doi:10.1016/j.cplett.2018.03.002
  • Ozawa, T. (1965). A new method of analyzing thermogravimetric data. BCSJ. 38 (11), 1881. doi:10.1246/bcsj.38.1881
  • Pearson, J. M. & Stolka, M. (1981). Poly(N-vinylcarbazole), Polymer Monographs, New York, Gordon and Breach.
  • Pearson, J. M. (1990). Concise Encyclopaedia of Polymer Science and Engineering, Wiley Interscience Publications, New York.
  • Ryttel, A. (1997). Thermomechanical and dielectrical properties of alkyl methacrylate with N-vinyl carbazole copolymers. Journal of Macromolecular Science, Part A, 34(1), 211-219. doi: 10.1080/10601329708014948
  • Sai Prasanna, C. M. & Austin Suthanthiraraj, S. (2017). Dielectric, thermal, and electrochemical properties of PVC/PEMA blended polymer electrolytes complexed with zinc triflate salt. Ionics, 23, 3137-3150. doi:10.1007/s11581-017-2109-7
  • Sarasini, F., Tirillò, J., Sergi, C., Seghini, M. C., Cozzarini, L. & Graupner N. (2018). Effect of basalt fiber hybridisation and sizing removal on mechanical and thermal properties of hemp fiber reinforced HDPE composites. Composite Structure, 188, 394-406. doi:10.1016/j.compstruct.2018.01.046
  • Yang, K., Huang, X., Huang, Y., Xie, L. & Jiang, P. (2013). Fluoro-Polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chemistry of Materials, 25(11), 2327-2338. doi: 10.1021/cm4010486
  • Young, R. J. & Lovell, P. A. (2011). Introduction to Polymers, 3rd ed.; CRC: Boca Raton, FL, USA.
  • Zhang, P., Yuan, S., Song, X., Tang, J., Lin, Q., Liu, X., Zuhang, Q., Mi, P. & Zuo, P. (2024). Three‐phase interfacial design in BaTiO3/rGO/polyetherimide composite enabling enhanced dielectric, thermal and mechanical properties. Polymer Composites, 45(11), 10220-10233. doi:/10.1002/pc.28468
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fiziksel Organik Kimya, Organik Kimya (Diğer)
Bölüm Kimya / Chemistry
Yazarlar

Esra Barım 0000-0003-0181-3102

Erken Görünüm Tarihi 20 Şubat 2025
Yayımlanma Tarihi 1 Mart 2025
Gönderilme Tarihi 20 Mayıs 2024
Kabul Tarihi 7 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Barım, E. (2025). NVC-EMA Kopolimerinin ve Grafit ile Kompozitlerinin Hazırlanması, Karakterizasyonu, Termal ve Dielektrik Özellikleri. Journal of the Institute of Science and Technology, 15(1), 204-216. https://doi.org/10.21597/jist.1487166
AMA Barım E. NVC-EMA Kopolimerinin ve Grafit ile Kompozitlerinin Hazırlanması, Karakterizasyonu, Termal ve Dielektrik Özellikleri. Iğdır Üniv. Fen Bil Enst. Der. Mart 2025;15(1):204-216. doi:10.21597/jist.1487166
Chicago Barım, Esra. “NVC-EMA Kopolimerinin Ve Grafit Ile Kompozitlerinin Hazırlanması, Karakterizasyonu, Termal Ve Dielektrik Özellikleri”. Journal of the Institute of Science and Technology 15, sy. 1 (Mart 2025): 204-16. https://doi.org/10.21597/jist.1487166.
EndNote Barım E (01 Mart 2025) NVC-EMA Kopolimerinin ve Grafit ile Kompozitlerinin Hazırlanması, Karakterizasyonu, Termal ve Dielektrik Özellikleri. Journal of the Institute of Science and Technology 15 1 204–216.
IEEE E. Barım, “NVC-EMA Kopolimerinin ve Grafit ile Kompozitlerinin Hazırlanması, Karakterizasyonu, Termal ve Dielektrik Özellikleri”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 1, ss. 204–216, 2025, doi: 10.21597/jist.1487166.
ISNAD Barım, Esra. “NVC-EMA Kopolimerinin Ve Grafit Ile Kompozitlerinin Hazırlanması, Karakterizasyonu, Termal Ve Dielektrik Özellikleri”. Journal of the Institute of Science and Technology 15/1 (Mart 2025), 204-216. https://doi.org/10.21597/jist.1487166.
JAMA Barım E. NVC-EMA Kopolimerinin ve Grafit ile Kompozitlerinin Hazırlanması, Karakterizasyonu, Termal ve Dielektrik Özellikleri. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:204–216.
MLA Barım, Esra. “NVC-EMA Kopolimerinin Ve Grafit Ile Kompozitlerinin Hazırlanması, Karakterizasyonu, Termal Ve Dielektrik Özellikleri”. Journal of the Institute of Science and Technology, c. 15, sy. 1, 2025, ss. 204-16, doi:10.21597/jist.1487166.
Vancouver Barım E. NVC-EMA Kopolimerinin ve Grafit ile Kompozitlerinin Hazırlanması, Karakterizasyonu, Termal ve Dielektrik Özellikleri. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(1):204-16.