Araştırma Makalesi
BibTex RIS Kaynak Göster

Enhanced Luminescent Probe Utilizing Schiff Base Ligand for 2,4,6-Trinitrophenol Detection in Aqueous Media

Yıl 2025, Cilt: 15 Sayı: 1, 228 - 240, 01.03.2025
https://doi.org/10.21597/jist.1540673

Öz

This research explored the fluorescence properties of a Schiff base ligand which was synthesized and characterized used by standard spectroscopic methods. The examination into its photophysical and fluorescent sensor properties involved UV-Vis spectroscopy, as well as fluorescence spectroscopy, time-resolved and steady-state. Fluorescent sensors were found to exhibit excellent sensitivity and selectivity for 1,3,5-trinitrophenol (TNP), over testing with other nitroaromatic (dinitrobenzene (DNB), 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (DNP)), explosives with significant fluorescence “off” responses, resulting in immediate fluorescence color change. The binding mechanisms between Schiff base and TNP were assessed using Job’s drawing. The compound exhibited exceptional sensitivity in detecting TNP with an impressively low LOD of 0.253 μM covering a linear working range of 2.50-30.00 μM. The study revealed that the compound exhibited robust fluorescent properties, proved to be effective in fluorescence quenching-based TNP detection in water solutions, and demonstrated both high selectivity and sensitivity. This finding underlines the potential utility of this ligand as a promising tool in environmental monitoring or related fields where the detection of TNP is crucial.

Kaynakça

  • Akhgari, F., Fattahi, H., & Oskoei, Y. M. (2015). Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives. Sensors and Actuators B-Chemical, 221, 867-878. doi:10.1016/j.snb.2015.06.146
  • Albani, J. R. (2007). Principles and Applications of Fluorescence Spectroscopy. Principles and Applications of Fluorescence Spectroscopy, 1-255. doi:10.1002/9780470692059
  • Altun, A. (2024). Utilization of Schiff base-Co(II) complex as a stable luminescent probe for the highly selective detection of 2,4,6-trinitrophenol in an aqueous medium. Journal of Luminescence, 271, 120593. doi:10.1016/j.jlumin.2024.120593
  • Altun, A., Apetrei, R. M., & Camurlu, P. (2021). Functional biosensing platform for urea detection: copolymer of Fc-substituted 2,5-di(thienyl)pyrrole and 3,4-ethylenedioxythiophene. Journal of the Electrochemical Society, 168(6). doi:10.1149/1945-7111/ac0600
  • Altun, A., Senkuytu, E., & Davarci, D. (2023). Synthesis and crystal structure of the 6-oxyquinoline derivative cyclotriphosphazene chemosensor with high selectivity and immediate sensitivity for Fe(III) ion and TNT detection. Polyhedron, 240. doi:10.1016/j.poly.2023.116458
  • Buldurun, K. (2020). Synthesis, characterization, thermal study and optical property evaluation of Co(II), Pd(II) complexes containing Schiff bases of thiophene-3-carboxylate ligand. Journal of Electronic Materials, 49(3), 1935-1943. doi:10.1007/s11664-019-07876-2
  • Buldurun, K., & Özdemir, M. (2020). Ruthenium(II) complexes with pyridine-based Schiff base ligands: Synthesis, structural characterization and catalytic hydrogenation of ketones. Journal of Molecular Structure, 1202. doi:10.1016/j.molstruc.2019.127266
  • Buldurun, K., Turan, N., Savcı, A., Alan, Y., & Colak, N. (2022). Synthesis, characterization, X-ray diffraction analysis of a tridentate Schiff base ligand and its complexes with Co(II), Fe(II), Pd(II) and Ru(II): Bioactivity studies. Iranian Journal of Chemistry and Chemical Engineering, 41(8), 2635-2649. doi:10.30492/ijcce.2021.531629.4775
  • Calcerrada, M., González-Herráez, M., & García-Ruiz, C. (2016). Recent advances in capillary electrophoresis instrumentation for the analysis of explosives. Trac-Trends in Analytical Chemistry, 75, 75-85. doi:10.1016/j.trac.2015.08.005
  • Carrillo-Carrión, C., Simonet, B. M., & Valcárcel, M. (2013). Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots. Analytica Chimica Acta, 792, 93-100. doi:10.1016/j.aca.2013.07.004
  • Caygill, J. S., Davis, F., & Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88, 14-29. doi:10.1016/j.talanta.2011.11.043
  • Chhatwal, M., Mittal, R., Gupta, R. D., & Awasthi, S. K. (2018). Sensing ensembles for nitroaromatics. Journal of Materials Chemistry C, 6(45), 12142-12158. doi:10.1039/c8tc03929a
  • Dey, S., Maity, A., Shyamal, M., Das, D., Maity, S., Kumar Giri, P., Mudi, N., Samanta, S.S., Hazra P. and Misra A. (2019). An antipyrine based fluorescence “turn-on” dual sensor for Zn2+ and Al3+ and its selective fluorescence “turn-off” sensing towards 2,4,6- trinitrophenol (TNP) in the aggregated state. Photochem. Photobiol. Sci., 18, 2717. doi: 10.1039/c9pp00226j
  • Desai V, Modi K, Panjwani F, Seth BK, Vora M, Parikh J, Jain VK. (2024). Design and Synthesis of an Efficient Fluorescent Probe Based on Oxacalix[4]arene for the Selective Detection of Trinitrophenol (TNP) Explosives in Aqueous System. J Fluoresc. 34(3):1219-1228. doi: 10.1007/s10895-023-03352-7. Desai, V., Vora, M., Modi, K., Koley Seth, B., Panjwani, F., Verma, A., Patel, N., Patel, C., Jain, V. K., (2023). A Quenched Fluorescence-based Assay for Selective Detection of Nitroaromatic Compounds using Pyrene-Appended Oxacalix[4]arene Host. Chemistry Select, 8, 1-7. doi:10.1002/slct.202302029
  • Forbes, T. P., & Sisco, E. (2018). Recent advances in ambient mass spectrometry of trace explosives. Analyst, 143(9), 1948-1969. doi:10.1039/c7an02066j
  • Gillibert, R., Huang, J. Q., Zhang, Y., Fu, W. L., & de la Chapelle, M. L. (2018). Explosive detection by Surface Enhanced Raman Scattering. Trac-Trends in Analytical Chemistry, 105, 166-172. doi:10.1016/j.trac.2018.03.018
  • Grate, J. W., Ewing, R. G., & Atkinson, D. A. (2012). Vapor-generation methods for explosives-detection research. Trac-Trends in Analytical Chemistry, 41, 1-14. doi:10.1016/j.trac.2012.08.007
  • Guo, X., Gao, B., Cui, X., Wang, J. H., Dong, W. Y., Duan, Q., Su, Z. M. (2021). PL sensor for sensitive and selective detection of 2,4,6-trinitrophenol based on carbazole and tetraphenylsilane polymer. Dyes and Pigments, 191. doi:109379. 10.1016/j.dyepig.2021.109379
  • Hu, Z. C., Deibert, B. J., & Li, J. (2014). Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chemical Society Reviews, 43(16), 5815-5840. doi:10.1039/c4cs00010b
  • Hung, H. C., Cheng, C. W., Wang, Y. Y., Chen, Y. J., & Chung, W. S. (2009). Highly selective fluorescent sensors for Hg and Ag based on bis-triazole-coupled polyoxyethylenes in MeOH solution. European Journal of Organic Chemistry, 2009(36), 6360-6366. doi:10.1002/ejoc.200900987
  • Kartha, K. K., Sandeep, A., Praveen, V. K., & Ajayaghosh, A. (2015). Detection of nitroaromatic explosives with fluorescent molecular assemblies and π-gels. Chemical Record, 15(1), 252-265. doi:10.1002/tcr.201402063
  • Kose, A., Erkan, S., & Tümer, M. (2023). A series of phenanthroline-imine compounds: Computational, OLED properties and fluorimetric sensing of nitroaromatic compounds. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 286. doi:122006 10.1016/j.saa.2022.122006
  • Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2012). Metal-Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324t
  • Kumar, V., Maiti, B., Chini, M. K., De, P., & Satapathi, S. (2019). Multimodal fluorescent polymer sensor for highly sensitive detection of nitroaromatics. Scientific Reports, 9. doi:7269 10.1038/s41598-019-43836-w
  • Kumari, S., Joshi, S., Cordova-Sintjago, T. C., Pant, D. D., & Sakhuja, R. (2016). Highly sensitive fluorescent imidazolium-based sensors for nanomolar detection of explosive picric acid in aqueous medium. Sensors and Actuators B-Chemical, 229, 599-608. doi:10.1016/j.snb.2016.02.019
  • Li, S., Ouyang, T., Guo, X., Dong,W., Ma, Z., Fei, T. (2023). Tetraphenylethene-based cross-linked conjugated polymer nanoparticles for efficient detection of 2,4,6-trinitrophenol in aqueous phase. materials, 16, 6458. doi:10.3390/ma16196458
  • Lustig, W. P., Mukherjee, S., Rudd, N. D., Desai, A. V., Li, J., & Ghosh, S. K. (2017). Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 46(11), 3242-3285. doi:10.1039/c6cs00930a
  • Mahadevi, P., Sumathi, S. (2023). Schiff base metal complexes: Synthesis, optoelectronic, biological studies, fabrication of zinc oxide nanoparticles and its photocatalytic activity, Results in Chemistry, 6, 101026. doi:10.1016/j.rechem.2023.101026
  • McQuade, D. T., Pullen, A. E., & Swager, T. M. (2000). Conjugated polymer-based chemical sensors. Chemical Reviews, 100(7), 2537-2574. doi:10.1021/cr9801014
  • Nayab, S., Faisal, S., Khan, W., Ateeq, M., Khan, S. W., Kim, E., & Lee, H. (2023). Pyridine‐derived Schiff base copper (II), zinc (II), and cadmium (II) complexes: Synthesis, structural properties, biological evaluation, and docking studies. Applied Organometallic Chemistry, 37, e7163. doi:10.1002/aoc.7163
  • Özdemir, M. (2019). Yeni Schiff bazı ligandları ve Ru(II), Pd(II) metal komplekslerin sentezi, karakterizasyonu ve katalitik aktiviteleri. (master’s thesis).
  • Rose, A., Zhu, Z. G., Madigan, C. F., Swager, T. M., & Bulovic, V. (2005). Sensitivity gains in chemosensing by lasing action in organic polymers. Nature, 434(7035), 876-879. doi:10.1038/nature03438
  • Salinas, Y., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2012). Optical chemosensors and reagents to detect explosives. Chemical Society Reviews, 41(3), 1261-1296. doi:10.1039/c1cs15173h
  • Sharma, V., & Mehata, M. S. (2021). Rapid optical sensor for recognition of explosive 2,4,6-TNP traces in water through fluorescent ZnSe quantum dots. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 260. doi:119937. 10.1016/j.saa.2021.119937
  • Sun, X. C., Wang, Y., & Lei, Y. (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 44(22), 8019-8061. doi:10.1039/c5cs00496a
  • Trinh, D. T. T., Khanitchaidecha, W., Channei, D., & Nakaruk, A. (2019). Synthesis, characterization and environmental applications of bismuth vanadate. Research on Chemical Intermediates, 45(10), 5217-5259. doi:10.1007/s11164-019-03912-2
  • Tsai, M. J., Li, C. Y., & Wu, J. Y. (2018). Luminescent Zn(II) coordination polymers as efficient fluorescent sensors for highly sensitive detection of explosive nitroaromatics. Crystengcomm, 20(42), 6762-6774. doi:10.1039/c8ce01371c
  • Turan, N., Buldurun, K., Türkan, F., Aras, A., Çolak, N., Murahari, M., Bursal, E., Mantarci, A. (2022). Some metal chelates with Schiff base ligand: synthesis, structure elucidation, thermal behavior, XRD evaluation, antioxidant activity, enzyme inhibition, and molecular docking studies. Molecular Diversity, 26(5), 2459-2472. doi:10.1007/s11030-021-10344-x
  • Ture, S.A., Pattathil, S.D., Zing, B.Z., Abbaraju, V. (2023). Fluorescence Sensing of Some Important Nitroaromatic Compounds by Using Polyaniline Ag Composite. Micro, 3, 224–238. https://doi.org/10.3390/micro3010016
  • Tümay, S. O., & Yesilot, S. (2019). Tripodal synthetic receptors based on cyclotriphosphazene scaffold for highly selective and sensitive spectrofluorimetric determination of iron(III) in water samples. Journal of Photochemistry and Photobiology a-Chemistry, 372, 156-167. doi:10.1016/j.jphotochem.2018.12.012
  • Verbitskiy, E. V., Rusinov, G. L., Chupakhin, O. N., & Charushin, V. N. (2020). Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review. Dyes and Pigments, 180. doi:108414 10.1016/j.dyepig.2020.108414
  • Wang, C. P., Sheng, W. W., Sun, C., Lei, J., & Hu, J. S. (2024). A cobalt-coordination polymer as a highly selective and sensitive luminescent sensor for detecting 2,4,6-trinitrophenol. Molecular Crystals and Liquid Crystals, 768(3), 117-126. doi:10.1080/15421406.2023.2262857
  • Wen, P., Amin, M., Herzog, W. D., & Kunz, R. R. (2018). Key challenges and prospects for optical standoff trace detection of explosives. Trac-Trends in Analytical Chemistry, 100, 136-144. doi:10.1016/j.trac.2017.12.014
  • Wyman, J. F., Guard, H. E., Won, W. D., & Quay, J. H. (1979). Conversion of 2,4,6-trinitrophenol to a mutagen by pseudomonas-aeruginosa. Applied and Environmental Microbiology, 37(2), 222-226. doi:10.1128/Aem.37.2.222-226.1979
  • Wyman, J. F., Serve, M. P., Hobson, D. W., Lee, L. H., & Uddin, D. E. (1992). Acute Toxicity, Distribution, and Metabolism of 2,4,6-Trinitrophenol (Picric Acid) in Fischer 344 Rats. Journal of Toxicology and Environmental Health, 37(2), 313-327. doi:10.1080/15287399209531672
  • Yu, H. A., DeTata, D. A., Lewis, S. W., & Silvester, D. S. (2017). Recent developments in the electrochemical detection of explosives: Towards field-deployable devices for forensic science. Trac-Trends in Analytical Chemistry, 97, 374-384. doi:10.1016/j.trac.2017.10.007
  • Zhang, Q., Zhang, D. M., Lu, Y. L., Yao, Y., Li, S., & Liu, Q. J. (2015). Graphene oxide-based optical biosensor functionalized with peptides for explosive detection. Biosensors & Bioelectronics, 68, 494-499. doi:10.1016/j.bios.2015.01.040
  • Zhao, Y. F., Xu, L. B., Kong, F. L., & Yu, L. (2021). Design and preparation of poly(tannic acid) nanoparticles with intrinsic fluorescence: A sensitive detector of picric acid. Chemical Engineering Journal, 416, 129090. doi:10.1016/j.cej.2021.129090
  • Zheng, Y. C., Wang, S., Li, R. F., Pan, L., Li, L. Q., Qi, Z. P., & Li, C. J. (2021). Highly selective detection of nitroaromatic explosive 2,4,6-trinitrophenol (TNP) using N-doped carbon dots. Research on Chemical Intermediates, 47(6), 2421-2431. doi:10.1007/s11164-021-04410-0
Yıl 2025, Cilt: 15 Sayı: 1, 228 - 240, 01.03.2025
https://doi.org/10.21597/jist.1540673

Öz

Kaynakça

  • Akhgari, F., Fattahi, H., & Oskoei, Y. M. (2015). Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives. Sensors and Actuators B-Chemical, 221, 867-878. doi:10.1016/j.snb.2015.06.146
  • Albani, J. R. (2007). Principles and Applications of Fluorescence Spectroscopy. Principles and Applications of Fluorescence Spectroscopy, 1-255. doi:10.1002/9780470692059
  • Altun, A. (2024). Utilization of Schiff base-Co(II) complex as a stable luminescent probe for the highly selective detection of 2,4,6-trinitrophenol in an aqueous medium. Journal of Luminescence, 271, 120593. doi:10.1016/j.jlumin.2024.120593
  • Altun, A., Apetrei, R. M., & Camurlu, P. (2021). Functional biosensing platform for urea detection: copolymer of Fc-substituted 2,5-di(thienyl)pyrrole and 3,4-ethylenedioxythiophene. Journal of the Electrochemical Society, 168(6). doi:10.1149/1945-7111/ac0600
  • Altun, A., Senkuytu, E., & Davarci, D. (2023). Synthesis and crystal structure of the 6-oxyquinoline derivative cyclotriphosphazene chemosensor with high selectivity and immediate sensitivity for Fe(III) ion and TNT detection. Polyhedron, 240. doi:10.1016/j.poly.2023.116458
  • Buldurun, K. (2020). Synthesis, characterization, thermal study and optical property evaluation of Co(II), Pd(II) complexes containing Schiff bases of thiophene-3-carboxylate ligand. Journal of Electronic Materials, 49(3), 1935-1943. doi:10.1007/s11664-019-07876-2
  • Buldurun, K., & Özdemir, M. (2020). Ruthenium(II) complexes with pyridine-based Schiff base ligands: Synthesis, structural characterization and catalytic hydrogenation of ketones. Journal of Molecular Structure, 1202. doi:10.1016/j.molstruc.2019.127266
  • Buldurun, K., Turan, N., Savcı, A., Alan, Y., & Colak, N. (2022). Synthesis, characterization, X-ray diffraction analysis of a tridentate Schiff base ligand and its complexes with Co(II), Fe(II), Pd(II) and Ru(II): Bioactivity studies. Iranian Journal of Chemistry and Chemical Engineering, 41(8), 2635-2649. doi:10.30492/ijcce.2021.531629.4775
  • Calcerrada, M., González-Herráez, M., & García-Ruiz, C. (2016). Recent advances in capillary electrophoresis instrumentation for the analysis of explosives. Trac-Trends in Analytical Chemistry, 75, 75-85. doi:10.1016/j.trac.2015.08.005
  • Carrillo-Carrión, C., Simonet, B. M., & Valcárcel, M. (2013). Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots. Analytica Chimica Acta, 792, 93-100. doi:10.1016/j.aca.2013.07.004
  • Caygill, J. S., Davis, F., & Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88, 14-29. doi:10.1016/j.talanta.2011.11.043
  • Chhatwal, M., Mittal, R., Gupta, R. D., & Awasthi, S. K. (2018). Sensing ensembles for nitroaromatics. Journal of Materials Chemistry C, 6(45), 12142-12158. doi:10.1039/c8tc03929a
  • Dey, S., Maity, A., Shyamal, M., Das, D., Maity, S., Kumar Giri, P., Mudi, N., Samanta, S.S., Hazra P. and Misra A. (2019). An antipyrine based fluorescence “turn-on” dual sensor for Zn2+ and Al3+ and its selective fluorescence “turn-off” sensing towards 2,4,6- trinitrophenol (TNP) in the aggregated state. Photochem. Photobiol. Sci., 18, 2717. doi: 10.1039/c9pp00226j
  • Desai V, Modi K, Panjwani F, Seth BK, Vora M, Parikh J, Jain VK. (2024). Design and Synthesis of an Efficient Fluorescent Probe Based on Oxacalix[4]arene for the Selective Detection of Trinitrophenol (TNP) Explosives in Aqueous System. J Fluoresc. 34(3):1219-1228. doi: 10.1007/s10895-023-03352-7. Desai, V., Vora, M., Modi, K., Koley Seth, B., Panjwani, F., Verma, A., Patel, N., Patel, C., Jain, V. K., (2023). A Quenched Fluorescence-based Assay for Selective Detection of Nitroaromatic Compounds using Pyrene-Appended Oxacalix[4]arene Host. Chemistry Select, 8, 1-7. doi:10.1002/slct.202302029
  • Forbes, T. P., & Sisco, E. (2018). Recent advances in ambient mass spectrometry of trace explosives. Analyst, 143(9), 1948-1969. doi:10.1039/c7an02066j
  • Gillibert, R., Huang, J. Q., Zhang, Y., Fu, W. L., & de la Chapelle, M. L. (2018). Explosive detection by Surface Enhanced Raman Scattering. Trac-Trends in Analytical Chemistry, 105, 166-172. doi:10.1016/j.trac.2018.03.018
  • Grate, J. W., Ewing, R. G., & Atkinson, D. A. (2012). Vapor-generation methods for explosives-detection research. Trac-Trends in Analytical Chemistry, 41, 1-14. doi:10.1016/j.trac.2012.08.007
  • Guo, X., Gao, B., Cui, X., Wang, J. H., Dong, W. Y., Duan, Q., Su, Z. M. (2021). PL sensor for sensitive and selective detection of 2,4,6-trinitrophenol based on carbazole and tetraphenylsilane polymer. Dyes and Pigments, 191. doi:109379. 10.1016/j.dyepig.2021.109379
  • Hu, Z. C., Deibert, B. J., & Li, J. (2014). Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chemical Society Reviews, 43(16), 5815-5840. doi:10.1039/c4cs00010b
  • Hung, H. C., Cheng, C. W., Wang, Y. Y., Chen, Y. J., & Chung, W. S. (2009). Highly selective fluorescent sensors for Hg and Ag based on bis-triazole-coupled polyoxyethylenes in MeOH solution. European Journal of Organic Chemistry, 2009(36), 6360-6366. doi:10.1002/ejoc.200900987
  • Kartha, K. K., Sandeep, A., Praveen, V. K., & Ajayaghosh, A. (2015). Detection of nitroaromatic explosives with fluorescent molecular assemblies and π-gels. Chemical Record, 15(1), 252-265. doi:10.1002/tcr.201402063
  • Kose, A., Erkan, S., & Tümer, M. (2023). A series of phenanthroline-imine compounds: Computational, OLED properties and fluorimetric sensing of nitroaromatic compounds. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 286. doi:122006 10.1016/j.saa.2022.122006
  • Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2012). Metal-Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324t
  • Kumar, V., Maiti, B., Chini, M. K., De, P., & Satapathi, S. (2019). Multimodal fluorescent polymer sensor for highly sensitive detection of nitroaromatics. Scientific Reports, 9. doi:7269 10.1038/s41598-019-43836-w
  • Kumari, S., Joshi, S., Cordova-Sintjago, T. C., Pant, D. D., & Sakhuja, R. (2016). Highly sensitive fluorescent imidazolium-based sensors for nanomolar detection of explosive picric acid in aqueous medium. Sensors and Actuators B-Chemical, 229, 599-608. doi:10.1016/j.snb.2016.02.019
  • Li, S., Ouyang, T., Guo, X., Dong,W., Ma, Z., Fei, T. (2023). Tetraphenylethene-based cross-linked conjugated polymer nanoparticles for efficient detection of 2,4,6-trinitrophenol in aqueous phase. materials, 16, 6458. doi:10.3390/ma16196458
  • Lustig, W. P., Mukherjee, S., Rudd, N. D., Desai, A. V., Li, J., & Ghosh, S. K. (2017). Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 46(11), 3242-3285. doi:10.1039/c6cs00930a
  • Mahadevi, P., Sumathi, S. (2023). Schiff base metal complexes: Synthesis, optoelectronic, biological studies, fabrication of zinc oxide nanoparticles and its photocatalytic activity, Results in Chemistry, 6, 101026. doi:10.1016/j.rechem.2023.101026
  • McQuade, D. T., Pullen, A. E., & Swager, T. M. (2000). Conjugated polymer-based chemical sensors. Chemical Reviews, 100(7), 2537-2574. doi:10.1021/cr9801014
  • Nayab, S., Faisal, S., Khan, W., Ateeq, M., Khan, S. W., Kim, E., & Lee, H. (2023). Pyridine‐derived Schiff base copper (II), zinc (II), and cadmium (II) complexes: Synthesis, structural properties, biological evaluation, and docking studies. Applied Organometallic Chemistry, 37, e7163. doi:10.1002/aoc.7163
  • Özdemir, M. (2019). Yeni Schiff bazı ligandları ve Ru(II), Pd(II) metal komplekslerin sentezi, karakterizasyonu ve katalitik aktiviteleri. (master’s thesis).
  • Rose, A., Zhu, Z. G., Madigan, C. F., Swager, T. M., & Bulovic, V. (2005). Sensitivity gains in chemosensing by lasing action in organic polymers. Nature, 434(7035), 876-879. doi:10.1038/nature03438
  • Salinas, Y., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2012). Optical chemosensors and reagents to detect explosives. Chemical Society Reviews, 41(3), 1261-1296. doi:10.1039/c1cs15173h
  • Sharma, V., & Mehata, M. S. (2021). Rapid optical sensor for recognition of explosive 2,4,6-TNP traces in water through fluorescent ZnSe quantum dots. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 260. doi:119937. 10.1016/j.saa.2021.119937
  • Sun, X. C., Wang, Y., & Lei, Y. (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 44(22), 8019-8061. doi:10.1039/c5cs00496a
  • Trinh, D. T. T., Khanitchaidecha, W., Channei, D., & Nakaruk, A. (2019). Synthesis, characterization and environmental applications of bismuth vanadate. Research on Chemical Intermediates, 45(10), 5217-5259. doi:10.1007/s11164-019-03912-2
  • Tsai, M. J., Li, C. Y., & Wu, J. Y. (2018). Luminescent Zn(II) coordination polymers as efficient fluorescent sensors for highly sensitive detection of explosive nitroaromatics. Crystengcomm, 20(42), 6762-6774. doi:10.1039/c8ce01371c
  • Turan, N., Buldurun, K., Türkan, F., Aras, A., Çolak, N., Murahari, M., Bursal, E., Mantarci, A. (2022). Some metal chelates with Schiff base ligand: synthesis, structure elucidation, thermal behavior, XRD evaluation, antioxidant activity, enzyme inhibition, and molecular docking studies. Molecular Diversity, 26(5), 2459-2472. doi:10.1007/s11030-021-10344-x
  • Ture, S.A., Pattathil, S.D., Zing, B.Z., Abbaraju, V. (2023). Fluorescence Sensing of Some Important Nitroaromatic Compounds by Using Polyaniline Ag Composite. Micro, 3, 224–238. https://doi.org/10.3390/micro3010016
  • Tümay, S. O., & Yesilot, S. (2019). Tripodal synthetic receptors based on cyclotriphosphazene scaffold for highly selective and sensitive spectrofluorimetric determination of iron(III) in water samples. Journal of Photochemistry and Photobiology a-Chemistry, 372, 156-167. doi:10.1016/j.jphotochem.2018.12.012
  • Verbitskiy, E. V., Rusinov, G. L., Chupakhin, O. N., & Charushin, V. N. (2020). Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review. Dyes and Pigments, 180. doi:108414 10.1016/j.dyepig.2020.108414
  • Wang, C. P., Sheng, W. W., Sun, C., Lei, J., & Hu, J. S. (2024). A cobalt-coordination polymer as a highly selective and sensitive luminescent sensor for detecting 2,4,6-trinitrophenol. Molecular Crystals and Liquid Crystals, 768(3), 117-126. doi:10.1080/15421406.2023.2262857
  • Wen, P., Amin, M., Herzog, W. D., & Kunz, R. R. (2018). Key challenges and prospects for optical standoff trace detection of explosives. Trac-Trends in Analytical Chemistry, 100, 136-144. doi:10.1016/j.trac.2017.12.014
  • Wyman, J. F., Guard, H. E., Won, W. D., & Quay, J. H. (1979). Conversion of 2,4,6-trinitrophenol to a mutagen by pseudomonas-aeruginosa. Applied and Environmental Microbiology, 37(2), 222-226. doi:10.1128/Aem.37.2.222-226.1979
  • Wyman, J. F., Serve, M. P., Hobson, D. W., Lee, L. H., & Uddin, D. E. (1992). Acute Toxicity, Distribution, and Metabolism of 2,4,6-Trinitrophenol (Picric Acid) in Fischer 344 Rats. Journal of Toxicology and Environmental Health, 37(2), 313-327. doi:10.1080/15287399209531672
  • Yu, H. A., DeTata, D. A., Lewis, S. W., & Silvester, D. S. (2017). Recent developments in the electrochemical detection of explosives: Towards field-deployable devices for forensic science. Trac-Trends in Analytical Chemistry, 97, 374-384. doi:10.1016/j.trac.2017.10.007
  • Zhang, Q., Zhang, D. M., Lu, Y. L., Yao, Y., Li, S., & Liu, Q. J. (2015). Graphene oxide-based optical biosensor functionalized with peptides for explosive detection. Biosensors & Bioelectronics, 68, 494-499. doi:10.1016/j.bios.2015.01.040
  • Zhao, Y. F., Xu, L. B., Kong, F. L., & Yu, L. (2021). Design and preparation of poly(tannic acid) nanoparticles with intrinsic fluorescence: A sensitive detector of picric acid. Chemical Engineering Journal, 416, 129090. doi:10.1016/j.cej.2021.129090
  • Zheng, Y. C., Wang, S., Li, R. F., Pan, L., Li, L. Q., Qi, Z. P., & Li, C. J. (2021). Highly selective detection of nitroaromatic explosive 2,4,6-trinitrophenol (TNP) using N-doped carbon dots. Research on Chemical Intermediates, 47(6), 2421-2431. doi:10.1007/s11164-021-04410-0
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sensör Teknolojisi , Organik Kimya (Diğer)
Bölüm Kimya / Chemistry
Yazarlar

Ayhan Altun 0000-0002-0931-4693

Kenan Buldurun 0000-0002-2462-7006

Nevin Turan 0000-0001-6740-6812

Erken Görünüm Tarihi 20 Şubat 2025
Yayımlanma Tarihi 1 Mart 2025
Gönderilme Tarihi 29 Ağustos 2024
Kabul Tarihi 3 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Altun, A., Buldurun, K., & Turan, N. (2025). Enhanced Luminescent Probe Utilizing Schiff Base Ligand for 2,4,6-Trinitrophenol Detection in Aqueous Media. Journal of the Institute of Science and Technology, 15(1), 228-240. https://doi.org/10.21597/jist.1540673
AMA Altun A, Buldurun K, Turan N. Enhanced Luminescent Probe Utilizing Schiff Base Ligand for 2,4,6-Trinitrophenol Detection in Aqueous Media. Iğdır Üniv. Fen Bil Enst. Der. Mart 2025;15(1):228-240. doi:10.21597/jist.1540673
Chicago Altun, Ayhan, Kenan Buldurun, ve Nevin Turan. “Enhanced Luminescent Probe Utilizing Schiff Base Ligand for 2,4,6-Trinitrophenol Detection in Aqueous Media”. Journal of the Institute of Science and Technology 15, sy. 1 (Mart 2025): 228-40. https://doi.org/10.21597/jist.1540673.
EndNote Altun A, Buldurun K, Turan N (01 Mart 2025) Enhanced Luminescent Probe Utilizing Schiff Base Ligand for 2,4,6-Trinitrophenol Detection in Aqueous Media. Journal of the Institute of Science and Technology 15 1 228–240.
IEEE A. Altun, K. Buldurun, ve N. Turan, “Enhanced Luminescent Probe Utilizing Schiff Base Ligand for 2,4,6-Trinitrophenol Detection in Aqueous Media”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 1, ss. 228–240, 2025, doi: 10.21597/jist.1540673.
ISNAD Altun, Ayhan vd. “Enhanced Luminescent Probe Utilizing Schiff Base Ligand for 2,4,6-Trinitrophenol Detection in Aqueous Media”. Journal of the Institute of Science and Technology 15/1 (Mart 2025), 228-240. https://doi.org/10.21597/jist.1540673.
JAMA Altun A, Buldurun K, Turan N. Enhanced Luminescent Probe Utilizing Schiff Base Ligand for 2,4,6-Trinitrophenol Detection in Aqueous Media. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:228–240.
MLA Altun, Ayhan vd. “Enhanced Luminescent Probe Utilizing Schiff Base Ligand for 2,4,6-Trinitrophenol Detection in Aqueous Media”. Journal of the Institute of Science and Technology, c. 15, sy. 1, 2025, ss. 228-40, doi:10.21597/jist.1540673.
Vancouver Altun A, Buldurun K, Turan N. Enhanced Luminescent Probe Utilizing Schiff Base Ligand for 2,4,6-Trinitrophenol Detection in Aqueous Media. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(1):228-40.