Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafen Oksit Miktarının In2O3-İndirgenmiş Grafen Oksit Kompozit Filminin Yapısı ve Morfolojisi Üzerindeki Etkisi

Yıl 2025, Cilt: 15 Sayı: 2, 615 - 623, 01.06.2025
https://doi.org/10.21597/jist.1545430

Öz

Bu çalışmada, elektrokimyasal bir teknik kullanılarak ilk defa tek kapta indiyum oksitle indirgenmiş grafen oksit (In2O3-rGO) kompozitleri üretildi. Grafen oksit (GO) miktarının kompozit yapının kompozisyonu ve morfolojisi üzerindeki etkisi incelendi. Bu amaçla, GO ve In3+ iyonları içeren elektrolit çözeltileri farklı hacim oranlarında karıştırıldı. Biriktirmeler farklı elektrolit kompozisyonlarında sabit potansiyelde gerçekleştirildi. Farklı deneysel parametreler altında hazırlanan kompozit yapıların karakterizasyonları X-ışını kırınım spektroskopisi (XRD), X-ışını fotoelektron spektroskopisi (XPS), Raman spektroskopisi ve alan etkili taramalı elektron mikroskobu (FESEM) teknikleri kullanılarak incelendi. En iyi kompozisyona sahip In2O3-rGO kompozitinin hacimce 1:1 GO:In3+ elektrolit oranında elde edildiği sonucuna varıldı.

Kaynakça

  • Alaizeri, Z. M., Alhadlaq, H. A., Aldawood, S., Akhtar, M. J., Aziz, A. A., & Ahamed, M. (2023). Photocatalytic Degradation of Methylene Blue and Anticancer Response of In2O3/RGO Nanocomposites Prepared by a Microwave-Assisted Hydrothermal Synthesis Process. Molecules, 28(13), Article 13. https://doi.org/10.3390/molecules28135153
  • Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., & Atieh, M. A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 45(11), 14439–14448. https://doi.org/10.1016/j.ceramint.2019.04.165
  • Anand, K., Kaur, J., Singh, R. C., & Thangaraj, R. (2016). Structural, optical and gas sensing properties of pure and Mn-doped In2O3 nanoparticles. Ceramics International, 42(9), 10957–10966. https://doi.org/10.1016/j.ceramint.2016.03.233
  • Doğan, H. Ö. (2019). Ethanol electro-oxidation in alkaline media on Pd/electrodeposited reduced graphene oxide nanocomposite modified nickel foam electrode. Solid State Sciences, 98, 106029. https://doi.org/10.1016/j.solidstatesciences.2019.106029
  • Doğan, H. Ö., Çepni, E., Urhan, B. K., & Eryiğit, M. (2019). Non-Enzymatic Amperometric Detection of H2O2 on One-Step Electrochemical Fabricated Cu2O/Electrochemically Reduced Graphene Oxide Nanocomposite. ChemistrySelect, 4(28), 8317–8321. https://doi.org/10.1002/slct.201901588
  • El-Khouly, S. M., Fathy, N. A., Farag, H. K., & Aboelenin, R. M. M. (2020). In2O3 catalyst supported on carbonaceous nanohybrid for enhancing the removal of methyl orange dye from aqueous solutions. Desalination and Water Treatment, 174, 344–353. https://doi.org/10.5004/dwt.2020.24840
  • Eryiğit, M., Kurt Urhan, B., Doğan, H. Ö., Özer, T. Ö., & Demir, Ü. (2022). ZnO Nanosheets-Decorated ERGO Layers: An Efficient Electrochemical Sensor for Non-Enzymatic Uric Acid Detection. IEEE Sensors Journal, 22(6), 5555–5561. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2022.3150088
  • Fang, J., Ma, Z.-H., Xue, J.-J., Chen, X., Xiao, R.-P., & Song, J.-M. (2022). Au doped In2O3 nanoparticles: Preparation, and their ethanol detection with high performance. Materials Science in Semiconductor Processing, 146, 106701. https://doi.org/10.1016/j.mssp.2022.106701
  • Gan, J., Lu, X., Wu, J., Xie, S., Zhai, T., Yu, M., Zhang, Z., Mao, Y., Wang, S. C. I., Shen, Y., & Tong, Y. (2013). Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Scientific Reports, 3(1), 1021. https://doi.org/10.1038/srep01021
  • Guo, L., Liang, H., Hu, H., Shi, S., Wang, C., Lv, S., Yang, H., Li, H., de Rooij, N. F., Lee, Y.-K., French, P. J., Wang, Y., & Zhou, G. (2023). Large-Area and Visible-Light-Driven Heterojunctions of In2O3/Graphene Built for ppb-Level Formaldehyde Detection at Room Temperature. ACS Applied Materials & Interfaces, 15(14), 18205–18216. https://doi.org/10.1021/acsami.3c00218
  • Gurlo, A., Ivanovskaya, M., Pfau, A., Weimar, U., & Göpel, W. (1997). Sol-gel prepared In2O3 thin films. Thin Solid Films, 307(1), 288–293. https://doi.org/10.1016/S0040-6090(97)00295-2
  • Ioni, Y. V., Kraevsky, S. V., Groshkova, Y. A., & Buslaeva, E. Yu. (2021). Immobilization of In2O3 nanoparticles on the surface of reduced graphene oxide. Mendeleev Communications, 31(5), 718–720. https://doi.org/10.1016/j.mencom.2021.09.042
  • Kurt Urhan, B., Öznülüer, T., Demir, Ü., & Öztürk Doğan, H. (2019). One-Pot Electrochemical Synthesis of Lead Oxide- Electrochemically Reduced Graphene Oxide Nanostructures and Their Electrocatalytic Applications. IEEE Sensors Journal, 19(13), 4781–4788. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2019.2904738
  • Mao, Y., Jiang, Y., Liu, H., Jiang, Y., Li, M., Su, W., & He, R. (2024). Ambient electrocatalytic synthesis of urea by co-reduction of NO3− and CO2 over graphene-supported In2O3. Chinese Chemical Letters, 35(3), 108540. https://doi.org/10.1016/j.cclet.2023.108540
  • Mostafa, N. Y., Badawi, A., & Ahmed, S. I. (2018). Influence of Cu and Ag doping on structure and optical properties of In2O3 thin film prepared by spray pyrolysis. Results in Physics, 10, 126–131. https://doi.org/10.1016/j.rinp.2018.05.030
  • Öztürk Doğan, H., & Kurt Urhan, B. (2023). NiS@CuBi2O4/ERGO heterostructured electro-catalyst for enhanced hydrogen evolution reaction. Micro and Nanostructures, 183, 207666. https://doi.org/10.1016/j.micrna.2023.207666
  • Prakash, R., Kumar, S., Ahmed, F., Lee, C. G., & Song, J. I. (2011). Room temperature ferromagnetism in Ni doped In2O3 nanoparticles. Thin Solid Films, 519(23), 8243–8246. https://doi.org/10.1016/j.tsf.2011.03.105
  • Sawant, J. P., Pathan, H. M., & Kale, R. B. (2021). Spray Pyrolytic Deposition of CuInS2 Thin Films: Properties and Applications. Engineered Science, Volume 13 (March 2021)(8), 51–64.
  • Sekkat, A., Sanchez-Velasquez, C., Bardet, L., Weber, M., Jiménez, C., Bellet, D., Muñoz-Rojas, D., & Huong Nguyen, V. (2024). Towards enhanced transparent conductive nanocomposites based on metallic nanowire networks coated with metal oxides: A brief review. Journal of Materials Chemistry A, 12(38), 25600–25621. https://doi.org/10.1039/D4TA05370B
  • Shanmugasundaram, A., Gundimeda, V., Hou, T., & Lee, D. W. (2017). Realizing Synergy between In2O3 Nanocubes and Nitrogen-Doped Reduced Graphene Oxide: An Excellent Nanocomposite for the Selective and Sensitive Detection of CO at Ambient Temperatures. ACS Applied Materials & Interfaces, 9(37), 31728–31740. https://doi.org/10.1021/acsami.7b06253
  • Shifu, C., Xiaoling, Y., Huaye, Z., & Wei, L. (2010). Preparation, characterization and activity evaluation of heterostructure In2O3/In(OH)3 photocatalyst. Journal of Hazardous Materials, 180(1), 735–740. https://doi.org/10.1016/j.jhazmat.2010.04.108
  • Tuzluca, F. N., Yesilbag, Y. O., & Ertugrul, M. (2018). Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials. Applied Surface Science, 427, 956–964. https://doi.org/10.1016/j.apsusc.2017.08.127
  • Vakh, C., & Koronkiewicz, S. (2023). Surfactants application in sample preparation techniques: Insights, trends, and perspectives. TrAC Trends in Analytical Chemistry, 165, 117143. https://doi.org/10.1016/j.trac.2023.117143
  • Wiranwetchayan, O., Ruankham, P., Promnopas, W., Choopun, S., Singjai, P., Chaipanich, A., & Thongtem, S. (2018). Effect of nanoporous In2O3 film fabricated on TiO2-In2O3 photoanode for photovoltaic performance via a sparking method. Journal of Solid State Electrochemistry, 22(8), 2531–2543. https://doi.org/10.1007/s10008-018-3968-1
  • Younis, A., & Osman, A. (2023). Solvent-free Organic Reaction Techniques as an Approach for Green Chemistry. Journal of the Turkish Chemical Society Section A: Chemistry, 10(2), Article 2. https://doi.org/10.18596/jotcsa.1188983
  • Zatsepin, D. A., Boukhvalov, D. W., Zatsepin, A. F., Vines, L., Gogova, D., Shur, V. Ya., & Esin, A. A. (2019). Bulk In2O3 crystals grown by chemical vapour transport: A combination of XPS and DFT studies. Journal of Materials Science: Materials in Electronics, 30(20), 18753–18758. https://doi.org/10.1007/s10854-019-02228-6
  • Zhu, L., Wang, Z., Wang, J., Liu, J., Zhang, J., & Yan, W. (2024). Pt-Embedded Metal–Organic Frameworks Deriving Pt/ZnO-In2O3 Electrospun Hollow Nanofibers for Enhanced Formaldehyde Gas Sensing. Chemosensors, 12(6), Article 6. https://doi.org/10.3390/chemosensors12060093
  • Zhu, P., Wu, W., Zhou, J., & Zhang, W. (2007). Preparation of size-controlled In2O3 nanoparticles. Applied Organometallic Chemistry, 21(10), 909–912. https://doi.org/10.1002/aoc.1300

Influence Of Graphene Oxide Amount on The Structure and Morphology of In2O3-Reduced Graphene Oxide Composite Film

Yıl 2025, Cilt: 15 Sayı: 2, 615 - 623, 01.06.2025
https://doi.org/10.21597/jist.1545430

Öz

In this study, indium oxide-reduced graphene oxide (In2O3-rGO) composites were produced in one-pot using an electrochemical technique for the first time. The effect of graphene oxide (GO) amount on the composition and morphology of the composite structure was investigated. For this purpose, electrolyte solutions containing GO and In3+ ions were mixed at different volume ratios. Deposits were carried out at constant potential in different electrolyte compositions. The characterizations of the composite structures prepared under different experimental parameters were investigated using X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and field effect scanning electron microscopy (FESEM) techniques. It was concluded that the In2O3-rGO composite with the best composition was obtained in 1:1 GO: In3+ electrolyte by volume.

Etik Beyan

“The article authors declare that there is no conflict of interest between them.”

Kaynakça

  • Alaizeri, Z. M., Alhadlaq, H. A., Aldawood, S., Akhtar, M. J., Aziz, A. A., & Ahamed, M. (2023). Photocatalytic Degradation of Methylene Blue and Anticancer Response of In2O3/RGO Nanocomposites Prepared by a Microwave-Assisted Hydrothermal Synthesis Process. Molecules, 28(13), Article 13. https://doi.org/10.3390/molecules28135153
  • Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., & Atieh, M. A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 45(11), 14439–14448. https://doi.org/10.1016/j.ceramint.2019.04.165
  • Anand, K., Kaur, J., Singh, R. C., & Thangaraj, R. (2016). Structural, optical and gas sensing properties of pure and Mn-doped In2O3 nanoparticles. Ceramics International, 42(9), 10957–10966. https://doi.org/10.1016/j.ceramint.2016.03.233
  • Doğan, H. Ö. (2019). Ethanol electro-oxidation in alkaline media on Pd/electrodeposited reduced graphene oxide nanocomposite modified nickel foam electrode. Solid State Sciences, 98, 106029. https://doi.org/10.1016/j.solidstatesciences.2019.106029
  • Doğan, H. Ö., Çepni, E., Urhan, B. K., & Eryiğit, M. (2019). Non-Enzymatic Amperometric Detection of H2O2 on One-Step Electrochemical Fabricated Cu2O/Electrochemically Reduced Graphene Oxide Nanocomposite. ChemistrySelect, 4(28), 8317–8321. https://doi.org/10.1002/slct.201901588
  • El-Khouly, S. M., Fathy, N. A., Farag, H. K., & Aboelenin, R. M. M. (2020). In2O3 catalyst supported on carbonaceous nanohybrid for enhancing the removal of methyl orange dye from aqueous solutions. Desalination and Water Treatment, 174, 344–353. https://doi.org/10.5004/dwt.2020.24840
  • Eryiğit, M., Kurt Urhan, B., Doğan, H. Ö., Özer, T. Ö., & Demir, Ü. (2022). ZnO Nanosheets-Decorated ERGO Layers: An Efficient Electrochemical Sensor for Non-Enzymatic Uric Acid Detection. IEEE Sensors Journal, 22(6), 5555–5561. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2022.3150088
  • Fang, J., Ma, Z.-H., Xue, J.-J., Chen, X., Xiao, R.-P., & Song, J.-M. (2022). Au doped In2O3 nanoparticles: Preparation, and their ethanol detection with high performance. Materials Science in Semiconductor Processing, 146, 106701. https://doi.org/10.1016/j.mssp.2022.106701
  • Gan, J., Lu, X., Wu, J., Xie, S., Zhai, T., Yu, M., Zhang, Z., Mao, Y., Wang, S. C. I., Shen, Y., & Tong, Y. (2013). Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Scientific Reports, 3(1), 1021. https://doi.org/10.1038/srep01021
  • Guo, L., Liang, H., Hu, H., Shi, S., Wang, C., Lv, S., Yang, H., Li, H., de Rooij, N. F., Lee, Y.-K., French, P. J., Wang, Y., & Zhou, G. (2023). Large-Area and Visible-Light-Driven Heterojunctions of In2O3/Graphene Built for ppb-Level Formaldehyde Detection at Room Temperature. ACS Applied Materials & Interfaces, 15(14), 18205–18216. https://doi.org/10.1021/acsami.3c00218
  • Gurlo, A., Ivanovskaya, M., Pfau, A., Weimar, U., & Göpel, W. (1997). Sol-gel prepared In2O3 thin films. Thin Solid Films, 307(1), 288–293. https://doi.org/10.1016/S0040-6090(97)00295-2
  • Ioni, Y. V., Kraevsky, S. V., Groshkova, Y. A., & Buslaeva, E. Yu. (2021). Immobilization of In2O3 nanoparticles on the surface of reduced graphene oxide. Mendeleev Communications, 31(5), 718–720. https://doi.org/10.1016/j.mencom.2021.09.042
  • Kurt Urhan, B., Öznülüer, T., Demir, Ü., & Öztürk Doğan, H. (2019). One-Pot Electrochemical Synthesis of Lead Oxide- Electrochemically Reduced Graphene Oxide Nanostructures and Their Electrocatalytic Applications. IEEE Sensors Journal, 19(13), 4781–4788. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2019.2904738
  • Mao, Y., Jiang, Y., Liu, H., Jiang, Y., Li, M., Su, W., & He, R. (2024). Ambient electrocatalytic synthesis of urea by co-reduction of NO3− and CO2 over graphene-supported In2O3. Chinese Chemical Letters, 35(3), 108540. https://doi.org/10.1016/j.cclet.2023.108540
  • Mostafa, N. Y., Badawi, A., & Ahmed, S. I. (2018). Influence of Cu and Ag doping on structure and optical properties of In2O3 thin film prepared by spray pyrolysis. Results in Physics, 10, 126–131. https://doi.org/10.1016/j.rinp.2018.05.030
  • Öztürk Doğan, H., & Kurt Urhan, B. (2023). NiS@CuBi2O4/ERGO heterostructured electro-catalyst for enhanced hydrogen evolution reaction. Micro and Nanostructures, 183, 207666. https://doi.org/10.1016/j.micrna.2023.207666
  • Prakash, R., Kumar, S., Ahmed, F., Lee, C. G., & Song, J. I. (2011). Room temperature ferromagnetism in Ni doped In2O3 nanoparticles. Thin Solid Films, 519(23), 8243–8246. https://doi.org/10.1016/j.tsf.2011.03.105
  • Sawant, J. P., Pathan, H. M., & Kale, R. B. (2021). Spray Pyrolytic Deposition of CuInS2 Thin Films: Properties and Applications. Engineered Science, Volume 13 (March 2021)(8), 51–64.
  • Sekkat, A., Sanchez-Velasquez, C., Bardet, L., Weber, M., Jiménez, C., Bellet, D., Muñoz-Rojas, D., & Huong Nguyen, V. (2024). Towards enhanced transparent conductive nanocomposites based on metallic nanowire networks coated with metal oxides: A brief review. Journal of Materials Chemistry A, 12(38), 25600–25621. https://doi.org/10.1039/D4TA05370B
  • Shanmugasundaram, A., Gundimeda, V., Hou, T., & Lee, D. W. (2017). Realizing Synergy between In2O3 Nanocubes and Nitrogen-Doped Reduced Graphene Oxide: An Excellent Nanocomposite for the Selective and Sensitive Detection of CO at Ambient Temperatures. ACS Applied Materials & Interfaces, 9(37), 31728–31740. https://doi.org/10.1021/acsami.7b06253
  • Shifu, C., Xiaoling, Y., Huaye, Z., & Wei, L. (2010). Preparation, characterization and activity evaluation of heterostructure In2O3/In(OH)3 photocatalyst. Journal of Hazardous Materials, 180(1), 735–740. https://doi.org/10.1016/j.jhazmat.2010.04.108
  • Tuzluca, F. N., Yesilbag, Y. O., & Ertugrul, M. (2018). Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials. Applied Surface Science, 427, 956–964. https://doi.org/10.1016/j.apsusc.2017.08.127
  • Vakh, C., & Koronkiewicz, S. (2023). Surfactants application in sample preparation techniques: Insights, trends, and perspectives. TrAC Trends in Analytical Chemistry, 165, 117143. https://doi.org/10.1016/j.trac.2023.117143
  • Wiranwetchayan, O., Ruankham, P., Promnopas, W., Choopun, S., Singjai, P., Chaipanich, A., & Thongtem, S. (2018). Effect of nanoporous In2O3 film fabricated on TiO2-In2O3 photoanode for photovoltaic performance via a sparking method. Journal of Solid State Electrochemistry, 22(8), 2531–2543. https://doi.org/10.1007/s10008-018-3968-1
  • Younis, A., & Osman, A. (2023). Solvent-free Organic Reaction Techniques as an Approach for Green Chemistry. Journal of the Turkish Chemical Society Section A: Chemistry, 10(2), Article 2. https://doi.org/10.18596/jotcsa.1188983
  • Zatsepin, D. A., Boukhvalov, D. W., Zatsepin, A. F., Vines, L., Gogova, D., Shur, V. Ya., & Esin, A. A. (2019). Bulk In2O3 crystals grown by chemical vapour transport: A combination of XPS and DFT studies. Journal of Materials Science: Materials in Electronics, 30(20), 18753–18758. https://doi.org/10.1007/s10854-019-02228-6
  • Zhu, L., Wang, Z., Wang, J., Liu, J., Zhang, J., & Yan, W. (2024). Pt-Embedded Metal–Organic Frameworks Deriving Pt/ZnO-In2O3 Electrospun Hollow Nanofibers for Enhanced Formaldehyde Gas Sensing. Chemosensors, 12(6), Article 6. https://doi.org/10.3390/chemosensors12060093
  • Zhu, P., Wu, W., Zhou, J., & Zhang, W. (2007). Preparation of size-controlled In2O3 nanoparticles. Applied Organometallic Chemistry, 21(10), 909–912. https://doi.org/10.1002/aoc.1300
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektroanalitik Kimya, Elektrokimyasal Teknolojiler
Bölüm Kimya / Chemistry
Yazarlar

Hülya Öztürk Doğan 0000-0002-4072-7744

Mertcan Sezgin 0009-0004-0504-8756

Erken Görünüm Tarihi 24 Mayıs 2025
Yayımlanma Tarihi 1 Haziran 2025
Gönderilme Tarihi 8 Eylül 2024
Kabul Tarihi 25 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Öztürk Doğan, H., & Sezgin, M. (2025). Influence Of Graphene Oxide Amount on The Structure and Morphology of In2O3-Reduced Graphene Oxide Composite Film. Journal of the Institute of Science and Technology, 15(2), 615-623. https://doi.org/10.21597/jist.1545430
AMA Öztürk Doğan H, Sezgin M. Influence Of Graphene Oxide Amount on The Structure and Morphology of In2O3-Reduced Graphene Oxide Composite Film. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2025;15(2):615-623. doi:10.21597/jist.1545430
Chicago Öztürk Doğan, Hülya, ve Mertcan Sezgin. “Influence Of Graphene Oxide Amount on The Structure and Morphology of In2O3-Reduced Graphene Oxide Composite Film”. Journal of the Institute of Science and Technology 15, sy. 2 (Haziran 2025): 615-23. https://doi.org/10.21597/jist.1545430.
EndNote Öztürk Doğan H, Sezgin M (01 Haziran 2025) Influence Of Graphene Oxide Amount on The Structure and Morphology of In2O3-Reduced Graphene Oxide Composite Film. Journal of the Institute of Science and Technology 15 2 615–623.
IEEE H. Öztürk Doğan ve M. Sezgin, “Influence Of Graphene Oxide Amount on The Structure and Morphology of In2O3-Reduced Graphene Oxide Composite Film”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 2, ss. 615–623, 2025, doi: 10.21597/jist.1545430.
ISNAD Öztürk Doğan, Hülya - Sezgin, Mertcan. “Influence Of Graphene Oxide Amount on The Structure and Morphology of In2O3-Reduced Graphene Oxide Composite Film”. Journal of the Institute of Science and Technology 15/2 (Haziran2025), 615-623. https://doi.org/10.21597/jist.1545430.
JAMA Öztürk Doğan H, Sezgin M. Influence Of Graphene Oxide Amount on The Structure and Morphology of In2O3-Reduced Graphene Oxide Composite Film. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:615–623.
MLA Öztürk Doğan, Hülya ve Mertcan Sezgin. “Influence Of Graphene Oxide Amount on The Structure and Morphology of In2O3-Reduced Graphene Oxide Composite Film”. Journal of the Institute of Science and Technology, c. 15, sy. 2, 2025, ss. 615-23, doi:10.21597/jist.1545430.
Vancouver Öztürk Doğan H, Sezgin M. Influence Of Graphene Oxide Amount on The Structure and Morphology of In2O3-Reduced Graphene Oxide Composite Film. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(2):615-23.