Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 15 Sayı: 3, 831 - 844, 01.09.2025
https://doi.org/10.21597/jist.1573764

Öz

Kaynakça

  • Abulgasem, S., Tubbal, F., Raad, R., Theoharis, P. I., Lu, S., & Iranmanesh, S. (2021). Antenna designs for CubeSats: A review. IEEE Access, 9, 45289-45324.
  • Abulgasem, S., Tubbal, F., Raad, R., Theoharis, P. I., Lu, S., & Iranmanesh, S. (2021). Antenna designs for CubeSats: A review. IEEE Access, 9, 45289-45324.
  • ARICAN, G. O., & Karahan, M. (2023). A Novel Broadband Filtenna with using SRR and DGS for Wireless Communication Applications. Gazi University Journal of Science Part C: Design and Technology, 1-1.
  • ARICAN, G. O., & Karahan, M. (2023). A Novel Broadband Filtenna with using SRR and DGS for Wireless Communication Applications. Gazi University Journal of Science Part C: Design and Technology, 1-1.
  • Ataş, I., Abbasov, T., & Kurt, M. B. (2020). Gain enhancement and miniaturization of dual-band compact patch antenna. European Journal of Technique (EJT), 10(2), 232-241.
  • Ataş, I., Abbasov, T., & Kurt, M. B. (2020). Gain enhancement and miniaturization of dual-band compact patch antenna. European Journal of Technique (EJT), 10(2), 232-241.
  • Baş, R., & Kızılay, A. (2022). Asymmetrical Coplanar Vivaldi Antenna Design. Avrupa Bilim ve Teknoloji Dergisi, (34), 724-728.
  • Baş, R., & Kızılay, A. (2022). Asymmetrical Coplanar Vivaldi Antenna Design. Avrupa Bilim ve Teknoloji Dergisi, (34), 724-728.
  • Balanis, C. A. (2015). Antenna theory: analysis and design. John wiley & sons.
  • Balanis, C. A. (2015). Antenna theory: analysis and design. John wiley & sons.
  • Benzaghta, M., Er, B., Bilgin, G., Aydın, E., & Kara, A. (2022). A Miniaturized Multi-layer Microstrip Antenna for Linear Wireless Sensor Network Monitoring Systems. Gazi University Journal of Science, 35(3), 875-884.
  • Benzaghta, M., Er, B., Bilgin, G., Aydın, E., & Kara, A. (2022). A Miniaturized Multi-layer Microstrip Antenna for Linear Wireless Sensor Network Monitoring Systems. Gazi University Journal of Science, 35(3), 875-884.
  • Civerolo, M. P. (2010). Aperture Coupled Microstrip Antenna Design and Analysis. California Polytechnic State University.
  • Civerolo, M. P. (2010). Aperture Coupled Microstrip Antenna Design and Analysis. California Polytechnic State University.
  • Celik, F. T., & Karaçuha, K. (2022). A conical-beam dual-band double aperture-coupled stacked elliptical patch antenna design for 5G. Turkish Journal of Electrical Engineering and Computer Sciences, 30(6), 2073-2085.
  • Celik, F. T., & Karaçuha, K. (2022). A conical-beam dual-band double aperture-coupled stacked elliptical patch antenna design for 5G. Turkish Journal of Electrical Engineering and Computer Sciences, 30(6), 2073-2085.
  • Fallahpour, M., & Zoughi, R. (2017). Antenna miniaturization techniques: A review of topology-and material-based methods. IEEE Antennas and Propagation Magazine, 60(1), 38-50.
  • Fallahpour, M., & Zoughi, R. (2017). Antenna miniaturization techniques: A review of topology-and material-based methods. IEEE Antennas and Propagation Magazine, 60(1), 38-50.
  • Iqbal, K., & Khan, Q. U. (2022). Review of metasurfaces through unit cell design and numerical extraction of parameters and their applications in antennas. IEEE Access, 10, 112368-112391.
  • Iqbal, K., & Khan, Q. U. (2022). Review of metasurfaces through unit cell design and numerical extraction of parameters and their applications in antennas. IEEE Access, 10, 112368-112391.
  • Liu, S., Theoharis, P. I., Raad, R., Tubbal, F., Theoharis, A., Iranmanesh, S., ... & Matekovits, L. (2022). A survey on CubeSat missions and their antenna designs. Electronics, 11(13), 2021.
  • Liu, S., Theoharis, P. I., Raad, R., Tubbal, F., Theoharis, A., Iranmanesh, S., ... & Matekovits, L. (2022). A survey on CubeSat missions and their antenna designs. Electronics, 11(13), 2021.
  • Moussa, F. Z., Ferouani, S., & Belhadef, Y. (2022). New Design of Metamaterial Miniature Patch Antenna with DGS for 5G Mobile Communications. Microwave Review, 28(2).
  • Moussa, F. Z., Ferouani, S., & Belhadef, Y. (2022). New Design of Metamaterial Miniature Patch Antenna with DGS for 5G Mobile Communications. Microwave Review, 28(2).
  • Painam, S., & Bhuma, C. (2019). Miniaturizing a microstrip antenna using metamaterials and metasurfaces [antenna applications corner]. IEEE Antennas and Propagation Magazine, 61(1), 91-135.
  • Painam, S., & Bhuma, C. (2019). Miniaturizing a microstrip antenna using metamaterials and metasurfaces [antenna applications corner]. IEEE Antennas and Propagation Magazine, 61(1), 91-135.
  • Pozar, D. M. (1996). A review of aperture coupled microstrip antennas: History, operation, development, and applications. University of Massachusetts at Amherst, 1.
  • Pozar, D. M. (1996). A review of aperture coupled microstrip antennas: History, operation, development, and applications. University of Massachusetts at Amherst, 1.
  • Raghavendra, C., Ammal, M. N., & Madhav, B. T. P. (2023). Metamaterial inspired square gap defected ground structured wideband dielectric resonator antenna for microwave applications. Heliyon, 9(2).
  • Raghavendra, C., Ammal, M. N., & Madhav, B. T. P. (2023). Metamaterial inspired square gap defected ground structured wideband dielectric resonator antenna for microwave applications. Heliyon, 9(2).
  • Ramzan, M., & Topalli, K. (2015). A miniaturized patch antenna by using a CSRR loading plane. International Journal of Antennas and Propagation, 2015(1), 495629.
  • Ramzan, M., & Topalli, K. (2015). A miniaturized patch antenna by using a CSRR loading plane. International Journal of Antennas and Propagation, 2015(1), 495629.
  • Singh, J., & Lohar, F. L. (2022, February). Metamaterial-based miniaturized DGS antenna for wireless applications. In IOP Conference Series: Materials Science and Engineering (Vol. 1225, No. 1, p. 012035). IOP Publishing.
  • Singh, J., & Lohar, F. L. (2022, February). Metamaterial-based miniaturized DGS antenna for wireless applications. In IOP Conference Series: Materials Science and Engineering (Vol. 1225, No. 1, p. 012035). IOP Publishing.
  • Singh, V., Dwivedi, A. K., & Narayanaswamy, N. K. (2024). Metamaterial/metasurface applications in antenna domain. Opto-Electronics Review, e151692-e151692.
  • Singh, V., Dwivedi, A. K., & Narayanaswamy, N. K. (2024). Metamaterial/metasurface applications in antenna domain. Opto-Electronics Review, e151692-e151692.
  • Tadesse, A. D., Acharya, O. P., & Sahu, S. (2020). Application of metamaterials for performance enhancement of planar antennas: A review. International Journal of RF and Microwave Computer‐Aided Engineering, 30(5), e22154.
  • Tadesse, A. D., Acharya, O. P., & Sahu, S. (2020). Application of metamaterials for performance enhancement of planar antennas: A review. International Journal of RF and Microwave Computer‐Aided Engineering, 30(5), e22154.
  • Ünal, E., & Doğan, C. (2020). Metamalzeme Yapılarıyla Fraktal Anten Parametrelerinin İyileştirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(1), 67-78.
  • Ünal, E., & Doğan, C. (2020). Metamalzeme Yapılarıyla Fraktal Anten Parametrelerinin İyileştirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(1), 67-78.
  • Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Miniaturization of microstrip loop antenna for wireless applications based on metamaterial metasurface. AEU-International Journal of Electronics and Communications, 83, 32-39.
  • Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Miniaturization of microstrip loop antenna for wireless applications based on metamaterial metasurface. AEU-International Journal of Electronics and Communications, 83, 32-39.
  • Zhu, H. L., Cheung, S. W., & Yuk, T. I. (2015). Miniaturization of patch antenna using metasurface. Microwave and optical technology letters, 57(9), 2050-2056.
  • Zhu, H. L., Cheung, S. W., & Yuk, T. I. (2015). Miniaturization of patch antenna using metasurface. Microwave and optical technology letters, 57(9), 2050-2056.

Miniaturized Aperture-Coupled Patch Antenna Using Metasurface Inspired DGS

Yıl 2025, Cilt: 15 Sayı: 3, 831 - 844, 01.09.2025
https://doi.org/10.21597/jist.1573764

Öz

In this paper, we present a new design of a compact aperture-coupled patch antenna for CubeSat applications. By loading a metasurface inspired defected ground structure (DGS) onto the ground plane of the aperture-coupled patch antenna, we achieved a miniaturized antenna that has 4.88 dBi realized gain, 96% efficiency, and 236 MHz bandwidth operating at 5.1 GHz. In addition, a conventional aperture-coupled patch antenna at 5.1 GHz was designed and compared with the miniaturized antenna. While the space covered by the conventional antenna is 1890 mm2, the space covered by the miniature antenna is 622 mm2. This corresponds to a reduction of approximately 67%. As a result, while the value of the conventional antenna was 30% better in terms of gain, it was seen that the bandwidth and efficiency were higher in the miniaturized antenna.

Kaynakça

  • Abulgasem, S., Tubbal, F., Raad, R., Theoharis, P. I., Lu, S., & Iranmanesh, S. (2021). Antenna designs for CubeSats: A review. IEEE Access, 9, 45289-45324.
  • Abulgasem, S., Tubbal, F., Raad, R., Theoharis, P. I., Lu, S., & Iranmanesh, S. (2021). Antenna designs for CubeSats: A review. IEEE Access, 9, 45289-45324.
  • ARICAN, G. O., & Karahan, M. (2023). A Novel Broadband Filtenna with using SRR and DGS for Wireless Communication Applications. Gazi University Journal of Science Part C: Design and Technology, 1-1.
  • ARICAN, G. O., & Karahan, M. (2023). A Novel Broadband Filtenna with using SRR and DGS for Wireless Communication Applications. Gazi University Journal of Science Part C: Design and Technology, 1-1.
  • Ataş, I., Abbasov, T., & Kurt, M. B. (2020). Gain enhancement and miniaturization of dual-band compact patch antenna. European Journal of Technique (EJT), 10(2), 232-241.
  • Ataş, I., Abbasov, T., & Kurt, M. B. (2020). Gain enhancement and miniaturization of dual-band compact patch antenna. European Journal of Technique (EJT), 10(2), 232-241.
  • Baş, R., & Kızılay, A. (2022). Asymmetrical Coplanar Vivaldi Antenna Design. Avrupa Bilim ve Teknoloji Dergisi, (34), 724-728.
  • Baş, R., & Kızılay, A. (2022). Asymmetrical Coplanar Vivaldi Antenna Design. Avrupa Bilim ve Teknoloji Dergisi, (34), 724-728.
  • Balanis, C. A. (2015). Antenna theory: analysis and design. John wiley & sons.
  • Balanis, C. A. (2015). Antenna theory: analysis and design. John wiley & sons.
  • Benzaghta, M., Er, B., Bilgin, G., Aydın, E., & Kara, A. (2022). A Miniaturized Multi-layer Microstrip Antenna for Linear Wireless Sensor Network Monitoring Systems. Gazi University Journal of Science, 35(3), 875-884.
  • Benzaghta, M., Er, B., Bilgin, G., Aydın, E., & Kara, A. (2022). A Miniaturized Multi-layer Microstrip Antenna for Linear Wireless Sensor Network Monitoring Systems. Gazi University Journal of Science, 35(3), 875-884.
  • Civerolo, M. P. (2010). Aperture Coupled Microstrip Antenna Design and Analysis. California Polytechnic State University.
  • Civerolo, M. P. (2010). Aperture Coupled Microstrip Antenna Design and Analysis. California Polytechnic State University.
  • Celik, F. T., & Karaçuha, K. (2022). A conical-beam dual-band double aperture-coupled stacked elliptical patch antenna design for 5G. Turkish Journal of Electrical Engineering and Computer Sciences, 30(6), 2073-2085.
  • Celik, F. T., & Karaçuha, K. (2022). A conical-beam dual-band double aperture-coupled stacked elliptical patch antenna design for 5G. Turkish Journal of Electrical Engineering and Computer Sciences, 30(6), 2073-2085.
  • Fallahpour, M., & Zoughi, R. (2017). Antenna miniaturization techniques: A review of topology-and material-based methods. IEEE Antennas and Propagation Magazine, 60(1), 38-50.
  • Fallahpour, M., & Zoughi, R. (2017). Antenna miniaturization techniques: A review of topology-and material-based methods. IEEE Antennas and Propagation Magazine, 60(1), 38-50.
  • Iqbal, K., & Khan, Q. U. (2022). Review of metasurfaces through unit cell design and numerical extraction of parameters and their applications in antennas. IEEE Access, 10, 112368-112391.
  • Iqbal, K., & Khan, Q. U. (2022). Review of metasurfaces through unit cell design and numerical extraction of parameters and their applications in antennas. IEEE Access, 10, 112368-112391.
  • Liu, S., Theoharis, P. I., Raad, R., Tubbal, F., Theoharis, A., Iranmanesh, S., ... & Matekovits, L. (2022). A survey on CubeSat missions and their antenna designs. Electronics, 11(13), 2021.
  • Liu, S., Theoharis, P. I., Raad, R., Tubbal, F., Theoharis, A., Iranmanesh, S., ... & Matekovits, L. (2022). A survey on CubeSat missions and their antenna designs. Electronics, 11(13), 2021.
  • Moussa, F. Z., Ferouani, S., & Belhadef, Y. (2022). New Design of Metamaterial Miniature Patch Antenna with DGS for 5G Mobile Communications. Microwave Review, 28(2).
  • Moussa, F. Z., Ferouani, S., & Belhadef, Y. (2022). New Design of Metamaterial Miniature Patch Antenna with DGS for 5G Mobile Communications. Microwave Review, 28(2).
  • Painam, S., & Bhuma, C. (2019). Miniaturizing a microstrip antenna using metamaterials and metasurfaces [antenna applications corner]. IEEE Antennas and Propagation Magazine, 61(1), 91-135.
  • Painam, S., & Bhuma, C. (2019). Miniaturizing a microstrip antenna using metamaterials and metasurfaces [antenna applications corner]. IEEE Antennas and Propagation Magazine, 61(1), 91-135.
  • Pozar, D. M. (1996). A review of aperture coupled microstrip antennas: History, operation, development, and applications. University of Massachusetts at Amherst, 1.
  • Pozar, D. M. (1996). A review of aperture coupled microstrip antennas: History, operation, development, and applications. University of Massachusetts at Amherst, 1.
  • Raghavendra, C., Ammal, M. N., & Madhav, B. T. P. (2023). Metamaterial inspired square gap defected ground structured wideband dielectric resonator antenna for microwave applications. Heliyon, 9(2).
  • Raghavendra, C., Ammal, M. N., & Madhav, B. T. P. (2023). Metamaterial inspired square gap defected ground structured wideband dielectric resonator antenna for microwave applications. Heliyon, 9(2).
  • Ramzan, M., & Topalli, K. (2015). A miniaturized patch antenna by using a CSRR loading plane. International Journal of Antennas and Propagation, 2015(1), 495629.
  • Ramzan, M., & Topalli, K. (2015). A miniaturized patch antenna by using a CSRR loading plane. International Journal of Antennas and Propagation, 2015(1), 495629.
  • Singh, J., & Lohar, F. L. (2022, February). Metamaterial-based miniaturized DGS antenna for wireless applications. In IOP Conference Series: Materials Science and Engineering (Vol. 1225, No. 1, p. 012035). IOP Publishing.
  • Singh, J., & Lohar, F. L. (2022, February). Metamaterial-based miniaturized DGS antenna for wireless applications. In IOP Conference Series: Materials Science and Engineering (Vol. 1225, No. 1, p. 012035). IOP Publishing.
  • Singh, V., Dwivedi, A. K., & Narayanaswamy, N. K. (2024). Metamaterial/metasurface applications in antenna domain. Opto-Electronics Review, e151692-e151692.
  • Singh, V., Dwivedi, A. K., & Narayanaswamy, N. K. (2024). Metamaterial/metasurface applications in antenna domain. Opto-Electronics Review, e151692-e151692.
  • Tadesse, A. D., Acharya, O. P., & Sahu, S. (2020). Application of metamaterials for performance enhancement of planar antennas: A review. International Journal of RF and Microwave Computer‐Aided Engineering, 30(5), e22154.
  • Tadesse, A. D., Acharya, O. P., & Sahu, S. (2020). Application of metamaterials for performance enhancement of planar antennas: A review. International Journal of RF and Microwave Computer‐Aided Engineering, 30(5), e22154.
  • Ünal, E., & Doğan, C. (2020). Metamalzeme Yapılarıyla Fraktal Anten Parametrelerinin İyileştirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(1), 67-78.
  • Ünal, E., & Doğan, C. (2020). Metamalzeme Yapılarıyla Fraktal Anten Parametrelerinin İyileştirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(1), 67-78.
  • Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Miniaturization of microstrip loop antenna for wireless applications based on metamaterial metasurface. AEU-International Journal of Electronics and Communications, 83, 32-39.
  • Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Miniaturization of microstrip loop antenna for wireless applications based on metamaterial metasurface. AEU-International Journal of Electronics and Communications, 83, 32-39.
  • Zhu, H. L., Cheung, S. W., & Yuk, T. I. (2015). Miniaturization of patch antenna using metasurface. Microwave and optical technology letters, 57(9), 2050-2056.
  • Zhu, H. L., Cheung, S. W., & Yuk, T. I. (2015). Miniaturization of patch antenna using metasurface. Microwave and optical technology letters, 57(9), 2050-2056.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Radyo Frekansı Mühendisliği
Bölüm Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Yazarlar

Osman Kaya 0000-0001-9035-9428

Hilal Koç Polat 0000-0003-2382-1736

Erken Görünüm Tarihi 31 Ağustos 2025
Yayımlanma Tarihi 1 Eylül 2025
Gönderilme Tarihi 25 Ekim 2024
Kabul Tarihi 7 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Kaya, O., & Koç Polat, H. (2025). Miniaturized Aperture-Coupled Patch Antenna Using Metasurface Inspired DGS. Journal of the Institute of Science and Technology, 15(3), 831-844. https://doi.org/10.21597/jist.1573764
AMA Kaya O, Koç Polat H. Miniaturized Aperture-Coupled Patch Antenna Using Metasurface Inspired DGS. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2025;15(3):831-844. doi:10.21597/jist.1573764
Chicago Kaya, Osman, ve Hilal Koç Polat. “Miniaturized Aperture-Coupled Patch Antenna Using Metasurface Inspired DGS”. Journal of the Institute of Science and Technology 15, sy. 3 (Eylül 2025): 831-44. https://doi.org/10.21597/jist.1573764.
EndNote Kaya O, Koç Polat H (01 Eylül 2025) Miniaturized Aperture-Coupled Patch Antenna Using Metasurface Inspired DGS. Journal of the Institute of Science and Technology 15 3 831–844.
IEEE O. Kaya ve H. Koç Polat, “Miniaturized Aperture-Coupled Patch Antenna Using Metasurface Inspired DGS”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 3, ss. 831–844, 2025, doi: 10.21597/jist.1573764.
ISNAD Kaya, Osman - Koç Polat, Hilal. “Miniaturized Aperture-Coupled Patch Antenna Using Metasurface Inspired DGS”. Journal of the Institute of Science and Technology 15/3 (Eylül2025), 831-844. https://doi.org/10.21597/jist.1573764.
JAMA Kaya O, Koç Polat H. Miniaturized Aperture-Coupled Patch Antenna Using Metasurface Inspired DGS. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:831–844.
MLA Kaya, Osman ve Hilal Koç Polat. “Miniaturized Aperture-Coupled Patch Antenna Using Metasurface Inspired DGS”. Journal of the Institute of Science and Technology, c. 15, sy. 3, 2025, ss. 831-44, doi:10.21597/jist.1573764.
Vancouver Kaya O, Koç Polat H. Miniaturized Aperture-Coupled Patch Antenna Using Metasurface Inspired DGS. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(3):831-44.