Araştırma Makalesi
BibTex RIS Kaynak Göster

Removal of Methyl Orange Peel from Aqueous Solutions with Modified Orange Peel

Yıl 2025, Cilt: 15 Sayı: 4, 1397 - 1410
https://doi.org/10.21597/jist.1658031

Öz

In this study, the removal of methyl orange (MO) from aqueous solutions by adsorption using modified orange peel (MPK) was investigated. The effects of contact time and initial MO concentration on the adsorption process on the efficiency were evaluated; the optimum conditions for MO removal were determined to be pH 2.11, initial MO concentration 350 mg/L and contact time 70 minutes. Changes in the surface morphology and chemical composition of MPK before and after adsorption were characterised by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analysis. The results showed that MO adsorption obeyed the Langmuir isotherm model and chemical adsorption and irreversibility effects played an important role. The maximum adsorption capacity for MO was calculated as 37.31, 39.06 and 41.49 mg/g at 25, 35 and 45 °C, respectively. Kinetic analyses showed that MO removal was consistent with the pseudo-second order (PSO) kinetic model. Overall, the high adsorption capacity and low cost of MPK make it an effective and applicable adsorbent for MO removal from aqueous media.

Kaynakça

  • Altunkaynak, Y. (2022). Effectively removing Cu (II) and Ni (II) ions from aqueous solutions using chemically non-processed Midyat stone: equivalent, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 19(8), 3357-3370.
  • Altunkaynak, Y., & Canpolat, M. (2025). Effective removal of Cu (II) ions from aqueous solutions using low-cost, eco-friendly natural and modified potato peels. Environmental Monitoring and Assessment, 197(3), 309.
  • Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of hazardous materials, 92(3), 263-274.
  • Asuha, S., Zhou, X. G., & Zhao, S. (2010). Adsorption of methyl orange and Cr (VI) on mesoporous TiO2 prepared by hydrothermal method. Journal of Hazardous Materials, 181(1-3), 204-210.
  • Awomeso, J. A., Taiwo, A. M., Gbadebo, A. M., & Adenowo, J. A., (2010). Studies on the pollution of water body by textile industry effluents in Lagos, Nigeria. Journal of applied sciences in environmental sanitation, 5(4), 353-359.
  • Canpolat, M. (2023). Removing Co (II) and Mn (II) ions effectively from aqueous solutions by means of chemically non‐processed Mardin stone waste: Equivalent, kinetic, and thermodynamic investigations. Environmental Progress & Sustainable Energy, 42(3), e14042.
  • Canpolat, M., & Altunkaynak, Y. (2025). Isotherm, kinetic, and thermodynamic studies of adsorption of copper (II) and nickel (II) ions using low‐cost treated orange peel from aqueous solutions. Environmental Progress & Sustainable Energy, e14509.
  • El-Sayed, E. M., Tamer, T. M., Omer, A. M., & Mohy Eldin, M. S. (2016). Development of novel chitosan schiff base derivatives for cationic dye removal: methyl orange model. Desalination and Water Treatment, 57(47), 22632-22645.
  • Ekinci, S. (2023). Elimination of Methylene Blue from Aqueous Medium Using an Agricultural Waste Product of Crude Corn Silk (Stylus maydis) and Corn Silk Treated with Sulphuric Acid. ChemistrySelect, 8(18), e202300284.
  • Ekinci, S. (2024). Production of hydrochar from corn silk by hydrothermal carbonization technique and its modification for more effective removal of Cr (VI). Journal of the Chinese Chemical Society, 71(1), 84-98.
  • Eleryan, A., Hassaan, M., Nazir, M. A., Shah, S. S., Ragab, S., & El Nemr, A. (2024). Isothermal and kinetic screening of methyl red and methyl orange dyes adsorption from water by Delonix regia biochar-sulfur oxide (DRB-SO). Scientific Reports, 14(1), 13585.
  • Fadhil, O. H., & Eisa, M. Y. (2019). Removal of methyl orange from aqueous solutions by adsorption using corn leaves as adsorbent material. Journal of Engineering, 25(4), 55-69.
  • Iwuozor, K. O., Ighalo, J. O., Emenike, E. C., Ogunfowora, L. A., & Igwegbe, C. A. (2021). Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry, 4, 100179.
  • Khapre, M. A., Pandey, S., & Jugade, R. M. (2021). Glutaraldehyde-cross-linked chitosan–alginate composite for organic dyes removal from aqueous solutions. International Journal of Biological Macromolecules, 190, 862-875.
  • Kılınç, İ., Budakçı, M., & Korkmaz, M. (2023). The Use of Environmentally Friendly Abrasive Blasting Media for Paint Removal from Wood Surfaces. BioResources, 18(1).
  • Krika, F., & Benlahbib, O. E. F. (2015). Removal of methyl orange from aqueous solution via adsorption on cork as a natural and low-coast adsorbent: equilibrium, kinetic and thermodynamic study of removal process. Desalination and Water Treatment, 53(13), 3711-3723.
  • Kyzas, G. Z., Fu, J., & Matis, K. A. (2013). The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials, 6(11), 5131-5158.
  • Mo, J. H., Lee, Y. H., Kim, J., Jeong, J. Y., & Jegal, J. (2008). Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dyes and Pigments, 76(2), 429-434.
  • Mohammadi, N., Khani, H., Gupta, V. K., Amereh, E., & Agarwal, S. (2011). Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. Journal of colloid and interface science, 362(2), 457-462.
  • Nazir, M. A., Najam, T., Jabeen, S., Wattoo, M. A., Bashir, M. S., Shah, S. S. A., & ur Rehman, A. (2022). Facile synthesis of Tri-metallic layered double hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and methyl orange from water. Inorganic Chemistry Communications, 145, 110008.
  • Pandey, S., Son, N., & Kang, M. (2022). Synergistic sorption performance of karaya gum crosslink poly (acrylamide-co-acrylonitrile)@ metal nanoparticle for organic pollutants. International Journal of Biological Macromolecules, 210, 300-314.
  • Sayğılı, H., Güzel, F., & Önal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84-93.
  • Shah, S. S., Sharma, T., Dar, B. A., & Bamezai, R. K. (2021). Adsorptive removal of methyl orange dye from aqueous solution using populous leaves: Insights from kinetics, thermodynamics and computational studies. Environmental Chemistry and Ecotoxicology, 3, 172-181.
  • Shahzad, K., Nazir, M. A., Jamshaid, M., Kumar, O. P., Najam, T., Shah, S. S. A., & Rehman, A. U. (2023). Synthesis of nanoadsorbent entailed mesoporous organosilica for decontamination of methylene blue and methyl orange from water. International journal of environmental analytical chemistry, 103(20), 8799-8812.
  • Xing, X., Chang, P. H., Lv, G., Jiang, W. T., Jean, J. S., Liao, L., & Li, Z. (2016). Ionic-liquid-crafted zeolite for the removal of anionic dye methyl orange. Journal of the Taiwan Institute of Chemical Engineers, 59, 237-243.
  • Yu, J., Zhang, X., Wang, D., & Li, P., (2018). Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Science and Technology, 77(5), 1303-1312.

Modifiye Portakal Kabuğu ile Sulu Çözeltilerden Metil Oranjın Uzaklaştırılması

Yıl 2025, Cilt: 15 Sayı: 4, 1397 - 1410
https://doi.org/10.21597/jist.1658031

Öz

Bu çalışmada, modifiye edilmiş portakal kabuğu (MPK) kullanılarak sulu çözeltilerden metil oranjın (MO) adsorpsiyon yoluyla giderimi incelenmiştir. Adsorpsiyon sürecine etki eden temas süresi ve başlangıç MO konsantrasyonunun verimlilik üzerindeki etkileri değerlendirilmiş; optimum koşullar MO giderimi için en uygun koşulların pH 2.11, başlangıç MO konsantrasyonu 350 mg/L ve temas süresi 70 dakika olduğu belirlenmiştir. MPK’nın adsorpsiyon öncesi ve sonrası yüzey morfolojisi ile kimyasal bileşimindeki değişiklikler, taramalı elektron mikroskobu (SEM), enerji dağılım spektroskopisi (EDS) ve Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) analizleri ile karakterize edilmiştir. Sonuçlar, MO adsorpsiyonunun Langmuir izoterm modeline uyduğunu ve kimyasal adsorpsiyon ile tersinmezlik etkilerinin önemli rol oynadığını göstermiştir. MO için maksimum adsorpsiyon kapasitesi 25, 35 ve 45 °C’de sırasıyla 37.31, 39.06 ve 41.49 mg/g olarak hesaplanmıştır. Kinetik analizler, MO gideriminin yalancı ikinci dereceden (PSO) kinetik modeli ile uyumlu olduğunu göstermiştir. Genel olarak, MPK'nın yüksek adsorpsiyon kapasitesi ve düşük maliyeti, onu sulu ortamlardan MO giderimi için etkili ve uygulanabilir bir adsorban yapmaktadır.

Kaynakça

  • Altunkaynak, Y. (2022). Effectively removing Cu (II) and Ni (II) ions from aqueous solutions using chemically non-processed Midyat stone: equivalent, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 19(8), 3357-3370.
  • Altunkaynak, Y., & Canpolat, M. (2025). Effective removal of Cu (II) ions from aqueous solutions using low-cost, eco-friendly natural and modified potato peels. Environmental Monitoring and Assessment, 197(3), 309.
  • Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of hazardous materials, 92(3), 263-274.
  • Asuha, S., Zhou, X. G., & Zhao, S. (2010). Adsorption of methyl orange and Cr (VI) on mesoporous TiO2 prepared by hydrothermal method. Journal of Hazardous Materials, 181(1-3), 204-210.
  • Awomeso, J. A., Taiwo, A. M., Gbadebo, A. M., & Adenowo, J. A., (2010). Studies on the pollution of water body by textile industry effluents in Lagos, Nigeria. Journal of applied sciences in environmental sanitation, 5(4), 353-359.
  • Canpolat, M. (2023). Removing Co (II) and Mn (II) ions effectively from aqueous solutions by means of chemically non‐processed Mardin stone waste: Equivalent, kinetic, and thermodynamic investigations. Environmental Progress & Sustainable Energy, 42(3), e14042.
  • Canpolat, M., & Altunkaynak, Y. (2025). Isotherm, kinetic, and thermodynamic studies of adsorption of copper (II) and nickel (II) ions using low‐cost treated orange peel from aqueous solutions. Environmental Progress & Sustainable Energy, e14509.
  • El-Sayed, E. M., Tamer, T. M., Omer, A. M., & Mohy Eldin, M. S. (2016). Development of novel chitosan schiff base derivatives for cationic dye removal: methyl orange model. Desalination and Water Treatment, 57(47), 22632-22645.
  • Ekinci, S. (2023). Elimination of Methylene Blue from Aqueous Medium Using an Agricultural Waste Product of Crude Corn Silk (Stylus maydis) and Corn Silk Treated with Sulphuric Acid. ChemistrySelect, 8(18), e202300284.
  • Ekinci, S. (2024). Production of hydrochar from corn silk by hydrothermal carbonization technique and its modification for more effective removal of Cr (VI). Journal of the Chinese Chemical Society, 71(1), 84-98.
  • Eleryan, A., Hassaan, M., Nazir, M. A., Shah, S. S., Ragab, S., & El Nemr, A. (2024). Isothermal and kinetic screening of methyl red and methyl orange dyes adsorption from water by Delonix regia biochar-sulfur oxide (DRB-SO). Scientific Reports, 14(1), 13585.
  • Fadhil, O. H., & Eisa, M. Y. (2019). Removal of methyl orange from aqueous solutions by adsorption using corn leaves as adsorbent material. Journal of Engineering, 25(4), 55-69.
  • Iwuozor, K. O., Ighalo, J. O., Emenike, E. C., Ogunfowora, L. A., & Igwegbe, C. A. (2021). Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry, 4, 100179.
  • Khapre, M. A., Pandey, S., & Jugade, R. M. (2021). Glutaraldehyde-cross-linked chitosan–alginate composite for organic dyes removal from aqueous solutions. International Journal of Biological Macromolecules, 190, 862-875.
  • Kılınç, İ., Budakçı, M., & Korkmaz, M. (2023). The Use of Environmentally Friendly Abrasive Blasting Media for Paint Removal from Wood Surfaces. BioResources, 18(1).
  • Krika, F., & Benlahbib, O. E. F. (2015). Removal of methyl orange from aqueous solution via adsorption on cork as a natural and low-coast adsorbent: equilibrium, kinetic and thermodynamic study of removal process. Desalination and Water Treatment, 53(13), 3711-3723.
  • Kyzas, G. Z., Fu, J., & Matis, K. A. (2013). The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials, 6(11), 5131-5158.
  • Mo, J. H., Lee, Y. H., Kim, J., Jeong, J. Y., & Jegal, J. (2008). Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dyes and Pigments, 76(2), 429-434.
  • Mohammadi, N., Khani, H., Gupta, V. K., Amereh, E., & Agarwal, S. (2011). Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. Journal of colloid and interface science, 362(2), 457-462.
  • Nazir, M. A., Najam, T., Jabeen, S., Wattoo, M. A., Bashir, M. S., Shah, S. S. A., & ur Rehman, A. (2022). Facile synthesis of Tri-metallic layered double hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and methyl orange from water. Inorganic Chemistry Communications, 145, 110008.
  • Pandey, S., Son, N., & Kang, M. (2022). Synergistic sorption performance of karaya gum crosslink poly (acrylamide-co-acrylonitrile)@ metal nanoparticle for organic pollutants. International Journal of Biological Macromolecules, 210, 300-314.
  • Sayğılı, H., Güzel, F., & Önal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84-93.
  • Shah, S. S., Sharma, T., Dar, B. A., & Bamezai, R. K. (2021). Adsorptive removal of methyl orange dye from aqueous solution using populous leaves: Insights from kinetics, thermodynamics and computational studies. Environmental Chemistry and Ecotoxicology, 3, 172-181.
  • Shahzad, K., Nazir, M. A., Jamshaid, M., Kumar, O. P., Najam, T., Shah, S. S. A., & Rehman, A. U. (2023). Synthesis of nanoadsorbent entailed mesoporous organosilica for decontamination of methylene blue and methyl orange from water. International journal of environmental analytical chemistry, 103(20), 8799-8812.
  • Xing, X., Chang, P. H., Lv, G., Jiang, W. T., Jean, J. S., Liao, L., & Li, Z. (2016). Ionic-liquid-crafted zeolite for the removal of anionic dye methyl orange. Journal of the Taiwan Institute of Chemical Engineers, 59, 237-243.
  • Yu, J., Zhang, X., Wang, D., & Li, P., (2018). Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Science and Technology, 77(5), 1303-1312.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fiziksel Organik Kimya
Bölüm Araştırma Makalesi
Yazarlar

Mutlu Canpolat 0000-0002-3771-6737

Yalçın Altunkaynak 0000-0003-2562-9297

Erken Görünüm Tarihi 27 Kasım 2025
Yayımlanma Tarihi 27 Kasım 2025
Gönderilme Tarihi 14 Mart 2025
Kabul Tarihi 5 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA Canpolat, M., & Altunkaynak, Y. (2025). Modifiye Portakal Kabuğu ile Sulu Çözeltilerden Metil Oranjın Uzaklaştırılması. Journal of the Institute of Science and Technology, 15(4), 1397-1410. https://doi.org/10.21597/jist.1658031
AMA Canpolat M, Altunkaynak Y. Modifiye Portakal Kabuğu ile Sulu Çözeltilerden Metil Oranjın Uzaklaştırılması. Iğdır Üniv. Fen Bil Enst. Der. Kasım 2025;15(4):1397-1410. doi:10.21597/jist.1658031
Chicago Canpolat, Mutlu, ve Yalçın Altunkaynak. “Modifiye Portakal Kabuğu ile Sulu Çözeltilerden Metil Oranjın Uzaklaştırılması”. Journal of the Institute of Science and Technology 15, sy. 4 (Kasım 2025): 1397-1410. https://doi.org/10.21597/jist.1658031.
EndNote Canpolat M, Altunkaynak Y (01 Kasım 2025) Modifiye Portakal Kabuğu ile Sulu Çözeltilerden Metil Oranjın Uzaklaştırılması. Journal of the Institute of Science and Technology 15 4 1397–1410.
IEEE M. Canpolat ve Y. Altunkaynak, “Modifiye Portakal Kabuğu ile Sulu Çözeltilerden Metil Oranjın Uzaklaştırılması”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 4, ss. 1397–1410, 2025, doi: 10.21597/jist.1658031.
ISNAD Canpolat, Mutlu - Altunkaynak, Yalçın. “Modifiye Portakal Kabuğu ile Sulu Çözeltilerden Metil Oranjın Uzaklaştırılması”. Journal of the Institute of Science and Technology 15/4 (Kasım2025), 1397-1410. https://doi.org/10.21597/jist.1658031.
JAMA Canpolat M, Altunkaynak Y. Modifiye Portakal Kabuğu ile Sulu Çözeltilerden Metil Oranjın Uzaklaştırılması. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:1397–1410.
MLA Canpolat, Mutlu ve Yalçın Altunkaynak. “Modifiye Portakal Kabuğu ile Sulu Çözeltilerden Metil Oranjın Uzaklaştırılması”. Journal of the Institute of Science and Technology, c. 15, sy. 4, 2025, ss. 1397-10, doi:10.21597/jist.1658031.
Vancouver Canpolat M, Altunkaynak Y. Modifiye Portakal Kabuğu ile Sulu Çözeltilerden Metil Oranjın Uzaklaştırılması. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(4):1397-410.