Araştırma Makalesi
BibTex RIS Kaynak Göster

Çift Katmanlı Elektrotlarda Biriktirme Sırasının Etkileri: Elektrokimyasal Yöntemle PANI/ZnO ve ZnO/PANI Hazırlanması

Yıl 2025, Cilt: 15 Sayı: 4, 1343 - 1353
https://doi.org/10.21597/jist.1779594

Öz

Gözenekli nikel köpük, iletken bir iskelet olarak kullanılarak elektrodepozisyon yöntemiyle polianilin (PANI) ve çinko oksit (ZnO) tabakalarından oluşan çift katmanlı elektrotlar üretildi. İki farklı yapı hazırlandı: PANI/ZnO, yani önce PANI’nın biriktirilip ardından ZnO ile kaplanması; ve ZnO/PANI, yani önce ZnO’nun biriktirilip ardından PANI tabakası ile kaplanması.
Elektrokimyasal karakterizasyon, kaplama sırasının performansta belirleyici bir rol oynadığını ortaya koydu. Döngüsel voltametri sonuçları, PANI/ZnO elektrotlarının 0–1 V potansiyel aralığında daha geniş voltamogram profilleri sergilediğini ve mükemmel elektrokimyasal erişilebilirlik sağladığını gösterdi. Galvanostatik şarj–deşarj testleri, her iki çift katmanlı elektrotun da tek bileşenli ZnO ve PANI elektrotlardan daha iyi performans gösterdiğini doğruladı. Özellikle ZnO/PANI, yüksek akım yoğunluklarında biraz daha uzun deşarj süreleri ve daha yüksek kapasitans değerleri sundu. Ragone analizi, ZnO/PANI’nin yüksek hız koşullarında üstün enerji–güç dengesi sağladığını; buna karşılık PANI/ZnO’nun olağanüstü çevrim kararlılığı göstererek uzun süreli döngüden sonra dahi neredeyse tüm kapasitansını koruduğunu ortaya koydu.
Bu sonuçlar, her iki çift katmanlı yapının da PANI ve ZnO’nun avantajlarını birleştirdiğini ancak farklı üstünlüklere sahip olduğunu göstermektedir: PANI/ZnO yüksek kararlılığı ile öne çıkarken, ZnO/PANI yüksek hızlı uygulamalar için daha uygundur. Bulgular, hibrit polimer/oksit elektrotların optimizasyonunda kaplama sırasının önemini vurgulamakta ve bu yapıların yeni nesil yüksek performanslı süperkapasitörler için umut verici adaylar olduğunu ortaya koymaktadır.

Proje Numarası

FBA-2021-4279

Teşekkür

Bu çalışma, FBA-2021-4279 proje numarasıyla Yıldız Teknik Üniversitesi Bilimsel Araştırmalar Projesi Koordanatörlüğü tarafından desteklenmektedir.

Kaynakça

  • Ahn, D., Yoo, I., Koo, Y. M., Shin, N., Kim, J., & Shin, T. J. (2011). Effects of cobalt-intercalation and polyaniline coating on electrochemical performance of layered manganese oxides. Journal of Materials Chemistry, 21(14), 5282–5289. https://doi.org/10.1039/c0jm03548c
  • Bai, H., Xu, Y., Zhao, L., Li, C., & Shi, G. (2009). Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical Communications, 13, 1667–1669. https://doi.org/10.1039/b821805f
  • Cheng, T. M., Yen, S. C., Hsu, C. S., Wang, W. T., Yougbaré, S., Lin, L. Y., & Wu, Y. F. (2023). Novel synthesis of polyaniline, manganese oxide and nickel sulfide lavandula-like composites as efficient active material of supercapacitor. Journal of Energy Storage, 66. https://doi.org/10.1016/j.est.2023.107390
  • Domingues, S. H., Salvatierra, R. V., Constantinides, C. P., Zarbin, A. J. G., Eisler, D. J., & Rawson, J. M. (2011). Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chemical Communications, 47(9), 2592–2594. https://doi.org/10.1039/c0cc04304d
  • Foronda, J. R. F., Aryaswara, L. G., Santos, G. N. C., Raghu, S. N. V., & Muflikhun, M. A. (2023). Broad-class volatile organic compounds (VOCs) detection via polyaniline/zinc oxide (PANI/ZnO) composite materials as gas sensor application. Heliyon, 9(2). https://doi.org/10.1016/j.heliyon.2023.e13544
  • Kalambate, P. K., Rawool, C. R., Karna, S. P., & Srivastava, A. K. (2019). Nitrogen-doped graphene/palladium nanoparticles/porous polyaniline ternary composite as an efficient electrode material for high performance supercapacitor. Materials Science for Energy Technologies, 2(2), 246–257. https://doi.org/10.1016/j.mset.2018.12.005
  • Lamba, P., Singh, P., Singh, P., Singh, P., Bharti, Kumar, A., Gupta, M., & Kumar, Y. (2022). Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance. In Journal of Energy Storage (Vol. 48). Elsevier Ltd. https://doi.org/10.1016/j.est.2021.103871
  • Liu, Y., Dai, Z., Zhang, W., Jiang, Y., Peng, J., Wu, D., Chen, B., Wei, W., Chen, X., Liu, Z., Wang, Z., Han, F., Ding, D., Wang, L., Li, L., Yang, Y., & Huang, Y. (2021). Sulfonic-Group-Grafted Ti3C2TxMXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries. ACS Nano, 15(5), 9065–9075. https://doi.org/10.1021/acsnano.1c02215
  • Li, X., Zhang, C., Xin, S., Yang, Z., Li, Y., Zhang, D., & Yao, P. (2016). Facile Synthesis of MoS2/Reduced Graphene Oxide@Polyaniline for High-Performance Supercapacitors. ACS Applied Materials and Interfaces, 8(33), 21373–21380. https://doi.org/10.1021/acsami.6b06762
  • Mahajan, P., Sardana, S., & Mahajan, A. (2025). Ternary MXene/PANI/ZnO-based composite with a built-in p-n heterojunction for high-performance supercapacitor applications. Journal of Physics D: Applied Physics, 58(4). https://doi.org/10.1088/1361-6463/ad875a
  • Palsaniya, S., Nemade, H. B., & Dasmahapatra, A. K. (2021). Hierarchical PANI-RGO-ZnO ternary nanocomposites for symmetric tandem supercapacitor. Journal of Physics and Chemistry of Solids, 154. https://doi.org/10.1016/j.jpcs.2021.110081
  • Pradeeswari, K., Venkatesan, A., Pandi, P., Karthik, K., Hari Krishna, K. V., & Mohan Kumar, R. (2019). Study on the electrochemical performance of ZnO nanoparticles synthesized via non-aqueous sol-gel route for supercapacitor applications. Materials Research Express, 6(10). https://doi.org/10.1088/2053-1591/ab3cae
  • Qin, D., Zhou, B., Li, Z., & Yang, C. (2024). Construction of controllable multicomponent ZnO-ZnCo/MOF-PANI composites for supercapacitor applications. Journal of Molecular Structure, 1309. https://doi.org/10.1016/j.molstruc.2024.138140
  • Rahim, M., Yaseen, S., & Ullah, R. (2023). Electrochemical supercapacitor based on polyaniline/bismuth-doped zinc oxide (PANI/Bi–ZnO) composite for efficient energy storage. Journal of Physics and Chemistry of Solids, 182. https://doi.org/10.1016/j.jpcs.2023.111610
  • Rohith, R., Thejas Prasannakumar, A., Manju, V., R. Mohan, R., & J. Varma, S. (2023). Flexible, symmetric supercapacitor using self-stabilized dispersion-polymerised polyaniline/V2O5 hybrid electrodes. Chemical Engineering Journal, 467. https://doi.org/10.1016/j.cej.2023.143499
  • Singh, R., Agrohiya, S., Rawal, I., Ohlan, A., Dahiya, S., Punia, R., & Maan, A. S. (2024). Multifunctional porous polyaniline/phosphorus-nitrogen co-doped graphene nanocomposite for efficient room temperature ammonia sensing and high-performance supercapacitor applications. Applied Surface Science, 665. https://doi.org/10.1016/j.apsusc.2024.160368
  • Wang, Y., Liu, Y., Wang, H., Liu, W., Li, Y., Zhang, J., Hou, H., & Yang, J. (2019). Ultrathin NiCo-MOF Nanosheets for High-Performance Supercapacitor Electrodes. ACS Applied Energy Materials, 2(3), 2063–2071. https://doi.org/10.1021/acsaem.8b02128
  • Yılmaz, İ., Gelir, A., Yargi, O., Sahinturk, U., & Ozdemir, O. K. (2020). Electrodeposition of zinc and reduced graphene oxide on porous nickel electrodes for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 138. https://doi.org/10.1016/j.jpcs.2019.109307
  • Zhu, C., He, Y., Liu, Y., Kazantseva, N., Saha, P., & Cheng, Q. (2019). ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes. Journal of Energy Chemistry, 35, 124–131. https://doi.org/10.1016/j.jechem.2018.11.006

Deposition Sequence Effects in Bilayer Electrodes: Preparation of PANI / ZnO and ZnO / PANI Via Electrochemical Deposition

Yıl 2025, Cilt: 15 Sayı: 4, 1343 - 1353
https://doi.org/10.21597/jist.1779594

Öz

Porous nickel foam was used as a conductive scaffold to fabricate bilayer electrodes composed of polyaniline (PANI) and zinc oxide (ZnO) through electrodeposition. Two sets were prepared: PANI/ZnO, where PANI was deposited first and then coated with ZnO, and ZnO/PANI, where ZnO was deposited first and followed by a PANI layer. Electrochemical characterization demonstrated that the sequence of deposition plays a decisive role in performance. Cyclic voltammetry revealed that PANI/ZnO exhibited broader CV profiles and excellent electrochemical accessibility within the 0–1 V potential window. Galvanostatic charge–discharge tests confirmed that both bilayer electrodes outperformed single-component ZnO and PANI, with ZnO/PANI showing slightly longer discharge times and higher capacitance at increased current densities. Ragone analysis indicated that ZnO/PANI delivered superior energy–power balance under high-rate conditions, whereas PANI/ZnO maintained remarkable cycling stability, retaining nearly its full capacitance after prolonged cycling. These results show that both bilayer configurations benefit from PANI and ZnO, but with distinct advantages: PANI/ZnO is highly stable, while ZnO/PANI is better suited for high-rate applications. The findings highlight the importance of deposition order in optimizing hybrid polymer/oxide.

Proje Numarası

FBA-2021-4279

Teşekkür

This work was supported by Yildiz Technical University Scientific Research Projects Coordinator's project numbered FBA-2021-4279.

Kaynakça

  • Ahn, D., Yoo, I., Koo, Y. M., Shin, N., Kim, J., & Shin, T. J. (2011). Effects of cobalt-intercalation and polyaniline coating on electrochemical performance of layered manganese oxides. Journal of Materials Chemistry, 21(14), 5282–5289. https://doi.org/10.1039/c0jm03548c
  • Bai, H., Xu, Y., Zhao, L., Li, C., & Shi, G. (2009). Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical Communications, 13, 1667–1669. https://doi.org/10.1039/b821805f
  • Cheng, T. M., Yen, S. C., Hsu, C. S., Wang, W. T., Yougbaré, S., Lin, L. Y., & Wu, Y. F. (2023). Novel synthesis of polyaniline, manganese oxide and nickel sulfide lavandula-like composites as efficient active material of supercapacitor. Journal of Energy Storage, 66. https://doi.org/10.1016/j.est.2023.107390
  • Domingues, S. H., Salvatierra, R. V., Constantinides, C. P., Zarbin, A. J. G., Eisler, D. J., & Rawson, J. M. (2011). Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chemical Communications, 47(9), 2592–2594. https://doi.org/10.1039/c0cc04304d
  • Foronda, J. R. F., Aryaswara, L. G., Santos, G. N. C., Raghu, S. N. V., & Muflikhun, M. A. (2023). Broad-class volatile organic compounds (VOCs) detection via polyaniline/zinc oxide (PANI/ZnO) composite materials as gas sensor application. Heliyon, 9(2). https://doi.org/10.1016/j.heliyon.2023.e13544
  • Kalambate, P. K., Rawool, C. R., Karna, S. P., & Srivastava, A. K. (2019). Nitrogen-doped graphene/palladium nanoparticles/porous polyaniline ternary composite as an efficient electrode material for high performance supercapacitor. Materials Science for Energy Technologies, 2(2), 246–257. https://doi.org/10.1016/j.mset.2018.12.005
  • Lamba, P., Singh, P., Singh, P., Singh, P., Bharti, Kumar, A., Gupta, M., & Kumar, Y. (2022). Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance. In Journal of Energy Storage (Vol. 48). Elsevier Ltd. https://doi.org/10.1016/j.est.2021.103871
  • Liu, Y., Dai, Z., Zhang, W., Jiang, Y., Peng, J., Wu, D., Chen, B., Wei, W., Chen, X., Liu, Z., Wang, Z., Han, F., Ding, D., Wang, L., Li, L., Yang, Y., & Huang, Y. (2021). Sulfonic-Group-Grafted Ti3C2TxMXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries. ACS Nano, 15(5), 9065–9075. https://doi.org/10.1021/acsnano.1c02215
  • Li, X., Zhang, C., Xin, S., Yang, Z., Li, Y., Zhang, D., & Yao, P. (2016). Facile Synthesis of MoS2/Reduced Graphene Oxide@Polyaniline for High-Performance Supercapacitors. ACS Applied Materials and Interfaces, 8(33), 21373–21380. https://doi.org/10.1021/acsami.6b06762
  • Mahajan, P., Sardana, S., & Mahajan, A. (2025). Ternary MXene/PANI/ZnO-based composite with a built-in p-n heterojunction for high-performance supercapacitor applications. Journal of Physics D: Applied Physics, 58(4). https://doi.org/10.1088/1361-6463/ad875a
  • Palsaniya, S., Nemade, H. B., & Dasmahapatra, A. K. (2021). Hierarchical PANI-RGO-ZnO ternary nanocomposites for symmetric tandem supercapacitor. Journal of Physics and Chemistry of Solids, 154. https://doi.org/10.1016/j.jpcs.2021.110081
  • Pradeeswari, K., Venkatesan, A., Pandi, P., Karthik, K., Hari Krishna, K. V., & Mohan Kumar, R. (2019). Study on the electrochemical performance of ZnO nanoparticles synthesized via non-aqueous sol-gel route for supercapacitor applications. Materials Research Express, 6(10). https://doi.org/10.1088/2053-1591/ab3cae
  • Qin, D., Zhou, B., Li, Z., & Yang, C. (2024). Construction of controllable multicomponent ZnO-ZnCo/MOF-PANI composites for supercapacitor applications. Journal of Molecular Structure, 1309. https://doi.org/10.1016/j.molstruc.2024.138140
  • Rahim, M., Yaseen, S., & Ullah, R. (2023). Electrochemical supercapacitor based on polyaniline/bismuth-doped zinc oxide (PANI/Bi–ZnO) composite for efficient energy storage. Journal of Physics and Chemistry of Solids, 182. https://doi.org/10.1016/j.jpcs.2023.111610
  • Rohith, R., Thejas Prasannakumar, A., Manju, V., R. Mohan, R., & J. Varma, S. (2023). Flexible, symmetric supercapacitor using self-stabilized dispersion-polymerised polyaniline/V2O5 hybrid electrodes. Chemical Engineering Journal, 467. https://doi.org/10.1016/j.cej.2023.143499
  • Singh, R., Agrohiya, S., Rawal, I., Ohlan, A., Dahiya, S., Punia, R., & Maan, A. S. (2024). Multifunctional porous polyaniline/phosphorus-nitrogen co-doped graphene nanocomposite for efficient room temperature ammonia sensing and high-performance supercapacitor applications. Applied Surface Science, 665. https://doi.org/10.1016/j.apsusc.2024.160368
  • Wang, Y., Liu, Y., Wang, H., Liu, W., Li, Y., Zhang, J., Hou, H., & Yang, J. (2019). Ultrathin NiCo-MOF Nanosheets for High-Performance Supercapacitor Electrodes. ACS Applied Energy Materials, 2(3), 2063–2071. https://doi.org/10.1021/acsaem.8b02128
  • Yılmaz, İ., Gelir, A., Yargi, O., Sahinturk, U., & Ozdemir, O. K. (2020). Electrodeposition of zinc and reduced graphene oxide on porous nickel electrodes for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 138. https://doi.org/10.1016/j.jpcs.2019.109307
  • Zhu, C., He, Y., Liu, Y., Kazantseva, N., Saha, P., & Cheng, Q. (2019). ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes. Journal of Energy Chemistry, 35, 124–131. https://doi.org/10.1016/j.jechem.2018.11.006
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yoğun Madde Fiziği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ayşe Evrim Bulgurcuoğlu 0000-0001-8373-9764

Proje Numarası FBA-2021-4279
Erken Görünüm Tarihi 27 Kasım 2025
Yayımlanma Tarihi 27 Kasım 2025
Gönderilme Tarihi 7 Eylül 2025
Kabul Tarihi 23 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA Bulgurcuoğlu, A. E. (2025). Deposition Sequence Effects in Bilayer Electrodes: Preparation of PANI / ZnO and ZnO / PANI Via Electrochemical Deposition. Journal of the Institute of Science and Technology, 15(4), 1343-1353. https://doi.org/10.21597/jist.1779594
AMA Bulgurcuoğlu AE. Deposition Sequence Effects in Bilayer Electrodes: Preparation of PANI / ZnO and ZnO / PANI Via Electrochemical Deposition. Iğdır Üniv. Fen Bil Enst. Der. Kasım 2025;15(4):1343-1353. doi:10.21597/jist.1779594
Chicago Bulgurcuoğlu, Ayşe Evrim. “Deposition Sequence Effects in Bilayer Electrodes: Preparation of PANI / ZnO and ZnO / PANI Via Electrochemical Deposition”. Journal of the Institute of Science and Technology 15, sy. 4 (Kasım 2025): 1343-53. https://doi.org/10.21597/jist.1779594.
EndNote Bulgurcuoğlu AE (01 Kasım 2025) Deposition Sequence Effects in Bilayer Electrodes: Preparation of PANI / ZnO and ZnO / PANI Via Electrochemical Deposition. Journal of the Institute of Science and Technology 15 4 1343–1353.
IEEE A. E. Bulgurcuoğlu, “Deposition Sequence Effects in Bilayer Electrodes: Preparation of PANI / ZnO and ZnO / PANI Via Electrochemical Deposition”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 4, ss. 1343–1353, 2025, doi: 10.21597/jist.1779594.
ISNAD Bulgurcuoğlu, Ayşe Evrim. “Deposition Sequence Effects in Bilayer Electrodes: Preparation of PANI / ZnO and ZnO / PANI Via Electrochemical Deposition”. Journal of the Institute of Science and Technology 15/4 (Kasım2025), 1343-1353. https://doi.org/10.21597/jist.1779594.
JAMA Bulgurcuoğlu AE. Deposition Sequence Effects in Bilayer Electrodes: Preparation of PANI / ZnO and ZnO / PANI Via Electrochemical Deposition. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:1343–1353.
MLA Bulgurcuoğlu, Ayşe Evrim. “Deposition Sequence Effects in Bilayer Electrodes: Preparation of PANI / ZnO and ZnO / PANI Via Electrochemical Deposition”. Journal of the Institute of Science and Technology, c. 15, sy. 4, 2025, ss. 1343-5, doi:10.21597/jist.1779594.
Vancouver Bulgurcuoğlu AE. Deposition Sequence Effects in Bilayer Electrodes: Preparation of PANI / ZnO and ZnO / PANI Via Electrochemical Deposition. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(4):1343-5.