Araştırma Makalesi
BibTex RIS Kaynak Göster

Outliers Treatment for Improved Prediction of CO and NOx Emissions from Gas Turbines Using Ensemble Regressor Approaches

Yıl 2025, Cilt: 8 Sayı: 1, 63 - 83, 18.03.2025
https://doi.org/10.38016/jista.1566965

Öz

Gas turbines are widely used in power generation plants due to their high efficiency, but they also emit pollutants such as CO and NOx. This study focuses on developing predictive models for predicting CO and NOx emissions from gas turbines using machine learning algorithms. The dataset used includes pollutant emission data from a combined cycle gas turbine (CCGT) in Türkiye, collected hourly between 2011 and 2015. Various outlier treatment methods such as Z-Score, Interquartile Range (IQR), and Mahalanobis Distance (MD) are applied to the dataset. Machine learning algorithms including Random Forest, Extra Trees, Linear Regression, Support Vector Regression, Decision Tree, and K-Nearest Neighbors are used to build the predictive models, and their performances are compared. Additionally, Voting Ensemble Regressor (VR) and Stacking Ensemble Regressor (SR) methods are employed, using Gradient Boosting, LightGBM, and CatBoost as base learners and XGBoost as a meta-learner. The results demonstrate that the SR model, when applied to the dataset processed using the IQR method, achieves the highest prediction accuracy for both NOx and CO emissions, with R² values of 0.9194 and 0.8556, and RMSE values of 2.7669 and 0.4619, respectively. These findings highlight the significant role of the IQR method in enhancing model accuracy by effectively handling outliers and reducing data noise. The improved data quality achieved through this method contributes to the superior performance of the SR model, making it a reliable approach for predicting NOx and CO emissions with high precision.

Kaynakça

  • Ahmad, M. W., Reynolds, J., & Rezgui, Y. (2018). Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. Journal of Cleaner Production, 203, 810-821. https://doi.org/10.1016/j.jclepro.2018.08.207
  • Aslan, E. (2024). Prediction and Comparative Analysis of Emissions from Gas Turbines Using Random Search Optimization and Different MachineL earning Based Algorithms. Bulletin of the Polish Academy of Sciences Technical Sciences, e151956-e151956. https://doi.org/ 10.24425/bpasts.2024.151956
  • Biau, G. (2012). Analysis of a random forests model. The Journal of Machine Learning Research, 13(1), 1063-1095.
  • Caicedo, J. C., Cooper, S., Heigwer, F., Warchal, S., Qiu, P., Molnar, C., ... & Carpenter, A. E. (2017). Data-analysis strategies for image-based cell profiling. Nature Methods, 14(9), 849-863.
  • Coelho, D. S. L., Ayala, H. V. H., & Mariani, V. C. (2024). CO and NOx emissions prediction in gas turbine using a novel modeling pipeline based on the combination of deep forest regressor and feature engineering. Fuel, 355, 129366. https://doi.org/10.1016/j.fuel.2023.129366
  • Dalal, A. S., Sultanova, N., Jayabalan, M., & Mustafina, J. (2023, December). Gas turbine–CO & NOx emission data analysis with predictive modelling using ML/AI approaches. In 2023 16th International Conference on Developments in eSystems Engineering (DeSE) (pp. 100-104). IEEE. https://doi.org/10.1109/DeSE60595.2023.10469322
  • Dirik, M. (2022). Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA. Fuel, 321, 124037. https://doi.org/10.1016/j.fuel.2022.124037
  • Divina, F., Gilson, A., Goméz-Vela, F., García Torres, M., & Torres, J. F. (2018). Stacking ensemble learning for short-term electricity consumption forecasting. Energies, 11(4), 949. https://doi.org/10.3390/en11040949
  • Farzaneh-Gord, M., & Deymi-Dashtebayaz, M. (2011). Effect of various inlet air cooling methods on gas turbine performance. Energy, 36(2), 1196-1205. https://doi.org/10.1016/j.energy.2010.11.027
  • Ghorbani, H. (2019). Mahalanobis distance and its application for detecting multivariate outliers. Facta Universitatis, Series: Mathematics and Informatics, 583-595. https://doi.org/10.22190/FUMI1903583G
  • Karthikeyan, S., Kathirvalavakumar, T., & Prasath, R. (2023, June). Classification of the Class Imbalanced Data Using Mahalanobis Distance with Feature Filtering. In International Conference on Mining Intelligence and Knowledge Exploration (pp. 45-53). Cham: Springer Nature Switzerland.
  • Kaya, H., Tüfekci, P., & Uzun, E. (2019). Predicting CO and NOx emissions from gas turbines: novel data and a benchmark PEMS. Turkish Journal of Electrical Engineering and Computer Sciences, 27(6), 4783-4796. https://doi.org/10.3906/elk-1807-87
  • Kochueva, O., & Nikolskii, K. (2021). Data analysis and symbolic regression models for predicting CO and NOx emissions from gas turbines. Computation, 9(12), 139. https://doi.org/10.3390/computation9120139
  • Kumar, M. V., Babu, A. V., Reddy, C. R., Pandian, A., Bajaj, M., Zawbaa, H. M., & Kamel, S. (2022). Investigation of the combustion of exhaust gas recirculation in diesel engines with a particulate filter and selective catalytic reactor technologies for environmental gas reduction. Case Studies in Thermal Engineering, 40, 102557.
  • Leys, C., Klein, O., Dominicy, Y., & Ley, C. (2018). Detecting multivariate outliers: Use a robust variant of the Mahalanobis distance. Journal of Experimental Social Psychology, 74, 150-156. https://doi.org/10.1016/j.jesp.2017.09.011
  • Liu, Z., Meng, H., Huang, J., Kwangwari, P., Ma, K., Xiao, B., & Li, L. (2021). Acute carbon monoxide poisoning with low saturation of carboxyhaemoglobin: a forensic retrospective study in Shanghai, China. Scientific Reports, 11(1), 18554.
  • Lopes, C., Antelo, L. T., Franco-Uría, A., Alonso, A. A., & Pérez-Martín, R. (2015). Valorisation of fish by-products against waste management treatments–Comparison of environmental impacts. Waste Management, 46, 103-112. https://doi.org/10.1016/j.wasman.2015.08.017
  • Lott, P., Casapu, M., Grunwaldt, J. D., & Deutschmann, O. (2024). A review on exhaust gas after-treatment of lean-burn natural gas engines–From fundamentals to application. Applied Catalysis B: Environmental, 340, 123241.
  • Mahmoudi, S., Baeyens, J., & Seville, J. P. (2010). NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass and bioenergy, 34(9), 1393-1409. https://doi.org/10.1016/j.biombioe.2010.04.013
  • Mare, D. S., Moreira, F., & Rossi, R. (2017). Nonstationary Z-score measures. European Journal of Operational Research, 260(1), 348-358. https://doi.org/10.1016/j.ejor.2016.12.001
  • Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(2), 140-147. https://doi.org/10.38094/jastt1457
  • Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67-72. https://doi.org/10.4103/aca.ACA_157_18
  • Naghibi, A. (2024). Exploring explainable ensemble machine learning methods for long-term performance prediction of industrial gas turbines: A comparative analysis. Engineering Applications of Artificial Intelligence, 138, 109318. https://doi.org/10.1016/j.engappai.2024.109318
  • Nino-Adan, I., Portillo, E., Landa-Torres, I., & Manjarres, D. (2021). Normalization influence on ANN-based models performance: A new proposal for Features’ contribution analysis. IEEE Access, 9, 125462-125477. https://doi.org/10.1109/ACCESS.2021.3110647
  • Osborne, J. W., & Overbay, A. (2019). The power of outliers (and why researchers should always check for them). Practical Assessment, Research, and Evaluation, 9(1), 6. https://doi.org/10.7275/qf69-7k43
  • Pachauri, N. (2024). An emission predictive system for CO and NOx from gas turbine based on ensemble machine learning approach. Fuel, 366, 131421. https://doi.org/10.1016/j.fuel.2024.131421
  • Pandey, R. A., & Chandrashekhar, B. (2014). Physicochemical and biochemical approaches for treatment of gaseous emissions containing NOx. Critical Reviews in Environmental Science and Technology, 44(1), 34-96. https://doi.org/10.1080/10643389.2012.710430
  • Prusty, S., Patnaik, S., & Dash, S. K. (2022). SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer. Frontiers in Nanotechnology, 4, 972421. https://doi.org/10.3389/fnano.2022.972421
  • Quinlan, J. R. (1996). Learning decision tree classifiers. ACM Computing Surveys (CSUR), 28(1), 71-72.
  • Rezazadeh, A. (2021). Environmental pollution prediction of NOx by predictive modelling and process analysis in natural gas turbine power plants. Pollution, 7(2), 481-494. https://doi.org/10.22059/poll.2021.316327.977
  • Song, Y., Liang, J., Lu, J., & Zhao, X. (2017). An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing, 251, 26-34. https://doi.org/10.1016/j.neucom.2017.04.018
  • Tian, J., Wang, L., Xiong, Y., Wang, Y., Yin, W., Tian, G., ... & Ji, S. (2024). Enhancing combustion efficiency and reducing nitrogen oxide emissions from ammonia combustion: A comprehensive review. Process Safety and Environmental Protection, 183, 514-543. https://doi.org/10.1016/j.psep.2024.01.020
  • Todeschini, R., Ballabio, D., Consonni, V., Sahigara, F., & Filzmoser, P. (2013). Locally centred Mahalanobis distance: a new distance measure with salient features towards outlier detection. Analytica Chimica Acta, 787, 1-9. https://doi.org/10.1016/j.aca.2013.04.034
  • Valkenborg, D., Rousseau, A. J., Geubbelmans, M., & Burzykowski, T. (2023). Support vector machines. American Journal of Orthodontics and Dentofacial Orthopedics, 164(5), 754-757.
  • Wardana, M. K. A., & Lim, O. (2022). Review of improving the NOx conversion efficiency in various diesel engines fitted with SCR system technology. Catalysts, 13(1), 67.
  • Wood, D. A. (2023). Long-term atmospheric pollutant emissions from a combined cycle gas turbine: Trend monitoring and prediction applying machine learning. Fuel, 343, 127722. https://doi.org/10.1016/j.fuel.2023.127722
  • Wu, T. J., Burke, J. P., & Davison, D. B. (1997). A measure of DNA sequence dissimilarity based on Mahalanobis distance between frequencies of words. Biometrics, 1431-1439. https://doi.org/10.2307/2533509
  • Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295-316. https://doi.org/10.1016/j.neucom.2020.07.061
  • Yaro, A. S., Maly, F., & Prazak, P. (2023). Outlier detection in time-series receive signal strength observation using z-score method with s n scale estimator for indoor localization. Applied Sciences, 13(6), 3900. https://doi.org/10.3390/app13063900
  • Yousif, S. T., Ismail, F. B., & Al‐Bazi, A. (2024). A hybrid neural network‐based improved PSO algorithm for gas turbine emissions prediction. Advanced Theory and Simulations, 2301222.
  • https://doi.org/10.1002/adts.202301222 Yu, H., & Kim, S. (2012). SVM Tutorial-Classification, Regression and Ranking. Handbook of Natural Computing, 1, 479-506.

Gaz Türbinlerinden Kaynaklanan CO ve NOx Emisyonlarının Tahmininde Aykırı Değer İşleme ve Topluluk Regresyon Yaklaşımlarının Kullanımı

Yıl 2025, Cilt: 8 Sayı: 1, 63 - 83, 18.03.2025
https://doi.org/10.38016/jista.1566965

Öz

Gaz türbinleri, yüksek verimlilikleri nedeniyle enerji üretim tesislerinde yaygın olarak kullanılmaktadır; ancak, aynı zamanda CO ve NOx gibi zararlı gaz emisyonlarına da neden olmaktadırlar. Bu çalışma, gaz türbinlerinden kaynaklanan CO ve NOx emisyonlarını tahmin etmek için makine öğrenmesi algoritmalarını kullanarak tahmin modelleri geliştirmeye odaklanmaktadır. Kullanılan veri seti, Türkiye'deki bir kombine çevrim gaz türbininden (CCGT) 2011 ve 2015 yılları arasında saatlik olarak toplanan emisyon verilerini içermektedir. Veri setine Z-Skoru, Çeyrekler Arası Aralık (IQR) ve Mahalanobis Mesafesi (MD) gibi çeşitli aykırı değer işleme yöntemleri uygulanarak modellerin performansına etkisine incelenmiştir. Modeller oluşturulurken Rastgele Orman, Ekstra Ağaçlar, Doğrusal Regresyon, Destek Vektör Regresyonu, Karar Ağacı ve K-En Yakın Komşu gibi makine öğrenmesi algoritmaları kullanılmış ve performansları karşılaştırılmıştır. Ayrıca, Gradient Boosting, LightGBM ve CatBoost algoritmalarını temel temel öğrenici ve XGBoost'u meta-öğrenici olarak kullanan Oylama Topluluk Regresyonu (VR) ve İstifleme Topluluk Regresyonu (SR) yöntemlerinin de performansları incelenmiştir. Sonuçlar, IQR yöntemiyle işlenen veri seti üzerinde uygulanan SR modelinin hem NOx hem de CO emisyonları için en yüksek tahmin doğruluğunu sağladığını göstermektedir. Modelin R² değeri NOx için 0.9194, CO için 0.8556 olarak bulunmuş; RMSE ise sırasıyla 2.7669 ve 0.4619 olarak elde edilmiştir. IQR yöntemiyle elde edilen iyileştirilmiş veri kalitesi, SR modelinin üstün performans göstermesine katkı sağlamakta ve modelin NOx ve CO emisyonlarını yüksek hassasiyetle tahmin edebilmesi açısından güvenilir bir yaklaşım olduğunu ortaya koymaktadır.

Kaynakça

  • Ahmad, M. W., Reynolds, J., & Rezgui, Y. (2018). Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. Journal of Cleaner Production, 203, 810-821. https://doi.org/10.1016/j.jclepro.2018.08.207
  • Aslan, E. (2024). Prediction and Comparative Analysis of Emissions from Gas Turbines Using Random Search Optimization and Different MachineL earning Based Algorithms. Bulletin of the Polish Academy of Sciences Technical Sciences, e151956-e151956. https://doi.org/ 10.24425/bpasts.2024.151956
  • Biau, G. (2012). Analysis of a random forests model. The Journal of Machine Learning Research, 13(1), 1063-1095.
  • Caicedo, J. C., Cooper, S., Heigwer, F., Warchal, S., Qiu, P., Molnar, C., ... & Carpenter, A. E. (2017). Data-analysis strategies for image-based cell profiling. Nature Methods, 14(9), 849-863.
  • Coelho, D. S. L., Ayala, H. V. H., & Mariani, V. C. (2024). CO and NOx emissions prediction in gas turbine using a novel modeling pipeline based on the combination of deep forest regressor and feature engineering. Fuel, 355, 129366. https://doi.org/10.1016/j.fuel.2023.129366
  • Dalal, A. S., Sultanova, N., Jayabalan, M., & Mustafina, J. (2023, December). Gas turbine–CO & NOx emission data analysis with predictive modelling using ML/AI approaches. In 2023 16th International Conference on Developments in eSystems Engineering (DeSE) (pp. 100-104). IEEE. https://doi.org/10.1109/DeSE60595.2023.10469322
  • Dirik, M. (2022). Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA. Fuel, 321, 124037. https://doi.org/10.1016/j.fuel.2022.124037
  • Divina, F., Gilson, A., Goméz-Vela, F., García Torres, M., & Torres, J. F. (2018). Stacking ensemble learning for short-term electricity consumption forecasting. Energies, 11(4), 949. https://doi.org/10.3390/en11040949
  • Farzaneh-Gord, M., & Deymi-Dashtebayaz, M. (2011). Effect of various inlet air cooling methods on gas turbine performance. Energy, 36(2), 1196-1205. https://doi.org/10.1016/j.energy.2010.11.027
  • Ghorbani, H. (2019). Mahalanobis distance and its application for detecting multivariate outliers. Facta Universitatis, Series: Mathematics and Informatics, 583-595. https://doi.org/10.22190/FUMI1903583G
  • Karthikeyan, S., Kathirvalavakumar, T., & Prasath, R. (2023, June). Classification of the Class Imbalanced Data Using Mahalanobis Distance with Feature Filtering. In International Conference on Mining Intelligence and Knowledge Exploration (pp. 45-53). Cham: Springer Nature Switzerland.
  • Kaya, H., Tüfekci, P., & Uzun, E. (2019). Predicting CO and NOx emissions from gas turbines: novel data and a benchmark PEMS. Turkish Journal of Electrical Engineering and Computer Sciences, 27(6), 4783-4796. https://doi.org/10.3906/elk-1807-87
  • Kochueva, O., & Nikolskii, K. (2021). Data analysis and symbolic regression models for predicting CO and NOx emissions from gas turbines. Computation, 9(12), 139. https://doi.org/10.3390/computation9120139
  • Kumar, M. V., Babu, A. V., Reddy, C. R., Pandian, A., Bajaj, M., Zawbaa, H. M., & Kamel, S. (2022). Investigation of the combustion of exhaust gas recirculation in diesel engines with a particulate filter and selective catalytic reactor technologies for environmental gas reduction. Case Studies in Thermal Engineering, 40, 102557.
  • Leys, C., Klein, O., Dominicy, Y., & Ley, C. (2018). Detecting multivariate outliers: Use a robust variant of the Mahalanobis distance. Journal of Experimental Social Psychology, 74, 150-156. https://doi.org/10.1016/j.jesp.2017.09.011
  • Liu, Z., Meng, H., Huang, J., Kwangwari, P., Ma, K., Xiao, B., & Li, L. (2021). Acute carbon monoxide poisoning with low saturation of carboxyhaemoglobin: a forensic retrospective study in Shanghai, China. Scientific Reports, 11(1), 18554.
  • Lopes, C., Antelo, L. T., Franco-Uría, A., Alonso, A. A., & Pérez-Martín, R. (2015). Valorisation of fish by-products against waste management treatments–Comparison of environmental impacts. Waste Management, 46, 103-112. https://doi.org/10.1016/j.wasman.2015.08.017
  • Lott, P., Casapu, M., Grunwaldt, J. D., & Deutschmann, O. (2024). A review on exhaust gas after-treatment of lean-burn natural gas engines–From fundamentals to application. Applied Catalysis B: Environmental, 340, 123241.
  • Mahmoudi, S., Baeyens, J., & Seville, J. P. (2010). NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass and bioenergy, 34(9), 1393-1409. https://doi.org/10.1016/j.biombioe.2010.04.013
  • Mare, D. S., Moreira, F., & Rossi, R. (2017). Nonstationary Z-score measures. European Journal of Operational Research, 260(1), 348-358. https://doi.org/10.1016/j.ejor.2016.12.001
  • Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(2), 140-147. https://doi.org/10.38094/jastt1457
  • Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67-72. https://doi.org/10.4103/aca.ACA_157_18
  • Naghibi, A. (2024). Exploring explainable ensemble machine learning methods for long-term performance prediction of industrial gas turbines: A comparative analysis. Engineering Applications of Artificial Intelligence, 138, 109318. https://doi.org/10.1016/j.engappai.2024.109318
  • Nino-Adan, I., Portillo, E., Landa-Torres, I., & Manjarres, D. (2021). Normalization influence on ANN-based models performance: A new proposal for Features’ contribution analysis. IEEE Access, 9, 125462-125477. https://doi.org/10.1109/ACCESS.2021.3110647
  • Osborne, J. W., & Overbay, A. (2019). The power of outliers (and why researchers should always check for them). Practical Assessment, Research, and Evaluation, 9(1), 6. https://doi.org/10.7275/qf69-7k43
  • Pachauri, N. (2024). An emission predictive system for CO and NOx from gas turbine based on ensemble machine learning approach. Fuel, 366, 131421. https://doi.org/10.1016/j.fuel.2024.131421
  • Pandey, R. A., & Chandrashekhar, B. (2014). Physicochemical and biochemical approaches for treatment of gaseous emissions containing NOx. Critical Reviews in Environmental Science and Technology, 44(1), 34-96. https://doi.org/10.1080/10643389.2012.710430
  • Prusty, S., Patnaik, S., & Dash, S. K. (2022). SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer. Frontiers in Nanotechnology, 4, 972421. https://doi.org/10.3389/fnano.2022.972421
  • Quinlan, J. R. (1996). Learning decision tree classifiers. ACM Computing Surveys (CSUR), 28(1), 71-72.
  • Rezazadeh, A. (2021). Environmental pollution prediction of NOx by predictive modelling and process analysis in natural gas turbine power plants. Pollution, 7(2), 481-494. https://doi.org/10.22059/poll.2021.316327.977
  • Song, Y., Liang, J., Lu, J., & Zhao, X. (2017). An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing, 251, 26-34. https://doi.org/10.1016/j.neucom.2017.04.018
  • Tian, J., Wang, L., Xiong, Y., Wang, Y., Yin, W., Tian, G., ... & Ji, S. (2024). Enhancing combustion efficiency and reducing nitrogen oxide emissions from ammonia combustion: A comprehensive review. Process Safety and Environmental Protection, 183, 514-543. https://doi.org/10.1016/j.psep.2024.01.020
  • Todeschini, R., Ballabio, D., Consonni, V., Sahigara, F., & Filzmoser, P. (2013). Locally centred Mahalanobis distance: a new distance measure with salient features towards outlier detection. Analytica Chimica Acta, 787, 1-9. https://doi.org/10.1016/j.aca.2013.04.034
  • Valkenborg, D., Rousseau, A. J., Geubbelmans, M., & Burzykowski, T. (2023). Support vector machines. American Journal of Orthodontics and Dentofacial Orthopedics, 164(5), 754-757.
  • Wardana, M. K. A., & Lim, O. (2022). Review of improving the NOx conversion efficiency in various diesel engines fitted with SCR system technology. Catalysts, 13(1), 67.
  • Wood, D. A. (2023). Long-term atmospheric pollutant emissions from a combined cycle gas turbine: Trend monitoring and prediction applying machine learning. Fuel, 343, 127722. https://doi.org/10.1016/j.fuel.2023.127722
  • Wu, T. J., Burke, J. P., & Davison, D. B. (1997). A measure of DNA sequence dissimilarity based on Mahalanobis distance between frequencies of words. Biometrics, 1431-1439. https://doi.org/10.2307/2533509
  • Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295-316. https://doi.org/10.1016/j.neucom.2020.07.061
  • Yaro, A. S., Maly, F., & Prazak, P. (2023). Outlier detection in time-series receive signal strength observation using z-score method with s n scale estimator for indoor localization. Applied Sciences, 13(6), 3900. https://doi.org/10.3390/app13063900
  • Yousif, S. T., Ismail, F. B., & Al‐Bazi, A. (2024). A hybrid neural network‐based improved PSO algorithm for gas turbine emissions prediction. Advanced Theory and Simulations, 2301222.
  • https://doi.org/10.1002/adts.202301222 Yu, H., & Kim, S. (2012). SVM Tutorial-Classification, Regression and Ranking. Handbook of Natural Computing, 1, 479-506.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Öğrenme (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Vahid Sinap 0000-0002-8734-9509

Erken Görünüm Tarihi 13 Mart 2025
Yayımlanma Tarihi 18 Mart 2025
Gönderilme Tarihi 14 Ekim 2024
Kabul Tarihi 5 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Sinap, V. (2025). Outliers Treatment for Improved Prediction of CO and NOx Emissions from Gas Turbines Using Ensemble Regressor Approaches. Journal of Intelligent Systems: Theory and Applications, 8(1), 63-83. https://doi.org/10.38016/jista.1566965
AMA Sinap V. Outliers Treatment for Improved Prediction of CO and NOx Emissions from Gas Turbines Using Ensemble Regressor Approaches. jista. Mart 2025;8(1):63-83. doi:10.38016/jista.1566965
Chicago Sinap, Vahid. “Outliers Treatment for Improved Prediction of CO and NOx Emissions from Gas Turbines Using Ensemble Regressor Approaches”. Journal of Intelligent Systems: Theory and Applications 8, sy. 1 (Mart 2025): 63-83. https://doi.org/10.38016/jista.1566965.
EndNote Sinap V (01 Mart 2025) Outliers Treatment for Improved Prediction of CO and NOx Emissions from Gas Turbines Using Ensemble Regressor Approaches. Journal of Intelligent Systems: Theory and Applications 8 1 63–83.
IEEE V. Sinap, “Outliers Treatment for Improved Prediction of CO and NOx Emissions from Gas Turbines Using Ensemble Regressor Approaches”, jista, c. 8, sy. 1, ss. 63–83, 2025, doi: 10.38016/jista.1566965.
ISNAD Sinap, Vahid. “Outliers Treatment for Improved Prediction of CO and NOx Emissions from Gas Turbines Using Ensemble Regressor Approaches”. Journal of Intelligent Systems: Theory and Applications 8/1 (Mart 2025), 63-83. https://doi.org/10.38016/jista.1566965.
JAMA Sinap V. Outliers Treatment for Improved Prediction of CO and NOx Emissions from Gas Turbines Using Ensemble Regressor Approaches. jista. 2025;8:63–83.
MLA Sinap, Vahid. “Outliers Treatment for Improved Prediction of CO and NOx Emissions from Gas Turbines Using Ensemble Regressor Approaches”. Journal of Intelligent Systems: Theory and Applications, c. 8, sy. 1, 2025, ss. 63-83, doi:10.38016/jista.1566965.
Vancouver Sinap V. Outliers Treatment for Improved Prediction of CO and NOx Emissions from Gas Turbines Using Ensemble Regressor Approaches. jista. 2025;8(1):63-8.

Zeki Sistemler Teori ve Uygulamaları Dergisi