Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’de 2030–2040 Arasında Araç Sayısı Değişimi ile Karbon Ayak İzi Eğilimlerinin Polinom Regresyon ile Modellenmesi

Yıl 2025, Cilt: 8 Sayı: 2, 133 - 146, 25.10.2025
https://doi.org/10.51513/jitsa.1695061

Öz

Bu çalışma, Türkiye'de 2004–2024 yılları arasında tescilli araç türlerindeki değişimleri analiz ederek, 2030, 2035 ve 2040 yılları için araç sayısı ve ulaşım kaynaklı karbon ayak izi tahminleri sunmaktadır. Polinom regresyon tabanlı zaman serisi modellemesi ile benzinli, dizel ve LPG'li araçların gelecekteki eğilimleri öngörülmüş, bu eğilimlerin karbon emisyonlarına etkisi üç farklı politika senaryosu altında değerlendirilmiştir. Bulgular, fosil yakıtlı araçların yaygınlığının sürmesi durumunda karbon ayak izinin artmaya devam edeceğini; ancak elektrikli ve hibrit araçların yaygınlaştırılmasıyla bu artışın önemli ölçüde azaltılabileceğini göstermektedir. Özellikle ileri düzey sürdürülebilirlik politikalarının uygulandığı senaryoda 2040 yılına kadar emisyonlarda anlamlı bir azalma elde edilebileceği ortaya konmuştur. Çalışma, Türkiye’nin 2053 Net Sıfır Emisyon hedefi doğrultusunda ulaşım sektörü için veri temelli politika önerileri sunmaktadır.

Kaynakça

  • Ağbulut, Ü. (2022). Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustainable Production and Consumption, 29, 141-157. https://doi.org/10.1016/j.spc.2021.10.001
  • Asgarian, F., Hejazi, S. R., Khosroshahi, H., & Safarzadeh, S. (2024). Vehicle pricing considering EVs promotion and public transportation investment under governmental policies on sustainable transportation development: The case of Norway. Transport Policy, 153, 204-221. https://doi.org/10.1016/j.tranpol.2024.05.017
  • Awan, A., Alnour, M., Jahanger, A., & Onwe, J. C. (2022). Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector? Technology in Society, 71, 102128. https://doi.org/10.1016/j.techsoc.2022.102128
  • Belany, P., Hrabovsky, P., Sedivy, S., Cajova Kantova, N., & Florkova, Z. (2024). A Comparative Analysis of Polynomial Regression and Artificial Neural Networks for Prediction of Lighting Consumption. Buildings, 14(6), 1712. https://doi.org/10.3390/buildings14061712
  • Bleviss, D. L. (2021). Transportation is critical to reducing greenhouse gas emissions in the United States. WIREs Energy and Environment, 10(2), e390. https://doi.org/10.1002/wene.390
  • Brand, C., Anable, J., & Morton, C. (2019). Lifestyle, efficiency and limits: Modelling transport energy and emissions using a socio-technical approach. Energy Efficiency, 12(1), 187-207. https://doi.org/10.1007/s12053-018-9678-9
  • Cevheribucak, G. (2021). Energy Transition and Sustainable Road Transportation in Turkey: Multiple Policy Challenges for Inclusive Change. Frontiers in Sustainable Cities, 3, 631337. https://doi.org/10.3389/frsc.2021.631337
  • Cremades, L., & Canals Casals, L. (2022). Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative. Energies, 15(23), 9149. https://doi.org/10.3390/en15239149
  • Dalianis, G., Nanaki, E., Xydis, G., & Zervas, E. (2016). New Aspects to Greenhouse Gas Mitigation Policies for Low Carbon Cities. Energies, 9(3), 128. https://doi.org/10.3390/en9030128
  • De Abreu, V. H. S., Santos, A. S., & Monteiro, T. G. M. (2022). Climate Change Impacts on the Road Transport Infrastructure: A Systematic Review on Adaptation Measures. Sustainability, 14(14), 8864. https://doi.org/10.3390/su14148864
  • Dönmezçelik, O., Koçak, E., & Örkcü, H. H. (2023). Towards net zero emissions target: Energy modelling of the transport sector in Türkiye. Energy, 279, 128064. https://doi.org/10.1016/j.energy.2023.128064
  • Driscoll, P. A., Theodórsdóttir, Á. H., Richardson, T., & Mguni, P. (2012). Is the Future of Mobility Electric? Learning from Contested Storylines of Sustainable Mobility in Iceland. European Planning Studies, 20(4), 627-639. https://doi.org/10.1080/09654313.2012.665036
  • Ferrer, A. L. C., & Thomé, A. M. T. (2023). Carbon Emissions in Transportation: A Synthesis Framework. Sustainability, 15(11), 8475. https://doi.org/10.3390/su15118475
  • Fulton, L., Lah, O., & Cuenot, F. (2013). Transport Pathways for Light Duty Vehicles: Towards a 2° Scenario. Sustainability, 5(5), 1863-1874. https://doi.org/10.3390/su5051863
  • Güzel, T. D., & Alp, K. (2020). Modeling of greenhouse gas emissions from the transportation sector in Istanbul by 2050. Atmospheric Pollution Research, 11(12), 2190-2201. https://doi.org/10.1016/j.apr.2020.08.034
  • Hart, R., Kyriakopoulou, E., & Lu, T. (2024). Urban Transport Policies and Net Zero Emissions in the European Union. Annual Review of Resource Economics, 16(1), 187-206. https://doi.org/10.1146/annurev-resource-101623-101611
  • Höltl, A., Macharis, C., & De Brucker, K. (2017). Pathways to Decarbonise the European Car Fleet: A Scenario Analysis Using the Backcasting Approach. Energies, 11(1), 20. https://doi.org/10.3390/en11010020
  • IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2: Energy. Intergovernmental Panel on Climate Change. Erişim Tarihi, 20 Haziran 2025, https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
  • Isik, M., Sarica, K., & Ari, I. (2020). Driving forces of Turkey’s transportation sector CO2 emissions: An LMDI approach. Transport Policy, 97, 210-219. https://doi.org/10.1016/j.tranpol.2020.07.006
  • Katircioğlu, S., & Katircioğlu, S. (2018). Testing the role of urban development in the conventional Environmental Kuznets Curve: Evidence from Turkey. Applied Economics Letters, 25(11), 741-746. https://doi.org/10.1080/13504851.2017.1361004
  • Krause, J., Thiel, C., Tsokolis, D., Samaras, Z., Rota, C., Ward, A., Prenninger, P., Coosemans, T., Neugebauer, S., & Verhoeve, W. (2020). EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios. Energy Policy, 138, 111224. https://doi.org/10.1016/j.enpol.2019.111224
  • Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. https://doi.org/10.1016/j.treng.2020.100005
  • Linton, C., Grant-Muller, S., & Gale, W. F. (2015). Approaches and Techniques for Modelling CO2 Emissions from Road Transport. Transport Reviews, 35(4), 533-553. https://doi.org/10.1080/01441647.2015.1030004
  • Naimoglu, M., & Akal, M. (2023). The relationship between energy technology, energy efficiency, renewable energy, and the environment in Türkiye. Journal of Cleaner Production, 418, 138144. https://doi.org/10.1016/j.jclepro.2023.138144
  • Ostertagová, E. (2012). Modelling using Polynomial Regression. Procedia Engineering, 48, 500-506. https://doi.org/10.1016/j.proeng.2012.09.545
  • Springel, K. (2021). It’s Not Easy Being “Green”: Lessons from Norway’s Experience with Incentives for Electric Vehicle Infrastructure. Review of Environmental Economics and Policy, 15(2), 352-359. https://doi.org/10.1086/715549
  • Stamos, I., Mitsakis, E., & Grau, J. M. S. (2015). Roadmaps for Adaptation Measures of Transportation to Climate Change. Transportation Research Record: Journal of the Transportation Research Board, 2532(1), 1-12. https://doi.org/10.3141/2532-01
  • Şen, M., Yiğiter, M. S., & Özcan, M. (2023). Why are consumers switching to electric vehicles? Analyzing consumers preferences for electric vehicles. Case Studies on Transport Policy, 14, 101108. https://doi.org/10.1016/j.cstp.2023.101108
  • TÜİK. (2025.). Tüik veri portalı, Erişim tarihi 25 Şubat 2025, https://data.tuik.gov.tr/Kategori/GetKategori?p=ulastirma-ve-haberlesme-112&dil=1
  • Winkler, L., Pearce, D., Nelson, J., & Babacan, O. (2023). The effect of sustainable mobility transition policies on cumulative urban transport emissions and energy demand. Nature Communications, 14(1), 2357. https://doi.org/10.1038/s41467-023-37728-x
  • Zhang, X., Xie, J., Rao, R., & Liang, Y. (2014). Policy Incentives for the Adoption of Electric Vehicles across Countries. Sustainability, 6(11), 8056-8078. https://doi.org/10.3390/su6118056

Modeling Vehicle Number Change and Carbon Footprint Trends in Turkey (2030–2040) Using Polynomial Regression

Yıl 2025, Cilt: 8 Sayı: 2, 133 - 146, 25.10.2025
https://doi.org/10.51513/jitsa.1695061

Öz

This study analyzes the changes in registered vehicle types in Turkey from 2004 to 2024 and presents forecasts for vehicle numbers and transportation-related carbon footprint for the years 2030, 2035, and 2040. Using a polynomial regression-based time series model, future trends for gasoline, diesel, and LPG-powered vehicles are projected, and their environmental impacts are evaluated under three distinct policy scenarios. The results show that if fossil-fueled vehicles continue to dominate, the carbon footprint will increase significantly; however, a rapid transition to electric and hybrid vehicles can substantially reduce emissions. The scenario-based projections indicate that advanced sustainability policies could achieve meaningful reductions in emissions by 2040. This study offers evidence-based policy recommendations to support Turkey’s pathway toward its 2053 Net Zero Emission target, emphasizing the critical role of low-carbon mobility transitions.

Kaynakça

  • Ağbulut, Ü. (2022). Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustainable Production and Consumption, 29, 141-157. https://doi.org/10.1016/j.spc.2021.10.001
  • Asgarian, F., Hejazi, S. R., Khosroshahi, H., & Safarzadeh, S. (2024). Vehicle pricing considering EVs promotion and public transportation investment under governmental policies on sustainable transportation development: The case of Norway. Transport Policy, 153, 204-221. https://doi.org/10.1016/j.tranpol.2024.05.017
  • Awan, A., Alnour, M., Jahanger, A., & Onwe, J. C. (2022). Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector? Technology in Society, 71, 102128. https://doi.org/10.1016/j.techsoc.2022.102128
  • Belany, P., Hrabovsky, P., Sedivy, S., Cajova Kantova, N., & Florkova, Z. (2024). A Comparative Analysis of Polynomial Regression and Artificial Neural Networks for Prediction of Lighting Consumption. Buildings, 14(6), 1712. https://doi.org/10.3390/buildings14061712
  • Bleviss, D. L. (2021). Transportation is critical to reducing greenhouse gas emissions in the United States. WIREs Energy and Environment, 10(2), e390. https://doi.org/10.1002/wene.390
  • Brand, C., Anable, J., & Morton, C. (2019). Lifestyle, efficiency and limits: Modelling transport energy and emissions using a socio-technical approach. Energy Efficiency, 12(1), 187-207. https://doi.org/10.1007/s12053-018-9678-9
  • Cevheribucak, G. (2021). Energy Transition and Sustainable Road Transportation in Turkey: Multiple Policy Challenges for Inclusive Change. Frontiers in Sustainable Cities, 3, 631337. https://doi.org/10.3389/frsc.2021.631337
  • Cremades, L., & Canals Casals, L. (2022). Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative. Energies, 15(23), 9149. https://doi.org/10.3390/en15239149
  • Dalianis, G., Nanaki, E., Xydis, G., & Zervas, E. (2016). New Aspects to Greenhouse Gas Mitigation Policies for Low Carbon Cities. Energies, 9(3), 128. https://doi.org/10.3390/en9030128
  • De Abreu, V. H. S., Santos, A. S., & Monteiro, T. G. M. (2022). Climate Change Impacts on the Road Transport Infrastructure: A Systematic Review on Adaptation Measures. Sustainability, 14(14), 8864. https://doi.org/10.3390/su14148864
  • Dönmezçelik, O., Koçak, E., & Örkcü, H. H. (2023). Towards net zero emissions target: Energy modelling of the transport sector in Türkiye. Energy, 279, 128064. https://doi.org/10.1016/j.energy.2023.128064
  • Driscoll, P. A., Theodórsdóttir, Á. H., Richardson, T., & Mguni, P. (2012). Is the Future of Mobility Electric? Learning from Contested Storylines of Sustainable Mobility in Iceland. European Planning Studies, 20(4), 627-639. https://doi.org/10.1080/09654313.2012.665036
  • Ferrer, A. L. C., & Thomé, A. M. T. (2023). Carbon Emissions in Transportation: A Synthesis Framework. Sustainability, 15(11), 8475. https://doi.org/10.3390/su15118475
  • Fulton, L., Lah, O., & Cuenot, F. (2013). Transport Pathways for Light Duty Vehicles: Towards a 2° Scenario. Sustainability, 5(5), 1863-1874. https://doi.org/10.3390/su5051863
  • Güzel, T. D., & Alp, K. (2020). Modeling of greenhouse gas emissions from the transportation sector in Istanbul by 2050. Atmospheric Pollution Research, 11(12), 2190-2201. https://doi.org/10.1016/j.apr.2020.08.034
  • Hart, R., Kyriakopoulou, E., & Lu, T. (2024). Urban Transport Policies and Net Zero Emissions in the European Union. Annual Review of Resource Economics, 16(1), 187-206. https://doi.org/10.1146/annurev-resource-101623-101611
  • Höltl, A., Macharis, C., & De Brucker, K. (2017). Pathways to Decarbonise the European Car Fleet: A Scenario Analysis Using the Backcasting Approach. Energies, 11(1), 20. https://doi.org/10.3390/en11010020
  • IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2: Energy. Intergovernmental Panel on Climate Change. Erişim Tarihi, 20 Haziran 2025, https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
  • Isik, M., Sarica, K., & Ari, I. (2020). Driving forces of Turkey’s transportation sector CO2 emissions: An LMDI approach. Transport Policy, 97, 210-219. https://doi.org/10.1016/j.tranpol.2020.07.006
  • Katircioğlu, S., & Katircioğlu, S. (2018). Testing the role of urban development in the conventional Environmental Kuznets Curve: Evidence from Turkey. Applied Economics Letters, 25(11), 741-746. https://doi.org/10.1080/13504851.2017.1361004
  • Krause, J., Thiel, C., Tsokolis, D., Samaras, Z., Rota, C., Ward, A., Prenninger, P., Coosemans, T., Neugebauer, S., & Verhoeve, W. (2020). EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios. Energy Policy, 138, 111224. https://doi.org/10.1016/j.enpol.2019.111224
  • Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. https://doi.org/10.1016/j.treng.2020.100005
  • Linton, C., Grant-Muller, S., & Gale, W. F. (2015). Approaches and Techniques for Modelling CO2 Emissions from Road Transport. Transport Reviews, 35(4), 533-553. https://doi.org/10.1080/01441647.2015.1030004
  • Naimoglu, M., & Akal, M. (2023). The relationship between energy technology, energy efficiency, renewable energy, and the environment in Türkiye. Journal of Cleaner Production, 418, 138144. https://doi.org/10.1016/j.jclepro.2023.138144
  • Ostertagová, E. (2012). Modelling using Polynomial Regression. Procedia Engineering, 48, 500-506. https://doi.org/10.1016/j.proeng.2012.09.545
  • Springel, K. (2021). It’s Not Easy Being “Green”: Lessons from Norway’s Experience with Incentives for Electric Vehicle Infrastructure. Review of Environmental Economics and Policy, 15(2), 352-359. https://doi.org/10.1086/715549
  • Stamos, I., Mitsakis, E., & Grau, J. M. S. (2015). Roadmaps for Adaptation Measures of Transportation to Climate Change. Transportation Research Record: Journal of the Transportation Research Board, 2532(1), 1-12. https://doi.org/10.3141/2532-01
  • Şen, M., Yiğiter, M. S., & Özcan, M. (2023). Why are consumers switching to electric vehicles? Analyzing consumers preferences for electric vehicles. Case Studies on Transport Policy, 14, 101108. https://doi.org/10.1016/j.cstp.2023.101108
  • TÜİK. (2025.). Tüik veri portalı, Erişim tarihi 25 Şubat 2025, https://data.tuik.gov.tr/Kategori/GetKategori?p=ulastirma-ve-haberlesme-112&dil=1
  • Winkler, L., Pearce, D., Nelson, J., & Babacan, O. (2023). The effect of sustainable mobility transition policies on cumulative urban transport emissions and energy demand. Nature Communications, 14(1), 2357. https://doi.org/10.1038/s41467-023-37728-x
  • Zhang, X., Xie, J., Rao, R., & Liang, Y. (2014). Policy Incentives for the Adoption of Electric Vehicles across Countries. Sustainability, 6(11), 8056-8078. https://doi.org/10.3390/su6118056
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Modelleme ve Simülasyon
Bölüm Makaleler
Yazarlar

Hüseyin Söyler 0000-0002-1216-7049

Ahmet Karaoğlu 0000-0002-7507-3031

Erken Görünüm Tarihi 22 Ekim 2025
Yayımlanma Tarihi 25 Ekim 2025
Gönderilme Tarihi 7 Mayıs 2025
Kabul Tarihi 24 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Söyler, H., & Karaoğlu, A. (2025). Modeling Vehicle Number Change and Carbon Footprint Trends in Turkey (2030–2040) Using Polynomial Regression. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 8(2), 133-146. https://doi.org/10.51513/jitsa.1695061