Araştırma Makalesi
BibTex RIS Kaynak Göster

Konvansiyonel Laboratuvar Hayvan Tesisinde, Aktif Kullanım Süresince, Mekanlar Arasındaki Fiziksel Şartlarda Farklılık Var Mıdır?

Yıl 2024, Cilt: 4 Sayı: 2, 83 - 90, 19.09.2024
https://doi.org/10.62425/jlasp.1436813

Öz

Laboratuvar hayvan tesislerinde fiziksel şartların standardizasyonu deneysel hayvan araştırmalarının tekrarlanabilirliği açısından bir zorunluluktur. Laboratuvar hayvan tesislerindeki fiziksel şartların hayvanların fizyolojileri ve davranışları üzerine etkisinden dolayı deneysel araştırmaların sonuçları da etkilenir. Bu çalışma konvensiyonel bir deney hayvanı üretim ve araştırma tesisinde, laboratuvarın aktif kullanım süresi içinde mekanlar arasındaki sıcaklık, nem, ışık şiddeti ve gürültü seviyesi gibi fiziksel farklılıkları ortaya koymak amacıyla yürütülmüştür. Bu çalışma için laboratuvarda hayvanlarının bulundukları ortamların fiziksel koşulları haftanın iş günlerinde ve günlük döngünün 12 saatlik gündüz periyodunda laboratuvarın aktif çalışma saatleri arasında (7:00-
19:00) dört hafta boyunca ölçülmüştür. Elde edilen verilerin istatistiksel analiz sonuçları Laboratuvar Hayvanlarının Bakımı ve Kullanımı Kılavuzu ile Deneysel ve Diğer Bilimsel Amaçlar İçin Kullanılan Hayvanların Refah ve Korunmasına Dair Yönetmeliğin Uygulama Talimatında belirtilen yasal standartlara uygun olduğu belirlenmiştir. Ancak koridorlarda, operasyon ve post-operatif bakım odalarında ölçülen ışık yoğunluğu ve gürültü seviyeleri yasal sınırlar içinde kalsa da hayvan barınma odalarından daha yüksektir. Bunun yanında koridor ve operasyon odasında sıcaklık ve nem, hayvan bakım odaları ve post operatif bakım odasından daha düşük seyretmektedir. Koridor, operasyon, post operatif bakım odalarının ölçüm değerlerinin mümkün olduğunca hayvan barındırma odalarının ölçüm değerlerine yaklaştırılarak mekanlar arasındaki farkın en aza indirilmesi, hem hayvan refahının ve standardizasyonun sağlanması, hem de hayvanların biyolojik yapıları açısından oldukça önemlidir. Mekanlar arasındaki fiziksel değişikliklerin, araştırma sonuçlarına yansıması nedeniyle, tekrarlanabilirlik ilkesine uymadığından araştırma güvenliğini tehlikeye düşürebilmektedir.

Etik Beyan

Araştırma makalesinde hayvan kullanılmamaktadır

Kaynakça

  • Atanasov, N. A., Sargent, J. L., Parmigiani, J. P., Palme, R., & Diggs, H. E. (2015). Characterization of train-induced vibration and its effect on fecal corticosterone metabolites in mice. Journal of the American Association for Laboratory Animal Science : JAALAS, 54(6), 737-744. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671789/.
  • Baumans, V., Schlingmann, F., Vonck, M., & Lith, H. (2002). Individually ventilated cages: beneficial for mice and men? Contemporary topics in laboratory animal science / American Association for Laboratory Animal Science, 41(1):13-9.
  • Brainard, G. C., & Hanifin, J. P. (2005). Photons, clocks, and consciousness. Journal of Biological Rhythms, 20(4), 314-325. https://doi.org/10.1177/0748730405278951.
  • Crippa, L., Gobbi, A., Ceruti, R. M., Clifford, C. B., Remuzzi, A., & Scanziani, E. (2000). Ringtail in suckling Munich Wistar Fromter rats: a histopathologic study. Comparative Medicine, 50(5), 536-539.
  • Dauchy, R. T., Wren-Dail, M. A., Hoffman, A. E., Hanifin, J. P., Warfield, B., Brainard, G. C., Hill, S. M., Belancio, V. P., Dauchy, E. M., & Blask, D. E. (2016). Effects of daytime exposure to light from blue-enriched light-emitting diodes on the nighttime melatonin amplitude and circadian regulation of rodent metabolism and physiology. Comparative Medicine, 66(5), 373-383. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073062/.
  • Emmer, K. M., Russart, K. L. G., Walker, W. H.,Nelson, R. J., & DeVries, A. C. (2018). Effects of light at night on laboratory animals and research outcomes. Behavioral neuroscience, 132(4), 302-314. https://doi.org/10.1037/bne0000252.
  • Hanifin, J. P., Dauchy, R. T., Blask, D. E., Hill, S. M., & Brainard, G. C. (2020). Relevance of electrical light on circadian, neuroendocrine, and neurobehavioral regulation in laboratory animal facilities. ILAR Journal, 60(2), 150-158. https://doi.org/10.1093/ilar/ilaa010.
  • Liu, E. qi, & Fan, J. lin. (2018). Fundamentals of laboratory animal science. CRC press.
  • Malakoff, D. (2000). The rise of the mouse, biomedicine’s model mammal. Science, 288(5464), 248-253. https://doi.org/10.1126/science.288.5464.248.
  • Marx, J. O., Jacobsen, K. O., Petervary, N. A., & Casebolt, D. B. (2021). A survey of laboratory animal veterinarians regarding mouse welfare in biomedical research. Journal of the American Association for Laboratory Animal Science : JAALAS, 60(2), 139-145. https://doi.org/10.30802/AALAS-JAALAS-20-000063.
  • National Research Council Committee. (2011). Guide for the care and use of laboratory animals (8th edition). US. https://doi.org/PMID: 21595115.
  • Parker, A., Hobson, L., Bains, R., Wells, S., & Bowl, M. (2022). Investigating audible and ultrasonic noise in modern animal facilities. F1000Research, 11, 651. https://doi.org/10.12688/f1000research.111170.1.
  • Resmî Gazete (2012). Deneysel ve diğer bilimsel amaçlar için kullanılan hayvanların refah ve korunmasına dair yönetmeliğin uygulama talimatı (sayı:1179). https://www.resmigazete.gov.tr.
  • Sato, S., Solanas, G., Peixoto, F. O., Bee, L., Symeonidi, A., Schmidt, M. S., Brenner, C., Masri, S., Benitah, S. A., & Sassone-Corsi, P. (2017). Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell, 170(4), 664-677.e11. https://doi.org/10.1016/j.cell.2017.07.042.
  • Tan, C. L., & Knight, Z. A. (2018). Regulation of body temperature by the nervous system. Neuron, 98(1), 31-48. https://doi.org/10.1016/j.neuron.2018.02.022.
  • Texada, M. J., Koyama, T., & Rewitz, K. (2020). Regulation of body size and growth control. Genetics, 216(2), 269-313. https://doi.org/10.1534/genetics.120.303095.
  • Turner, J. G., Parrish, J. L., Hughes, L. F., Toth, L. A., & Caspary, D. M. (2005). Hearing in laboratory animals: strain differences and nonauditory effects of noise. Comparative medicine, 55(1), 12-23. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725606/.
  • Wang, M., Chen, J., Lin, X., Huang, L., Li, H., Wen, C., & He, Z. (2021). High humidity aggravates the severity of arthritis in collagen-induced arthritis mice by upregulating xylitol and L-pyroglutamic acid. Arthritis Research & Therapy, 23, 292. https://doi.org/10.1186/s13075-021-02681-x.
  • Weng, S., Estevez, M. E., & Berson, D. M. (2013). Mouse ganglion-cell photoreceptors are driven by the most sensitive rod pathway and by both types of cones. PLoS ONE, 8(6), e66480. https://doi.org/10.1371/journal.pone.0066480.

In Conventional Laboratory Animal Facility, Is There a Difference in Physical Conditions Between Spaces During Active Use?

Yıl 2024, Cilt: 4 Sayı: 2, 83 - 90, 19.09.2024
https://doi.org/10.62425/jlasp.1436813

Öz

Standardization of physical conditions in laboratory animal facilities is a necessity for the reproducibility of experimental animal research. The results of experimental research are also affected due to the effect of physical conditions in laboratory animal facilities on the physiology and behavior of animals. This study was conducted in a conventional laboratory animal production and research facility to reveal physical differences such as temperature, humidity, light intensity and noise level between spaces during the active use period of the laboratory. For this study, the physical conditions of the animals' environments in the laboratory were measured for four weeks, on working days of the week and during the12-hour day period of the daily cycle, during the active working hours of the laboratory (7:00-19:00). The statistical analysis results of the data obtained have been determined to comply with the legal standards specified in the Guide for the Care and Use of Laboratory Animals and the Implementation Instruction of the Regulation on the Welfare and Protection of Animals Used for Experimental and Other Scientific Purposes. However, although the light intensity and noise levels measured in corridors, operation and post-operative care rooms remain within legal limits, they are higher than in animal housing rooms. In addition, the temperature and humidity in the corridor and operation room are lower than in the animal care rooms and post-operative care room. It is very important to minimize the difference between spaces by bringing the measurement values of corridor operation and post-operative care rooms as close as possible to the measurement values of animal housing rooms, both in terms of ensuring animal welfare and standardization and in terms of biological structures of animals. Since physical changes between locations are reflected in the research results, it may endanger research security as it does not comply principle of repeatability.

Kaynakça

  • Atanasov, N. A., Sargent, J. L., Parmigiani, J. P., Palme, R., & Diggs, H. E. (2015). Characterization of train-induced vibration and its effect on fecal corticosterone metabolites in mice. Journal of the American Association for Laboratory Animal Science : JAALAS, 54(6), 737-744. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671789/.
  • Baumans, V., Schlingmann, F., Vonck, M., & Lith, H. (2002). Individually ventilated cages: beneficial for mice and men? Contemporary topics in laboratory animal science / American Association for Laboratory Animal Science, 41(1):13-9.
  • Brainard, G. C., & Hanifin, J. P. (2005). Photons, clocks, and consciousness. Journal of Biological Rhythms, 20(4), 314-325. https://doi.org/10.1177/0748730405278951.
  • Crippa, L., Gobbi, A., Ceruti, R. M., Clifford, C. B., Remuzzi, A., & Scanziani, E. (2000). Ringtail in suckling Munich Wistar Fromter rats: a histopathologic study. Comparative Medicine, 50(5), 536-539.
  • Dauchy, R. T., Wren-Dail, M. A., Hoffman, A. E., Hanifin, J. P., Warfield, B., Brainard, G. C., Hill, S. M., Belancio, V. P., Dauchy, E. M., & Blask, D. E. (2016). Effects of daytime exposure to light from blue-enriched light-emitting diodes on the nighttime melatonin amplitude and circadian regulation of rodent metabolism and physiology. Comparative Medicine, 66(5), 373-383. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073062/.
  • Emmer, K. M., Russart, K. L. G., Walker, W. H.,Nelson, R. J., & DeVries, A. C. (2018). Effects of light at night on laboratory animals and research outcomes. Behavioral neuroscience, 132(4), 302-314. https://doi.org/10.1037/bne0000252.
  • Hanifin, J. P., Dauchy, R. T., Blask, D. E., Hill, S. M., & Brainard, G. C. (2020). Relevance of electrical light on circadian, neuroendocrine, and neurobehavioral regulation in laboratory animal facilities. ILAR Journal, 60(2), 150-158. https://doi.org/10.1093/ilar/ilaa010.
  • Liu, E. qi, & Fan, J. lin. (2018). Fundamentals of laboratory animal science. CRC press.
  • Malakoff, D. (2000). The rise of the mouse, biomedicine’s model mammal. Science, 288(5464), 248-253. https://doi.org/10.1126/science.288.5464.248.
  • Marx, J. O., Jacobsen, K. O., Petervary, N. A., & Casebolt, D. B. (2021). A survey of laboratory animal veterinarians regarding mouse welfare in biomedical research. Journal of the American Association for Laboratory Animal Science : JAALAS, 60(2), 139-145. https://doi.org/10.30802/AALAS-JAALAS-20-000063.
  • National Research Council Committee. (2011). Guide for the care and use of laboratory animals (8th edition). US. https://doi.org/PMID: 21595115.
  • Parker, A., Hobson, L., Bains, R., Wells, S., & Bowl, M. (2022). Investigating audible and ultrasonic noise in modern animal facilities. F1000Research, 11, 651. https://doi.org/10.12688/f1000research.111170.1.
  • Resmî Gazete (2012). Deneysel ve diğer bilimsel amaçlar için kullanılan hayvanların refah ve korunmasına dair yönetmeliğin uygulama talimatı (sayı:1179). https://www.resmigazete.gov.tr.
  • Sato, S., Solanas, G., Peixoto, F. O., Bee, L., Symeonidi, A., Schmidt, M. S., Brenner, C., Masri, S., Benitah, S. A., & Sassone-Corsi, P. (2017). Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell, 170(4), 664-677.e11. https://doi.org/10.1016/j.cell.2017.07.042.
  • Tan, C. L., & Knight, Z. A. (2018). Regulation of body temperature by the nervous system. Neuron, 98(1), 31-48. https://doi.org/10.1016/j.neuron.2018.02.022.
  • Texada, M. J., Koyama, T., & Rewitz, K. (2020). Regulation of body size and growth control. Genetics, 216(2), 269-313. https://doi.org/10.1534/genetics.120.303095.
  • Turner, J. G., Parrish, J. L., Hughes, L. F., Toth, L. A., & Caspary, D. M. (2005). Hearing in laboratory animals: strain differences and nonauditory effects of noise. Comparative medicine, 55(1), 12-23. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725606/.
  • Wang, M., Chen, J., Lin, X., Huang, L., Li, H., Wen, C., & He, Z. (2021). High humidity aggravates the severity of arthritis in collagen-induced arthritis mice by upregulating xylitol and L-pyroglutamic acid. Arthritis Research & Therapy, 23, 292. https://doi.org/10.1186/s13075-021-02681-x.
  • Weng, S., Estevez, M. E., & Berson, D. M. (2013). Mouse ganglion-cell photoreceptors are driven by the most sensitive rod pathway and by both types of cones. PLoS ONE, 8(6), e66480. https://doi.org/10.1371/journal.pone.0066480.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvan Bilimi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Osman Yılmaz 0000-0001-7817-7576

Hatice Zeynep Koşar 0009-0004-9674-4289

Yayımlanma Tarihi 19 Eylül 2024
Gönderilme Tarihi 14 Şubat 2024
Kabul Tarihi 6 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 2

Kaynak Göster

EndNote Yılmaz O, Koşar HZ (01 Eylül 2024) Konvansiyonel Laboratuvar Hayvan Tesisinde, Aktif Kullanım Süresince, Mekanlar Arasındaki Fiziksel Şartlarda Farklılık Var Mıdır?. Laboratuvar Hayvanları Bilimi ve Uygulamaları Dergisi 4 2 83–90.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929