Araştırma Makalesi
BibTex RIS Kaynak Göster

Laboratuvar Hayvanlarında Tarama Programlarının Önemi ve Bazı Önemli Viral Ajanların Araştırılması

Yıl 2024, Cilt: 4 Sayı: 2, 91 - 100, 19.09.2024
https://doi.org/10.62425/jlasp.1484805

Öz

Laboratuvar hayvanlarının sağlık tarama programları, biyomedikal araştırmalarda standardizasyonun sağlanması ve hem hayvanların hem de araştırma personelinin sağlığının korunması açısından büyük önem taşımaktadır. Bu bağlamda, Hepatit E virusu (HEV), Murine hepatit virusu (MHV) ve Murine norovirus (MNV) gibi patojenlerin düzenli olarak izlenmesi, laboratuvar ortamında hijyen ve sanitasyon standartlarının geliştirilmesine katkıda bulunabilir. Araştırmada, BALB/c mice ve Sprague Dawley, Wistar albino sıçanlarından oluşan rastgele seçilmiş örneklem grupları üzerinde çalışılmıştır. Deney hayvanlarından etik ilkeler çerçevesinde kan ve doku örnekleri toplanmış, laboratuvar ortamındaki ses, ışık, kafes yoğunluğu, yem ve suya erişim gibi faktörler gözlemlenerek kaydedilmiştir. Bu gözlemler, araştırmanın güvenilirliğini ve tekrarlanabilirliğini artırmak için elzemdir. RT-PCR testleri kullanılarak HEV, MHV ve MNV için tarama yapılmış ve test edilen tüm örnekler bu patojenler yönünden negatif bulunmuştur. Bu sonuçlar, laboratuvar ortamında uygulanan hijyen ve sanitasyon protokollerinin etkinliğini göstermektedir. Ayrıca, laboratuvar araştırma merkezlerinde eğitimli personel ve kemirgen kontrol programlarının önemi vurgulanmıştır. Sonuç olarak, bu çalışma, laboratuvar hayvanlarında sağlık tarama programlarının, araştırılan patojenler ve uygulanan koruma-kontrol tedbirleri ile ilişkili olarak, bilimsel araştırmaların standardını yükseltmede kritik bir rol oynadığını ortaya koymaktadır. Bu tür programlar, laboratuvar hayvanlarının sağlığını korumak ve araştırma sonuçlarının güvenilirliğini artırmak için hayati öneme sahiptir.

Kaynakça

  • Aydin, H., Uyanik, M. H., Karamese, M., & Timurkan, M. O. (2016). Seroprevalence of hepatitis E virus in animal workers in nonporcine consumption region of Turkey. Future Virology, 11(10), 691-697. https://doi.org/10.2217/fvl-2016-0075.
  • Aydin, H. (2022). Fare hepatit virusu (MHV) üzerine bir derleme. Laboratuvar Hayvanları Bilimi ve Uygulamaları Dergisi, 2, 42-48.
  • Baker, D. G. (1998). Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clinical Microbiology Reviews, 11(2), 231-266. https://doi.org/10.1128/CMR.11.2.231.
  • Balayan, M. S., Andjaparidze, A. G., Savinskaya, S. S., Ketiladze, E. S., Braginsky, D. M., Savinov, A. P., & Poleschuk, V. F. (1983). Evidence for a Virus in Non-A, Non-B Hepatitis Transmitted via the Fecal-Oral Route. Intervirology, 20(1), 23–31. https://doi.org/10.1159/000149370.
  • Barthold, S.W. (1985). Mouse Hepatitis Virus Infection, Liver, Mouse. In Jones, T. C., Mohr, U. (Eds.), Monographs on Pathology of Laboratory Animals (pp. 187-216). Springer. https://doi.org/10.1007/978-3-642-96910-2_25. Belei, O., Ancusa, O., Mara, A., Olariu, L., Amaricai, E., Folescu, R., Zamfir, C. L., Gurgus, D., Motoc, A. G., Stânga, L. C., Strat, L., & Marginean, O. (2021). Current paradigm of hepatitis E virus among pediatric and adult patients. Frontiers in Pediatrics, 9, 721918. https://doi.org/10.3389/fped.2021.721918.
  • Bender, S. J., & Weiss, S. R. (2010). Pathogenesis of murine coronavirus in the central nervous system. Journal of Neuroimmune Pharmacology, 5(3), 336-354. https://doi.org/10.1007/s11481-010-9202-2.
  • Bilgili, A., & Gürel, Y. (2002). Laboratuvar hayvanlarının hastalıklarının sağaltımı. Etlik Veteriner Mikrobiyoloji Dergisi, 13(1), 77-88.
  • Buchheister, S., & Bleich, A. (2021). Health monitoring of laboratory rodent colonies—Talking about (r)evolution. Animals, 11(5), 1410. https://doi.org/10.3390/ani11051410.
  • Centers for Disease Control and Prevention (CDC). (2022). Norovirüs virüs sınıflandırması. https://www.cdc.gov/norovirus/lab/virus-classification.html.
  • Cortes-Penfield, N. W., Ramani, S., Estes, M. K., & Atmar, R. L. (2017). Prospects and challenges in the development of a norovirus vaccine. Clinical therapeutics, 39(8), 1537–1549. https://doi.org/10.1016/j.clinthera.2017.07. 002.
  • Cotten, M., Watson, S. J., Kellam, P., Al-Rabeeah, A. A., Makhdoom, H. Q., Assiri, A., Al-Tawfiq, J. A., Alhakeem, R. F., Madani, H., AlRabiah, F. A., Hajjar, S. A., Al-nassir, W. N., Albarrak, A., Flemban, H., Balkhy, H. H., Alsubaie, S., Palser, A. L., Gall, A., Bashford-Rogers, R., Memish, Z. A. (2013). Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study. The Lancet, 382(9909), 1993-2002. https://doi.org/10.1016/S0140-6736(13)61887-5.
  • Çeli̇k, A., Baksi̇, N., & Güneli̇, M. E. (2023). Deney hayvanları araştırmalarında standardizasyonun yeri ve önemi: geleneksel derleme. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 49(1), 125-132. https://doi.org/10.32708/uutfd.1216412.
  • Dhadde, S. (2019). Commonly used laboratory animals in experimental pharmacology. Handbook of Experimental Pharmacology.
  • Dolin, R. (1978). Norwalk agent-like particles associated with gastroenteritis in human beings. Journal of the American Veterinary Medical Association, 173(5 Pt 2), 615-619.
  • Domínguez-Oliva, A., Hernández-Ávalos, I., Martínez-Burnes, J., Olmos-Hernández, A., Verduzco-Mendoza, A., ve Mota-Rojas, D. (2023). The importance of animal models in biomedical research: current insights and applications. Animals, 13(7), 1223. https://doi.org/10.3390/ani13071223.
  • Fallahi, R., Abedini, F., & Shokri, G. R. (2019). Molecular detection of mouse hepatitis virus in laboratory mouse colonies. Iranian Journal of Veterinary Science and Technology, 11(2). https://doi.org/10.22067/veterinary.v11i2.77631.
  • Fox, J. G. (2007). The mouse in biomedical research. American College of Laboratory Animal Medicine.
  • Grabherr, S., Ludewig, B., & Pikor, N. B. (2021). Insights into coronavirus immunity taught by the murine coronavirus. European Journal of Immunology, 51(5), 1062-1070. https://doi.org/10.1002/eji.202048984.
  • He, J., Hayes, C. G., Binn, L. N., Seriwatana, J., Vaughn, D. W., Kuschner, R. A., & Innis, B. L. (2001). Hepatitis E virus DNA vaccine elicits immunologic memory in mice. Journal of Biomedical Science, 8(2), 223–226. https://doi.org/10.1007/BF02256416.
  • Henderson, K. S. (2008). Murine norovirus, a recently discovered and highly prevalent viral agent of mice. Lab Animal, 37(7), 314-320. https://doi.org/10.1038/laban0708-314.
  • Hickman, D. L., Johnson, J., Vemulapalli, T. H., Crisler, J. R., & Shepherd, R. (2017). Commonly used animal models. Principles Of Animal Research For Graduate And Undergraduate Students, 117-175. https://doi.org/10.1016/B978-0-12-802151-4.00007-4.
  • Hsu, C. C., Riley, L. K., Wills, H. M., & Livingston, R. S. (2006). Persistent infection with and serologic cross-reactivity of three novel murine noroviruses. Comparative Medicine, 56(4), 247-251.
  • Hsu, C. C., Wobus, C. E., Steffen, E. K., Riley, L. K., & Livingston, R. S. (2005). Development of a microsphere-based serologic multiplexed fluorescent immunoassay and a reverse transcriptase PCR assay to detect murine norovirus 1 infection in mice. Clinical and Diagnostic Laboratory Immunology, 12(10), 1145-1151. https://doi.org/10.1128/CDLI.12.10.1145-1151.2005.
  • Huang, F. F., Haqshenas, G., Guenette, D. K., Halbur, P. G., Schommer, S. K., Pierson, F. W., Toth, T. E., & Meng, X. J. (2002). Detection by reverse transcription-pcr and genetic characterization of field isolates of swine hepatitis e virus from pigs in different geographic regions of the united states. Journal of Clinical Microbiology, 40(4), 1326-1332. https://doi.org/10.1128/JCM.40.4.1326-1332.2002.
  • ICTV, 2024. Norovirus cinsi. https://ictv.global/report/chapter/caliciviridae/caliciviridae/ norovirus.
  • Jones, T. C., Popp, J. A., & Mohr, U. (1997). Digestive System. Monographs on Pathology of Laboratory Animals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96910-2_25.
  • Karaman, M. (2015). Microbiological standardization in small laboratory animals and recommendations for the monitoring. Journal of Clinical And Analytical Medicine, 6(5). https://doi.org/10.4328/jcam.2195.
  • Karst, S. M., Wobus, C. E., Lay, M., Davidson, J., & Virgin, H. W. (2003). STAT1-dependent innate immunity to a Norwalk-like virus. Science, 299(5612), 1575-1578. https://doi.org/10.1126/science.1077905.
  • Kim, J. R., Seok, S. H., Kim, D. J., Baek, M.-W., Na, Y.-R., Han, J.-H., Kim, T.-H., Park, J.-H., Turner, P. V., Chung, D. H., & Kang, B.-C. (2011). Prevalence of murine norovirus infection in korean laboratory animal facilities. Journal of Veterinary Medical Science, 73(5), 687-691. https://doi.org/10.1292/jvms.10-0226.
  • Körner, R. W., Majjouti, M., Alcazar, M. A. A., & Mahabir, E. (2020). Of mice and men: The coronavirus mhv and mouse models as a translational approach to understand SARS-CoV-2. Viruses, 12(8), 880. https://doi.org/10.3390/v12080880.
  • Li, T., Takeda, N., & Miyamura, T. (2001). Oral administration of hepatitis E virus-like particles induces a systemic and mucosal immune response in mice. Vaccine, 19(25-26), 3476–3484. https://doi.org/10.1016/s0264-410x(01)00059-7.
  • Mahabir, E., Bauer, B., & Schmidt, J. (2008). Rodent and germplasm trafficking: risks of microbial contamination in a high-tech biomedical world. Institute for Laboratory Animal Research, 49(3), 347-355. https://doi.org/10.1093/ilar.49.3.347.
  • Manivannan, R., Chidambaram, T., Gopal, R., & Ebenezer, K. S. (2024). Microbial diseases of laboratory animals and its monitoring tools. Journal of Advances in Microbiology, 24(2), 31-46. https://doi.org/10.9734/jamb/2024/v24i2794.
  • Mansfield, K. G., Riley, L. K., & Kent, M. L. (2010). Workshop summary: detection, impact, and control of specific pathogens in animal resource facilities. Institute for Laboratory Animal Research, 51(2), 171-179. https://doi.org/10.1093/ilar.51.2.171.
  • Manuel, C. A., Hsu, C. C., Riley, L. K., & Livingston, R. S. (2008). Soiled-bedding sentinel detection of murine norovirus 4. Journal of the American Association for Laboratory Animal Science, 47(3), 31-36.
  • Matthews, A., Weiss, S., & Paterson, Y. (2002). Murine hepatitis virus–A model for virus-induced CNS demyelination. Journal of Neurovirology, 8(2), 76-85. https://doi.org/10.1080/13550280290049534.
  • Müftüoğlu, B., & Albayrak, H. (2019). Fare, sıçan ve tavşanların viral hastalıkları. Turkish Veterinary Journal, 1(2), 84-89.
  • Nicklas, W., Kraft, V., & Meyer, B. (1993). Contamination of transplantable tumors, cell lines, and monoclonal antibodies with rodent viruses. Laboratory Animal Science, 43(4), 296-300.
  • Nicklas, W., Homberger, F. R., Illgen-Wilcke, B., Jacobi, K., Kraft, V., Kunstyr, I., & Pohlmeyer-Esch, G. (1999). Implications of infectious agents on results of animal experiments: Report of the Working Group on Hygiene of the Gesellschaft für Versuchstierkunde-Society for Laboratory Animal Science (GV-SOLAS). Laboratory animals, 33(suppl 1), 39-87.
  • Perdue, K. A., Green, K. Y., Copeland, M., Barron, E., Mandel, M., Faucette, L. J., Williams, E. M., Sosnovtsev, S. V., Elkins, W. R., & Ward, J. M. (2007). Naturally occurring murine norovirus infection in a large research institution. Journal of the American Association for Laboratory Animal Science, 46(4), 39-45.
  • Porea, D., Raileanu, C., Crivei, L. A., Gotu, V., Savuta, G., & Pavio, N. (2023). First detection of hepatitis E virus (Rocahepevirus ratti Genotype C1) in synanthropic norway rats (Rattus norvegicus) in Romania. Viruses, 15(6), 1337. https://doi.org/10.3390/v15061337.
  • Reuter, G., Boros, Á., & Pankovics, P. (2020). Review of hepatitis E virus in rats: evident risk of species Orthohepevirus C to human zoonotic infection and disease. Viruses, 12(10), 1148. https://doi.org/10.3390/v12101148.
  • Sellers, R. S., Clifford, C. B., Treuting, P. M., & Brayton, C. (2012). Immunological variation between inbred laboratory mouse strains: Points to consider in phenotyping genetically immunomodified mice. Veterinary Pathology, 49(1), 32-43. https://doi.org/10.1177/0300985811429314.
  • Shortland, A., Chettle, J., Archer, J., Wood, K., Bailey, D., Goodfellow, I., Blacklaws, B. A., & Heeney, J. L. (2014). Pathology caused by persistent murine norovirus infection. The Journal Of General Virology, 95(Pt 2), 413–422. https://doi.org/10.1099/vir.0.059188-0.
  • Tangudu, C., Olivares, H., Netland, J., Perlman, S., & Gallagher, T. (2007). Severe acute respiratory syndrome coronavirus protein 6 accelerates murine coronavirus infections. Journal of Virology, 81(3), 1220-1229. https://doi.org/10.1128/jvi.01515-06.
  • Timurkan, M. Ö., & Acar, G. (2021). Laboratuvar hayvanlarında sindirim sistemine yerleşen bazı önemli viral enfeksiyonlar. Journal of Laboratory Animal Science And Practice,1(1), 8-16.
  • Uludağ, Ö. (2019). Hayvan deneyi çalışmalarında etik kuralların tarihçesi ve önemi. Adıyaman Üniversitesi Sağlık Bilimleri Dergisi, 5(1), 1401-1413. https://doi.org/10.30569/adiyamansaglik.482098.
  • Ward, J. M., Wobus, C. E., Thackray, L. B., Erexson, C. R., Faucette, L. J., Belliot, G., Barron, E. L., Sosnovtsev, S. V., & Green, K. Y. (2006). Pathology of immunodeficient mice with naturally occurring murine norovirus infection. Toxicologic Pathology, 34(6), 708–715. https://doi.org/10.1080/01926230600918876.
  • Wobus, C. E., Peiper, A. M., McSweeney, A. M., Young, V. L., Chaika, M., Lane, M. S., Lingemann, M., Deerain, J. M., Strine, M. S., Alfajaro, M. M., Helm, E. W., Karst, S. M., Mackenzie, J. M., Taube, S., Ward, V. K., & Wilen, C. B. (2023). Murine norovirus: Additional protocols for basic and antiviral studies. Current Protocols, 3(7), e828. https://doi.org/10.1002/cpz1. 828.
  • Yadav, K. K., Boley, P. A., Lee, C. M., Khatiwada, S., Jung, K., Laocharoensuk, T., Hofstetter, J., Wood, R., Hanson, J., & Kenney, S. P. (2023). Rat hepatitis E virus (HEV) cross-species infection and transmission in pigs. bioRxiv. https://doi.org/10.1101/2023.07.06.547957.
  • Yılmaz, S. (1960). Yurdumuzda yavru atan koyunlardan izole edilen Listeria monocytogenes. Etlik Veteriner Mikrobiyoloji Dergisi, 1(2), 136-144.
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6, 14. https://doi.org/10.1038/s41421-020-0153-3.

The Importance of Screening Programs in Laboratory Animals and Investigation of Several Important Viral Agents

Yıl 2024, Cilt: 4 Sayı: 2, 91 - 100, 19.09.2024
https://doi.org/10.62425/jlasp.1484805

Öz

Laboratory animal health screening programs are of great importance to ensure standardization in biomedical research and to protect the health of both animals and research personnel. In this
context, regular monitoring of pathogens such as Hepatitis E virus (HEV), Murine hepatitis virus (MHV) and Murine norovirus (MNV) can contribute to improving hygiene and sanitation standards
in the laboratory environment. In this study, randomly selected sample groups consisting of BALB/c mice and Sprague Dawley, Wistar albino rats were studied. Blood and tissue samples were collected from the laboratuary animals within the framework of ethical principles, and factors such as noise, light, cage density, access to feed and water in the laboratory environment were
observed and recorded. These observations are essential to increase the reliability and reproducibility of the study. RT-PCR tests were used to screen for HEV, MHV and MNV and all samples tested were negative for these pathogens. These results demonstrate the effectiveness of hygiene and sanitation protocols applied in the laboratory environment. Furthermore, the importance of trained personnel and rodent control programs in laboratory research centers was emphasized. In conclusion, this study reveals that health screening programs in laboratory animals play a critical role in raising the standard of scientific research in relation to the pathogens investigated and the protection-control measures implemented. Such programs are vital to protect the health of laboratory animals and improve the reliability of research results.

Kaynakça

  • Aydin, H., Uyanik, M. H., Karamese, M., & Timurkan, M. O. (2016). Seroprevalence of hepatitis E virus in animal workers in nonporcine consumption region of Turkey. Future Virology, 11(10), 691-697. https://doi.org/10.2217/fvl-2016-0075.
  • Aydin, H. (2022). Fare hepatit virusu (MHV) üzerine bir derleme. Laboratuvar Hayvanları Bilimi ve Uygulamaları Dergisi, 2, 42-48.
  • Baker, D. G. (1998). Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clinical Microbiology Reviews, 11(2), 231-266. https://doi.org/10.1128/CMR.11.2.231.
  • Balayan, M. S., Andjaparidze, A. G., Savinskaya, S. S., Ketiladze, E. S., Braginsky, D. M., Savinov, A. P., & Poleschuk, V. F. (1983). Evidence for a Virus in Non-A, Non-B Hepatitis Transmitted via the Fecal-Oral Route. Intervirology, 20(1), 23–31. https://doi.org/10.1159/000149370.
  • Barthold, S.W. (1985). Mouse Hepatitis Virus Infection, Liver, Mouse. In Jones, T. C., Mohr, U. (Eds.), Monographs on Pathology of Laboratory Animals (pp. 187-216). Springer. https://doi.org/10.1007/978-3-642-96910-2_25. Belei, O., Ancusa, O., Mara, A., Olariu, L., Amaricai, E., Folescu, R., Zamfir, C. L., Gurgus, D., Motoc, A. G., Stânga, L. C., Strat, L., & Marginean, O. (2021). Current paradigm of hepatitis E virus among pediatric and adult patients. Frontiers in Pediatrics, 9, 721918. https://doi.org/10.3389/fped.2021.721918.
  • Bender, S. J., & Weiss, S. R. (2010). Pathogenesis of murine coronavirus in the central nervous system. Journal of Neuroimmune Pharmacology, 5(3), 336-354. https://doi.org/10.1007/s11481-010-9202-2.
  • Bilgili, A., & Gürel, Y. (2002). Laboratuvar hayvanlarının hastalıklarının sağaltımı. Etlik Veteriner Mikrobiyoloji Dergisi, 13(1), 77-88.
  • Buchheister, S., & Bleich, A. (2021). Health monitoring of laboratory rodent colonies—Talking about (r)evolution. Animals, 11(5), 1410. https://doi.org/10.3390/ani11051410.
  • Centers for Disease Control and Prevention (CDC). (2022). Norovirüs virüs sınıflandırması. https://www.cdc.gov/norovirus/lab/virus-classification.html.
  • Cortes-Penfield, N. W., Ramani, S., Estes, M. K., & Atmar, R. L. (2017). Prospects and challenges in the development of a norovirus vaccine. Clinical therapeutics, 39(8), 1537–1549. https://doi.org/10.1016/j.clinthera.2017.07. 002.
  • Cotten, M., Watson, S. J., Kellam, P., Al-Rabeeah, A. A., Makhdoom, H. Q., Assiri, A., Al-Tawfiq, J. A., Alhakeem, R. F., Madani, H., AlRabiah, F. A., Hajjar, S. A., Al-nassir, W. N., Albarrak, A., Flemban, H., Balkhy, H. H., Alsubaie, S., Palser, A. L., Gall, A., Bashford-Rogers, R., Memish, Z. A. (2013). Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study. The Lancet, 382(9909), 1993-2002. https://doi.org/10.1016/S0140-6736(13)61887-5.
  • Çeli̇k, A., Baksi̇, N., & Güneli̇, M. E. (2023). Deney hayvanları araştırmalarında standardizasyonun yeri ve önemi: geleneksel derleme. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 49(1), 125-132. https://doi.org/10.32708/uutfd.1216412.
  • Dhadde, S. (2019). Commonly used laboratory animals in experimental pharmacology. Handbook of Experimental Pharmacology.
  • Dolin, R. (1978). Norwalk agent-like particles associated with gastroenteritis in human beings. Journal of the American Veterinary Medical Association, 173(5 Pt 2), 615-619.
  • Domínguez-Oliva, A., Hernández-Ávalos, I., Martínez-Burnes, J., Olmos-Hernández, A., Verduzco-Mendoza, A., ve Mota-Rojas, D. (2023). The importance of animal models in biomedical research: current insights and applications. Animals, 13(7), 1223. https://doi.org/10.3390/ani13071223.
  • Fallahi, R., Abedini, F., & Shokri, G. R. (2019). Molecular detection of mouse hepatitis virus in laboratory mouse colonies. Iranian Journal of Veterinary Science and Technology, 11(2). https://doi.org/10.22067/veterinary.v11i2.77631.
  • Fox, J. G. (2007). The mouse in biomedical research. American College of Laboratory Animal Medicine.
  • Grabherr, S., Ludewig, B., & Pikor, N. B. (2021). Insights into coronavirus immunity taught by the murine coronavirus. European Journal of Immunology, 51(5), 1062-1070. https://doi.org/10.1002/eji.202048984.
  • He, J., Hayes, C. G., Binn, L. N., Seriwatana, J., Vaughn, D. W., Kuschner, R. A., & Innis, B. L. (2001). Hepatitis E virus DNA vaccine elicits immunologic memory in mice. Journal of Biomedical Science, 8(2), 223–226. https://doi.org/10.1007/BF02256416.
  • Henderson, K. S. (2008). Murine norovirus, a recently discovered and highly prevalent viral agent of mice. Lab Animal, 37(7), 314-320. https://doi.org/10.1038/laban0708-314.
  • Hickman, D. L., Johnson, J., Vemulapalli, T. H., Crisler, J. R., & Shepherd, R. (2017). Commonly used animal models. Principles Of Animal Research For Graduate And Undergraduate Students, 117-175. https://doi.org/10.1016/B978-0-12-802151-4.00007-4.
  • Hsu, C. C., Riley, L. K., Wills, H. M., & Livingston, R. S. (2006). Persistent infection with and serologic cross-reactivity of three novel murine noroviruses. Comparative Medicine, 56(4), 247-251.
  • Hsu, C. C., Wobus, C. E., Steffen, E. K., Riley, L. K., & Livingston, R. S. (2005). Development of a microsphere-based serologic multiplexed fluorescent immunoassay and a reverse transcriptase PCR assay to detect murine norovirus 1 infection in mice. Clinical and Diagnostic Laboratory Immunology, 12(10), 1145-1151. https://doi.org/10.1128/CDLI.12.10.1145-1151.2005.
  • Huang, F. F., Haqshenas, G., Guenette, D. K., Halbur, P. G., Schommer, S. K., Pierson, F. W., Toth, T. E., & Meng, X. J. (2002). Detection by reverse transcription-pcr and genetic characterization of field isolates of swine hepatitis e virus from pigs in different geographic regions of the united states. Journal of Clinical Microbiology, 40(4), 1326-1332. https://doi.org/10.1128/JCM.40.4.1326-1332.2002.
  • ICTV, 2024. Norovirus cinsi. https://ictv.global/report/chapter/caliciviridae/caliciviridae/ norovirus.
  • Jones, T. C., Popp, J. A., & Mohr, U. (1997). Digestive System. Monographs on Pathology of Laboratory Animals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96910-2_25.
  • Karaman, M. (2015). Microbiological standardization in small laboratory animals and recommendations for the monitoring. Journal of Clinical And Analytical Medicine, 6(5). https://doi.org/10.4328/jcam.2195.
  • Karst, S. M., Wobus, C. E., Lay, M., Davidson, J., & Virgin, H. W. (2003). STAT1-dependent innate immunity to a Norwalk-like virus. Science, 299(5612), 1575-1578. https://doi.org/10.1126/science.1077905.
  • Kim, J. R., Seok, S. H., Kim, D. J., Baek, M.-W., Na, Y.-R., Han, J.-H., Kim, T.-H., Park, J.-H., Turner, P. V., Chung, D. H., & Kang, B.-C. (2011). Prevalence of murine norovirus infection in korean laboratory animal facilities. Journal of Veterinary Medical Science, 73(5), 687-691. https://doi.org/10.1292/jvms.10-0226.
  • Körner, R. W., Majjouti, M., Alcazar, M. A. A., & Mahabir, E. (2020). Of mice and men: The coronavirus mhv and mouse models as a translational approach to understand SARS-CoV-2. Viruses, 12(8), 880. https://doi.org/10.3390/v12080880.
  • Li, T., Takeda, N., & Miyamura, T. (2001). Oral administration of hepatitis E virus-like particles induces a systemic and mucosal immune response in mice. Vaccine, 19(25-26), 3476–3484. https://doi.org/10.1016/s0264-410x(01)00059-7.
  • Mahabir, E., Bauer, B., & Schmidt, J. (2008). Rodent and germplasm trafficking: risks of microbial contamination in a high-tech biomedical world. Institute for Laboratory Animal Research, 49(3), 347-355. https://doi.org/10.1093/ilar.49.3.347.
  • Manivannan, R., Chidambaram, T., Gopal, R., & Ebenezer, K. S. (2024). Microbial diseases of laboratory animals and its monitoring tools. Journal of Advances in Microbiology, 24(2), 31-46. https://doi.org/10.9734/jamb/2024/v24i2794.
  • Mansfield, K. G., Riley, L. K., & Kent, M. L. (2010). Workshop summary: detection, impact, and control of specific pathogens in animal resource facilities. Institute for Laboratory Animal Research, 51(2), 171-179. https://doi.org/10.1093/ilar.51.2.171.
  • Manuel, C. A., Hsu, C. C., Riley, L. K., & Livingston, R. S. (2008). Soiled-bedding sentinel detection of murine norovirus 4. Journal of the American Association for Laboratory Animal Science, 47(3), 31-36.
  • Matthews, A., Weiss, S., & Paterson, Y. (2002). Murine hepatitis virus–A model for virus-induced CNS demyelination. Journal of Neurovirology, 8(2), 76-85. https://doi.org/10.1080/13550280290049534.
  • Müftüoğlu, B., & Albayrak, H. (2019). Fare, sıçan ve tavşanların viral hastalıkları. Turkish Veterinary Journal, 1(2), 84-89.
  • Nicklas, W., Kraft, V., & Meyer, B. (1993). Contamination of transplantable tumors, cell lines, and monoclonal antibodies with rodent viruses. Laboratory Animal Science, 43(4), 296-300.
  • Nicklas, W., Homberger, F. R., Illgen-Wilcke, B., Jacobi, K., Kraft, V., Kunstyr, I., & Pohlmeyer-Esch, G. (1999). Implications of infectious agents on results of animal experiments: Report of the Working Group on Hygiene of the Gesellschaft für Versuchstierkunde-Society for Laboratory Animal Science (GV-SOLAS). Laboratory animals, 33(suppl 1), 39-87.
  • Perdue, K. A., Green, K. Y., Copeland, M., Barron, E., Mandel, M., Faucette, L. J., Williams, E. M., Sosnovtsev, S. V., Elkins, W. R., & Ward, J. M. (2007). Naturally occurring murine norovirus infection in a large research institution. Journal of the American Association for Laboratory Animal Science, 46(4), 39-45.
  • Porea, D., Raileanu, C., Crivei, L. A., Gotu, V., Savuta, G., & Pavio, N. (2023). First detection of hepatitis E virus (Rocahepevirus ratti Genotype C1) in synanthropic norway rats (Rattus norvegicus) in Romania. Viruses, 15(6), 1337. https://doi.org/10.3390/v15061337.
  • Reuter, G., Boros, Á., & Pankovics, P. (2020). Review of hepatitis E virus in rats: evident risk of species Orthohepevirus C to human zoonotic infection and disease. Viruses, 12(10), 1148. https://doi.org/10.3390/v12101148.
  • Sellers, R. S., Clifford, C. B., Treuting, P. M., & Brayton, C. (2012). Immunological variation between inbred laboratory mouse strains: Points to consider in phenotyping genetically immunomodified mice. Veterinary Pathology, 49(1), 32-43. https://doi.org/10.1177/0300985811429314.
  • Shortland, A., Chettle, J., Archer, J., Wood, K., Bailey, D., Goodfellow, I., Blacklaws, B. A., & Heeney, J. L. (2014). Pathology caused by persistent murine norovirus infection. The Journal Of General Virology, 95(Pt 2), 413–422. https://doi.org/10.1099/vir.0.059188-0.
  • Tangudu, C., Olivares, H., Netland, J., Perlman, S., & Gallagher, T. (2007). Severe acute respiratory syndrome coronavirus protein 6 accelerates murine coronavirus infections. Journal of Virology, 81(3), 1220-1229. https://doi.org/10.1128/jvi.01515-06.
  • Timurkan, M. Ö., & Acar, G. (2021). Laboratuvar hayvanlarında sindirim sistemine yerleşen bazı önemli viral enfeksiyonlar. Journal of Laboratory Animal Science And Practice,1(1), 8-16.
  • Uludağ, Ö. (2019). Hayvan deneyi çalışmalarında etik kuralların tarihçesi ve önemi. Adıyaman Üniversitesi Sağlık Bilimleri Dergisi, 5(1), 1401-1413. https://doi.org/10.30569/adiyamansaglik.482098.
  • Ward, J. M., Wobus, C. E., Thackray, L. B., Erexson, C. R., Faucette, L. J., Belliot, G., Barron, E. L., Sosnovtsev, S. V., & Green, K. Y. (2006). Pathology of immunodeficient mice with naturally occurring murine norovirus infection. Toxicologic Pathology, 34(6), 708–715. https://doi.org/10.1080/01926230600918876.
  • Wobus, C. E., Peiper, A. M., McSweeney, A. M., Young, V. L., Chaika, M., Lane, M. S., Lingemann, M., Deerain, J. M., Strine, M. S., Alfajaro, M. M., Helm, E. W., Karst, S. M., Mackenzie, J. M., Taube, S., Ward, V. K., & Wilen, C. B. (2023). Murine norovirus: Additional protocols for basic and antiviral studies. Current Protocols, 3(7), e828. https://doi.org/10.1002/cpz1. 828.
  • Yadav, K. K., Boley, P. A., Lee, C. M., Khatiwada, S., Jung, K., Laocharoensuk, T., Hofstetter, J., Wood, R., Hanson, J., & Kenney, S. P. (2023). Rat hepatitis E virus (HEV) cross-species infection and transmission in pigs. bioRxiv. https://doi.org/10.1101/2023.07.06.547957.
  • Yılmaz, S. (1960). Yurdumuzda yavru atan koyunlardan izole edilen Listeria monocytogenes. Etlik Veteriner Mikrobiyoloji Dergisi, 1(2), 136-144.
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6, 14. https://doi.org/10.1038/s41421-020-0153-3.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvan Bilimi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Erdal Polat 0000-0003-3234-2083

Hayrunnisa Bostan Yörü 0009-0006-7631-6601

Yasin Kalay 0000-0003-1245-1450

Sebahattin Akça 0009-0008-1632-6060

Yayımlanma Tarihi 19 Eylül 2024
Gönderilme Tarihi 15 Mayıs 2024
Kabul Tarihi 1 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 2

Kaynak Göster

EndNote Polat E, Bostan Yörü H, Kalay Y, Akça S (01 Eylül 2024) Laboratuvar Hayvanlarında Tarama Programlarının Önemi ve Bazı Önemli Viral Ajanların Araştırılması. Laboratuvar Hayvanları Bilimi ve Uygulamaları Dergisi 4 2 91–100.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929