Teknik Not
BibTex RIS Kaynak Göster

Basen ve Yakın Fay Etkilerinin Deprem Yer Hareketi Üzerindeki Etkileri, Kahramanmaraş Pazarcık Depremi Antakya Kayıtlarının Değerlendirilmesi

Yıl 2023, , 67 - 86, 23.06.2023
https://doi.org/10.24232/jmd.1299027

Öz

Yeryüzünde bir sahada oluşan deprem yer hareketi, fayın kırılma mekanizmasına, sismik kabuğun yapısına ve yüzeye yakın zeminler ile yumuşak kayaçların özelliklerine bağlıdır. Yüzeye yakın zeminlerin ve yumuşak sedimanter kayaçların deprem kaynağından uzak mesafelerde bile önemli ölçüde yapı hasarlarına yol açabildikleri bilinmektedir. Ülkemizde son dönemlerde yaşanan depremlerde de bu durum gözlenmiştir. 30 Ekim 2020 tarihinde Ege Denizinde Sisam Adası açıklarında meydana gelen 6,9 moment büyüklüğündeki deprem, merkez üssünden yaklaşık 70 km uzaklıkta olan İzmir Bayraklı ilçesinde yoğun hasara yol açmıştır. 06 Şubat 2023 tarihinde merkez üssü Kahramanmaraş Pazarcık olan 7,7 moment büyüklüğündeki deprem geniş alanlarda oldukça büyük can kaybı ve yıkıma yol açmıştır. Kahramanmaraş Pazarcık depreminin Hatay, Antakya bölgesinde oluşturduğu yer hareketlerinin tepki spektrumları Türkiye Bina Deprem Yönetmeliğinde tarif edilen tasarım tepki spektrumlarının çok üzerinde çıkmıştır. Bu çalışmada deprem yer hareketlerini etkileyen saha etkileri ve yakın fay etkileri özetlenmiş, Kahramanmaraş ili Pazarcık ilçesinde 7,7 büyüklüğünde meydana gelen depremin Hatay bölgesinde oluşturduğu kayıtlardan bazıları incelenmiş ve olası basen etkileri ile yakın saha etkileri açısından değerlendirilmiştir.

Kaynakça

  • Abdelmeguid, M., Zhao, C., Yalcinkaya, E., Gazetas, G., Elbanna, H. & Rosalis, A., (2023). Revealing the Dynamics of the Feb 6th 2023 M7.8 Kahramanmaras/Pazarcik Earthquake: nearfield records and dynamic rupture modeling, arXiv:2305.01825 [physics.geo-ph].
  • AFAD (2023, 03 Mart), TADAS Türkiye İvme Veritabanı ve Analiz Sistemi https://tadas.afad.gov.tr/event-detail/17966.
  • AFAD (2023, 03 Mart), TADAS Türkiye İvme Veritabanı ve Analiz Sistemi https://tadas.afad.gov.tr/event-detail/17969.
  • Aguirre, J. & Irikura, K., (1997). Nonlinearity, liquefaction, and velocity variation of soft soil layers in Port Island, Kobe, during the Hyogoken Nanbu earthquake. Bull Seism Soc Am 87:1244–1258
  • Aki, K. & P. Richards (1980). Quantitative Seismology. Theory and Methods, W. H. Freeman and Company, San Francisco.
  • Ayoubi, P., Mohammadi, K. & Asimaki, D., (2021). A systematic analysis of basin effects on surface ground motion, Soil Dynamics and Earthquake Engineering, 141.
  • Beresnev, I. A. & Wen, K., (1996). Nonlinear Soil Response – A Reality?, Bulletin of the Seismological Society of America, Vol. 86, No 6, pp. 1964 – 1978.
  • Boore, D.M., (2013). The Uses and Limitations of the Square-Root-Impedance Method for Computing Site Amplification, Bulletin of the Seismological Society of America, Vol. 103, No. 4, pp. 2356–2368, August 2013, doi: 10.1785/0120120283.
  • Borcherdt, R. D., (1970). Effects of Local Geology on Ground Motion Near San Francisco Bay, Bulletin of the Seismological Society of America, Vol. 60, No 1, pp 29 – 61.
  • Chavez-Garcia, F., Raptakis, D., Makra, K., & Pitilakis, K. (2000). “Site effects at EuroSeisTest—II: Results from 2-D numerical modelling and comparison with observations.” Soil. Dyn. Earthquake Eng., 191, 23–39.
  • DMAM O.D.T.Ü. Deprem Araştırma Merkezi, (2023). 6 Şubat 2023 Kahramanmaraş-Pazarcık Mw=7.7 ve Elbistan Mw=7.6 Depremleri Ön Değerlendirme Raporu.
  • Elgamal, A. & He, L., (2004). Vertical earthquake ground motion records: an overview, Journal of Earthquake Engineering, 8 (05), 663 – 697.
  • Finn, W. D. L. (1991). Geotechnical engineering aspects of microzonation, Proc. of the Fourth International Conference on Seismic Zonation, Stanford, California, Vol. 1, 199-259.
  • Furumura M., Sasatani T. & Furumura T., 1997, Generation of Basin Induced Surface Waves Observed in the Tokachi Basin, Hokkaido Japan, J. Phys. Earth, 45, 287 – 305.
  • Gelagoti, F., Gazetas, G., & Kourkoulis, R. (2007). 2D Valley Effects: How predictable and important are they?”, Proceedings, 4th International Conference of Earthquake Geotechnical Engineering, Thessaloniki, 2007.
  • Gelagoti, F., Kourkoulis, R., Anastasopoulos, I., Tazoh, T. & Gazetas, G., (2010). Seismic Wave Propagation in a Very Soft Alluvial Valley: Sensitivity to Ground-Motion Details and Soil Nonlinearity, and Generation of a Parasitic Vertical Component, Bulletin of the Seismological Society of America, Vol. 100, No. 6, pp. 3035–3054.
  • Hartzell, S. H., (1998). Variability in nonlinear sediment response during the 1994 Northridge, California, earthquake. Bull Seismol Soc Am 88(6):1426–1437
  • Hunter, J. A, Crow, H., Brooks, G. R., Pyne, M., Lamontagne, M., Pugin, A., Pullan, S. E., Cartwright, T., Douma, M., Burns, R. A., Good, R. L., Motazedian, B., Folahan, I., Dixon, L., Dion, K., Duxbury, A., Landriault, V., TerEmmanuil, V., Jones, A., Plastow, G. & Muir, D., (2010). Seismic site classification and site period mapping in the Ottawa area using geophysical methods, Technical Report.
  • Idriss, I. M. & H. B. Seed (1968). An analysis of ground motions during the 1957 San Francisco earthquake, Bull Seism. Soc. Am. 58, 2013 - 2032.
  • Idriss, I. M. & H. B. Seed (1970). Seismic response of soil deposits, J. Soil Mech. Foundations Div. ASCE 96.
  • Kardoutsou, V., Taflampas, I. & Psycharis, I. N. (2017). A new pulse indicator for the classification of ground motions. Bulletin of the Seismological Society of America, 107(3):1356-1364.
  • Kudo, K., & Sawada, Y. (1998). A brief review on the Ashigara blind prediction test and some follow-up studies. Proc., 2nd Int. Symp. On the Effects of Surface Geology on Seismic Motion, Yokohama, Japan, 1, 305–312.
  • Kudo, K., Shima, E., & Sakaue, M. (1988). Digital strong motion accelerograph array in Ashigara valley. Proc., 9th World Conf. On Earth. Engin., Earthquake Engineering Research Center, Berkeley,119–124.
  • Lanzo, G & Pagliaroli P, (2009), Numerical Modeling of Site Effects at San Giuliano di Puglia (Southern Italy) during the 2002 Molise Seismic Sequence, ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 9.
  • Mello, M., Bhat, H.S. & Rosakis, A.J., (2016). Spatiotemporal properties of Sub- Rayleigh and supershear rupture velocity fields: Theory and experiments. Journal of the Mechanics and Physics of Solids 93, 153–181 (2016). https://doi.org/10.1016/j.jmps.2016.02.031
  • Moustafa, A. & Takewaki, I., (2010). Characterization and modelling of near-fault pulse-like strong ground motion via damage-based critical excitation method. Struct. Eng. and Mechanics, 34, 755-778.
  • Nakamura Y., (1989). A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface, Quarterly Report of Railway Technical Research Institude, Vol 30, No 1.
  • Raptakis, D., Chavez-Garcia, F., Makra, K., & Pitilakis, K. (2000). Site effects at EuroSeis test—I: Determination of the valley structure and confrontation of observations with 1D analysis. Soil. Dyn. Earthquake Eng., 191, 1–22.
  • Satoh, T., Sato, T. & Kawase, H. (1995). Nonlinear Behavior of Soil Sediments Identified by Using Borehole Records Observed at the Ashigara Valley, Japan. Bull Seismol Soc Am 85(6):1821–1834.
  • Seismosoft, (2022), SeismoSignal - A computer program for signal processing of time-histories. www.seismosoft.com.
  • Shearer, P. M. & J. A. Orcutt (1987). Surface and near-surface effects of seismic waves-theory and borehole seismometer results, Bull. Seism. Soc. Am. 77, 1168-1196.
  • Somerville, P. G., (2000). Seismic hazard evaluation. Bull. New Zealand Soc. Earthq. Eng., 33, 371- 386.
  • Tazoh, T., Dewa, K., Shimizu, K., & Shimada, M. (1984). Observations of earthquake response behavior of foundation piles for road bridges. Proc., 8th World Conf. on Earth Engineering, Vol. 3, 577–584.
  • TBDY, (2018). Türkiye Bina Deprem Yönetmeliği: Deprem Etkisi Altında Binaların Tasarımı için Esaslar, Türkiye Cumhuriyeti, Ankara.
  • Zeng, Y., Johnson, P.A & Beresnev, I.A. (1998). Pervasive nonlinear sediment response during the 1994 Northridge Earthquake: observations and finite-source simulations. J Geophys Res 103 (26):869
  • Zhang, B., & Papageorgiou, A., (1996). Simulation of the response of the Marina District Basin, San Francisco, California, to the 1989 Loma Prieta earthquake, Bull. Seismol. Soc. Am. 86, no. 5, 1382–1400.

Basin and Near-Fault Effects on Earthquake Ground Motions: An Evaluation of the Antakya Records of the Kahramanmaraş Pazarcık Earthquake

Yıl 2023, , 67 - 86, 23.06.2023
https://doi.org/10.24232/jmd.1299027

Öz

Earthquake ground motion on a site depends on the fault rupture mechanism, the structure of the crust, and the properties of the near-surface soils and soft rocks. It is known that near-surface soils and soft sedimentary rocks can cause significant structural damage even at great distances from the earthquake source. This phenomenon was observed in recent earthquakes in our country. The 6.9 magnitude earthquake that occurred off the coast of Samos Island in the Aegean Sea on October 30, 2020, caused extensive damage in the İzmir Bayraklı district, which is approximately 70 km from the epicenter. On February 6, 2023, the 7.7 moment magnitude Kahramanmaraş Pazarcık earthquake caused great loss of life and destruction in large areas. The response spectra of the ground motions created by the Kahramanmaraş Pazarcık earthquake in the Antakya region of Hatay, were far above the design response spectra defined in the Turkish Building Earthquake Code. In this study, the site effects affecting the earthquake ground motions and the near-fault effects are summarized. Some of the ground motion records recorded during the 7.7 magnitude Kahramanmaraş Pazarcık earthquake in the Hatay region were examined and evaluated in terms of possible basin effects and near field effects.

Kaynakça

  • Abdelmeguid, M., Zhao, C., Yalcinkaya, E., Gazetas, G., Elbanna, H. & Rosalis, A., (2023). Revealing the Dynamics of the Feb 6th 2023 M7.8 Kahramanmaras/Pazarcik Earthquake: nearfield records and dynamic rupture modeling, arXiv:2305.01825 [physics.geo-ph].
  • AFAD (2023, 03 Mart), TADAS Türkiye İvme Veritabanı ve Analiz Sistemi https://tadas.afad.gov.tr/event-detail/17966.
  • AFAD (2023, 03 Mart), TADAS Türkiye İvme Veritabanı ve Analiz Sistemi https://tadas.afad.gov.tr/event-detail/17969.
  • Aguirre, J. & Irikura, K., (1997). Nonlinearity, liquefaction, and velocity variation of soft soil layers in Port Island, Kobe, during the Hyogoken Nanbu earthquake. Bull Seism Soc Am 87:1244–1258
  • Aki, K. & P. Richards (1980). Quantitative Seismology. Theory and Methods, W. H. Freeman and Company, San Francisco.
  • Ayoubi, P., Mohammadi, K. & Asimaki, D., (2021). A systematic analysis of basin effects on surface ground motion, Soil Dynamics and Earthquake Engineering, 141.
  • Beresnev, I. A. & Wen, K., (1996). Nonlinear Soil Response – A Reality?, Bulletin of the Seismological Society of America, Vol. 86, No 6, pp. 1964 – 1978.
  • Boore, D.M., (2013). The Uses and Limitations of the Square-Root-Impedance Method for Computing Site Amplification, Bulletin of the Seismological Society of America, Vol. 103, No. 4, pp. 2356–2368, August 2013, doi: 10.1785/0120120283.
  • Borcherdt, R. D., (1970). Effects of Local Geology on Ground Motion Near San Francisco Bay, Bulletin of the Seismological Society of America, Vol. 60, No 1, pp 29 – 61.
  • Chavez-Garcia, F., Raptakis, D., Makra, K., & Pitilakis, K. (2000). “Site effects at EuroSeisTest—II: Results from 2-D numerical modelling and comparison with observations.” Soil. Dyn. Earthquake Eng., 191, 23–39.
  • DMAM O.D.T.Ü. Deprem Araştırma Merkezi, (2023). 6 Şubat 2023 Kahramanmaraş-Pazarcık Mw=7.7 ve Elbistan Mw=7.6 Depremleri Ön Değerlendirme Raporu.
  • Elgamal, A. & He, L., (2004). Vertical earthquake ground motion records: an overview, Journal of Earthquake Engineering, 8 (05), 663 – 697.
  • Finn, W. D. L. (1991). Geotechnical engineering aspects of microzonation, Proc. of the Fourth International Conference on Seismic Zonation, Stanford, California, Vol. 1, 199-259.
  • Furumura M., Sasatani T. & Furumura T., 1997, Generation of Basin Induced Surface Waves Observed in the Tokachi Basin, Hokkaido Japan, J. Phys. Earth, 45, 287 – 305.
  • Gelagoti, F., Gazetas, G., & Kourkoulis, R. (2007). 2D Valley Effects: How predictable and important are they?”, Proceedings, 4th International Conference of Earthquake Geotechnical Engineering, Thessaloniki, 2007.
  • Gelagoti, F., Kourkoulis, R., Anastasopoulos, I., Tazoh, T. & Gazetas, G., (2010). Seismic Wave Propagation in a Very Soft Alluvial Valley: Sensitivity to Ground-Motion Details and Soil Nonlinearity, and Generation of a Parasitic Vertical Component, Bulletin of the Seismological Society of America, Vol. 100, No. 6, pp. 3035–3054.
  • Hartzell, S. H., (1998). Variability in nonlinear sediment response during the 1994 Northridge, California, earthquake. Bull Seismol Soc Am 88(6):1426–1437
  • Hunter, J. A, Crow, H., Brooks, G. R., Pyne, M., Lamontagne, M., Pugin, A., Pullan, S. E., Cartwright, T., Douma, M., Burns, R. A., Good, R. L., Motazedian, B., Folahan, I., Dixon, L., Dion, K., Duxbury, A., Landriault, V., TerEmmanuil, V., Jones, A., Plastow, G. & Muir, D., (2010). Seismic site classification and site period mapping in the Ottawa area using geophysical methods, Technical Report.
  • Idriss, I. M. & H. B. Seed (1968). An analysis of ground motions during the 1957 San Francisco earthquake, Bull Seism. Soc. Am. 58, 2013 - 2032.
  • Idriss, I. M. & H. B. Seed (1970). Seismic response of soil deposits, J. Soil Mech. Foundations Div. ASCE 96.
  • Kardoutsou, V., Taflampas, I. & Psycharis, I. N. (2017). A new pulse indicator for the classification of ground motions. Bulletin of the Seismological Society of America, 107(3):1356-1364.
  • Kudo, K., & Sawada, Y. (1998). A brief review on the Ashigara blind prediction test and some follow-up studies. Proc., 2nd Int. Symp. On the Effects of Surface Geology on Seismic Motion, Yokohama, Japan, 1, 305–312.
  • Kudo, K., Shima, E., & Sakaue, M. (1988). Digital strong motion accelerograph array in Ashigara valley. Proc., 9th World Conf. On Earth. Engin., Earthquake Engineering Research Center, Berkeley,119–124.
  • Lanzo, G & Pagliaroli P, (2009), Numerical Modeling of Site Effects at San Giuliano di Puglia (Southern Italy) during the 2002 Molise Seismic Sequence, ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 9.
  • Mello, M., Bhat, H.S. & Rosakis, A.J., (2016). Spatiotemporal properties of Sub- Rayleigh and supershear rupture velocity fields: Theory and experiments. Journal of the Mechanics and Physics of Solids 93, 153–181 (2016). https://doi.org/10.1016/j.jmps.2016.02.031
  • Moustafa, A. & Takewaki, I., (2010). Characterization and modelling of near-fault pulse-like strong ground motion via damage-based critical excitation method. Struct. Eng. and Mechanics, 34, 755-778.
  • Nakamura Y., (1989). A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface, Quarterly Report of Railway Technical Research Institude, Vol 30, No 1.
  • Raptakis, D., Chavez-Garcia, F., Makra, K., & Pitilakis, K. (2000). Site effects at EuroSeis test—I: Determination of the valley structure and confrontation of observations with 1D analysis. Soil. Dyn. Earthquake Eng., 191, 1–22.
  • Satoh, T., Sato, T. & Kawase, H. (1995). Nonlinear Behavior of Soil Sediments Identified by Using Borehole Records Observed at the Ashigara Valley, Japan. Bull Seismol Soc Am 85(6):1821–1834.
  • Seismosoft, (2022), SeismoSignal - A computer program for signal processing of time-histories. www.seismosoft.com.
  • Shearer, P. M. & J. A. Orcutt (1987). Surface and near-surface effects of seismic waves-theory and borehole seismometer results, Bull. Seism. Soc. Am. 77, 1168-1196.
  • Somerville, P. G., (2000). Seismic hazard evaluation. Bull. New Zealand Soc. Earthq. Eng., 33, 371- 386.
  • Tazoh, T., Dewa, K., Shimizu, K., & Shimada, M. (1984). Observations of earthquake response behavior of foundation piles for road bridges. Proc., 8th World Conf. on Earth Engineering, Vol. 3, 577–584.
  • TBDY, (2018). Türkiye Bina Deprem Yönetmeliği: Deprem Etkisi Altında Binaların Tasarımı için Esaslar, Türkiye Cumhuriyeti, Ankara.
  • Zeng, Y., Johnson, P.A & Beresnev, I.A. (1998). Pervasive nonlinear sediment response during the 1994 Northridge Earthquake: observations and finite-source simulations. J Geophys Res 103 (26):869
  • Zhang, B., & Papageorgiou, A., (1996). Simulation of the response of the Marina District Basin, San Francisco, California, to the 1989 Loma Prieta earthquake, Bull. Seismol. Soc. Am. 86, no. 5, 1382–1400.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sismoloji, Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Teknik Not
Yazarlar

Nihat Sinan Işık 0000-0002-5104-9504

Yayımlanma Tarihi 23 Haziran 2023
Gönderilme Tarihi 18 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Işık, N. S. (2023). Basen ve Yakın Fay Etkilerinin Deprem Yer Hareketi Üzerindeki Etkileri, Kahramanmaraş Pazarcık Depremi Antakya Kayıtlarının Değerlendirilmesi. Jeoloji Mühendisliği Dergisi, 47(1), 67-86. https://doi.org/10.24232/jmd.1299027