Araştırma Makalesi
BibTex RIS Kaynak Göster

Güvenli Çamur Ağırlık Penceresinin Değerlendirilmesi: Bir Kuyu Stabilite Analizi, Rumaila Petrol Sahası, Güney Irak

Yıl 2025, Cilt: 49 Sayı: 2, 77 - 100, 11.12.2025

Öz

Kuyu kararsızlığı, sondaj sürecinde ciddi operasyonel kesintilere ve mali kayıplara yol açarak petrol ve doğal gaz sektöründe ek üretimsiz zamanlara neden olur. Bu çalışma, kuyu tasarımını iyileştirmek amacıyla Irak’ın güneyindeki Rumaila petrol sahasında kuyu stabilitesi sorunlarının doğasını anlamak için yürütülmüştür. Çalışmanın amacı, bir boyutlu jeomekanik model oluşturmaktır. Modeli geliştirmek için açık kuyu loglarından elde edilen ölçümlere ihtiyaç duyulmuştur. Kuyu duvarının sağlam kalması için gerekli minimum çamur ağırlığını belirlemek ve kuyu genişlemelerini analiz etmek amacıyla Mohr–Coulomb, Mogi–Coulomb ve Modifiye Lade olmak üzere üç farklı yenilme kriteri kullanılmıştır. Jeomekanik modelin doğruluğunu artırmak için, kuyu için öngörülen duraysızlık profili, kaliper logu ile raporlanan gözlenen kuyu başarısızlığı ile karşılaştırılmıştır. Bulgular, çalışma alanında çamur ağırlığı aralığının alt sınırını tahmin etmede Mogi–Coulomb kriterinin diğer iki kriterden daha doğru sonuç verdiğini, dolayısıyla en uygun yöntem olduğunu göstermektedir. Kuyu duraysızlığı analizi, düşük eğimli ve 40°’den az sapmaya sahip dik kuyuların daha güvenli ve daha sağlam olduğunu ortaya koymuştur. Duraysızlıkların büyük bölümünü azaltmak için önerilen çamur ağırlığı 10,5 ppg’ye yükseltilmiştir. Elde edilen sonuçlar, incelenen bölgeye yakın kuyuların planlanmasına yardımcı olacak, böylece üretimsiz zamanların ve maliyetlerin azaltılmasına katkı sağlayacaktır.

Kaynakça

  • Aadnoy, B. and Looyeh, R., (2011). Petroleum rock mechanics: drilling operations and well design. Gulf Professional Publishing.
  • Aadnoy, B. and Looyeh, R., (2019). Petroleum Rock Mechanics Drilling Operations and Well Design Second Edition. Gulf Professional Publishing.
  • Abalioglu, I., Legarre, H., Garland, C., Sallier, B., Gao, J., van Galen, M., Chou, Q., Neil, B., Soroush, H., Qutob, H., Mahli, Z., (2011). The role of geomechanics in diagnosing drilling hazards and providing solutions to the northern Iraq fields, in: SPE Middle East Oil and Gas Show and Conference, SPE, pp. SPE–142022, https://doi.org/10.2118/142022-MS.
  • Al-Agaili, H. E. C. (2012). Palynofacies and hydrocarbon potential for selected samples from Subba oil field, south Iraq. University of Baghdad, Baghdad.
  • Al-Ajmi, A. M., and Zimmerman, R. W. (2006). Stability analysis of vertical boreholes using the Mogi–Coulomb failure criterion, International Journal of Rock Mechanics and Mining Sciences, vol 43, pp .1200-1211, https://doi.org/10.1016/j.ijrmms.2006.04.001.
  • Al-Ameri N. J., Hamd-allah S, Abass H. (2020b). Investigating geomechanical considerations on suitable layer selection for hydraulically fractured horizontal wells placement in tight reservoirs. In: Abu Dhabi international petroleum exhibition and conference (ADIPEC). SPE-203249-MS, https://doi.org/10.2118/203249-MS.
  • Al-Ameri N. J., Hamd-allah S, Abass H. (2020c). Specifying quality of a tight oil reservoir through 3-D reservoir modeling. Iraqi Journal of Science, 61(12), 3252–3265, https://doi.org/10.24996/ijs.2020.61.12.14.
  • Al-Ameri, N. J. (2015). Kick tolerance control during well drilling in southern Iraqi deep wells. IJCPE, vol. 16, no. 3, pp. 45–52, https://doi.org/10.31699/IJCPE.2015.3.5.
  • Algburi, A., Alatroshe, R. K., and Alrashedi, M. A., (2023). Study of Hydrocarbon Potentials and Sedimentary Properties of Ispartaçay Formation, Turkey. Iraqi Geological Journal. Vol. 56 (2C), 33-49. DOI: https://doi.org/10.46717/igj.56.2C.3ms-2023-9-9.
  • AlHusseini, A. K. & Hamed-Allah, S. M. (2023). Estimation Pore and Fracture Pressure Based on Log Data; Case Study: Mishrif Formation/Buzurgan Oilfield at Iraq. IJCPE, vol. 24, no. 1, pp. 65–78, https://doi.org/10.31699/IJCPE.2023.1.8.
  • Ali, R., A. (2023). Petrography and Geochemistry of Zubair Shale Formation in Rumaila oilfield southern Iraq: implications for provenance and tectonic setting. JPRS, Volume No. 40, pp. 19-40. http://doi.org./10.52716/jprs.v13i3.729.
  • Al-Juraisy, B.A. and Al-Majid, M.H.A. (2021). Importance of Velocity Deviation Technique and Negative Secondary Porosity in Detection of Hydrocarbon Zones in Khasib Formation, East Baghdad Oil Field. Iraqi Geological Journal. Vol. 54 (2E), 86-103. DOI: https://doi.org/10.46717/igj.54.2E.6Ms-2021-11-22.
  • Almasi, A., and Mohsenipour, A. (2022). Determining the mud window, geomechanical model (MEM), and well wall stability analysis, using analytical and numerical methods in one of the wells in Iran’s southwest fields, Advanced Applied Geology 12 (1), 1–11. DOI:10.22055/AAG.2020.34229.2135.
  • Al-Qahtani, M. Y., and Zillur, R. (2001). A mathematical algorithm for modeling geomechanical rock properties of the Khuff and Pre-Khuff reservoirs in Ghawar field, in: SPE Middle East Oil and Gas Show and Conference, pp. SPE–68194. SPE.
  • Al-Rubaye W. I. T., and Hamd-Allah, S. M. (2019). A High Resolution 3D Geomodel for Giant Carbonate Reservoir- A Field Case Study from an Iraqi Oil Field. Jcoeng, vol. 26, no. 1, pp. 160–173, 2019, https://doi.org/10.31026/j.eng.2020.01.12.
  • AlShibli, F. H., and Alrazzaq, A. A. A. (2022). Laboratory Testing and Evaluating of Shale Interaction with Mud for Tanuma Shale formation in Southern Iraq. IJCPE, vol. 23, no. 3, pp. 35–41, https://doi.org/10.31699/IJCPE.2022.3.5.
  • Bagheri, H., Ayatizadeh Tanha, A., Doulati Ardejani, F., Heydari-Tajareh, M., and Larki, E. (2021). Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir, J. Pet. Explor. Prod. Technol. 11, 3935–3961.
  • Balaky S. M., Al-Dabagh M. M., Asaad I. S., Tamar-Agha M., Ali M. S., Radwan A. E. (2023). Sedimentological and petrophysical heterogeneities controls on reservoir characterization of the Upper Triassic shallow marine carbonate Kurra Chine Formation, Northern Iraq: Integration of outcrop and subsurface data. Mar Pet Geol. 149. doi:10.1016/j.marpetgeo.2022.106085.
  • Bandara, M. K. and Al-Ameri, N. J. (2024). Wellbore Instability Analysis to Determine the Safe Mud Weight Window for Deep Well, Halfaya Oilfield. Iraqi Geological Journal. vol. 57 (1D), 153-173. DOI:10.46717/igj.57.1D.13ms-2024-4-23.
  • Bell, J. S. (2003). Practical methods for estimating in situ stresses for borehole stability applications in sedimentary basins. Journal of Petroleum Science and Engineering vol. 38, pp. 111–119, https://doi.org/10.1016/S0920-4105(03)00025-1.
  • Boutt, D. F., Cook, B. K. and Williams, J. R. (2011). A coupled fluid–solid model for problems in geomechanics: Application to sand production, International Journal for Numerical and Analytical Methods in Geomechanics, vol.35, pp. 997-1018, https://doi.org/10.1002/nag.
  • Bradley, W. B. (1979). Failure of inclined boreholes, J. Energy Resour. Technol. Trans. ASME, vol. 101, no. 4, pp. 232–239, 1979, https://doi.org/10.1115/1.3446925.
  • Chandong, C., Zoback, M. D. and Khaksar, A. (2006). Empirical Relations between Rock Strength and Physical Properties in Sedimentary Rocks. Journal of Petroleum Science and Engineering , vol.51 , pp.223–237, https://doi.org/10.1016/j.petrol.2006.01.003..
  • Ding, Y., Liu, X., Liang, L., Xiong, J., Li, W., Wei, X., Duan, X., and Hou, L. (2023). Wellbore stability model in shale formation under the synergistic effect of stress unloading-hydration. Pet. Explor. Dev. 50 (6), 1478-1486.
  • Ewy, R.T. (1999). Wellbore-Stability Predictions by Use of a Modified Lade Criterion,” SPE Drill & Compl, vol. 14 , pp. 85–91, https://doi.org/10.2118/56862-Pa.
  • Fischer, K., Henk, A. (2013). A workflow for building and calibrating 3-D geomechanical models &ndash a case study for a gas reservoir in the North German Basin, Solid Earth 4 347–355.
  • Gstalder, S. and Raynal, J. (1966). Measurement of Some Mechanical Properties of Rocks And Their Relationship to Rock Drillability, J. Pet. Technol., vol. 18, no. 08, pp. 991–996, https://doi.org/10.2118/1463-Pa.
  • Herwanger, J. (2014). Seismic geomechanics: how to build and calibrate geomechanical models using 3D and 4D seismic data, in: Fourth EAGE CO2 Geological Storage Workshop, European Association of Geoscientists & Engineers, 2014 cp-439.
  • Hoseinpour M. and Riahi, M. A. (2022). Determination of the mud weight window, optimum drilling trajectory, and wellbore stability using geomechanical parameters in one of the Iranian hydrocarbon reservoirs. J Petrol Explor Prod Technol, vol.12, pp. 63–82, https://doi.org/10.1007/s13202-021-01399-5.
  • Hosseini, S. A., Keshavarz Faraj Khah, N., Kianoush, P., Arjmand, Y., Ebrahimabadi, A., Jamshidi, E. (2023b). Tilt angle filter effect on noise cancellation and structural edges detection in hydrocarbon sources in a gravitational potential field. Results Geophys. Sci. 14, 100061, https://doi.org/10.1016/j.ringps.2023.100061.
  • Kianoush, P., Mohammadi, G., Hosseini, S. A., Keshavarz Faraj Khah, N., Afzal, P. (2023b). Determining the drilling mud window by integration of geostatistics, intelligent, and conditional programming models in an oilfield of SW Iran. J. Pet. Explor. Prod, https://doi.org/10.1007/s13202-023-01613-6.
  • Liu J, Ma T, Fu J, Gao J, Martyushev D. A., Ranjith PG. (2024). Thermodynamics based unsaturated hydro-mechanical-chemical coupling model for wellbore stability analysis in chemically active gas formations. Journal of Rock Mechanics and Geotechnical Engineering, https://doi.org/10.1016/j.jrmge.2024.09.024.
  • Ma, T., Chen, P. (2015). A wellbore stability analysis model with chemical-mechanical coupling for shale gas reservoirs. J. Nat. Gas Sci. Eng. 26, 72-98, https://doi.org/10.1016/j.jngse.2015.05.028.
  • Ma, T., Chen, P., Yang, C., and Zhao, J. (2015). Wellbore stability analysis and well path optimization based on the breakout width model and Mogi-Coulomb criterion. J. Pet. Sci. Eng. 135, 678-701, https://doi.org/10.1016/j.petrol.2015.10.029.
  • Manshad, A. K., Ali, J., Aghayari, M., Hayavi, M. T., Mohammadi, A. H., Iglauer, S., and Keshavarz, A. (2022). An insight into modeling wellbore stability using the extended Mogi-Coulomb criterion and poly-axial test data. Upstream Oil Gas Technol. Vol. 9, 100082, https://doi.org/10.1016/j.upstre.2022.100082.
  • Mohiuddin, M. A., Awal, M. R., Abdulraheem, A., and Khan, K. (2001). A new diagnostic approach to identify the causes of borehole instability problems in an offshore Arabian field, in: SPE Middle East Oil and Gas Show and Conference, SPE, pp. SPE–68095, https://doi.org/10.2118/68095-MS.
  • Moos, D., Peska, P., Finkbeiner, T., and Zoback, M. (2003). Comprehensive wellbore stability analysis utilizing Quantitative Risk Assessment. J. Pet. Sci. Eng., vol. 38, pp. 97–109, https://doi.org/10.1016/S0920-4105(03)00024-X.
  • Nader, A. F., Muhammad, R., J., Saleh, W., M., Abdullah, M., S., and Atwan, A., Q. (2022). evalution of main Pay-Zubair Formation after opertions re-injection of produced water dirwctly in Rumaila oil field norths under matrix condition. Journal of petroleum research and Studies. Volume No. 35, pp. 13-26. http://doi.org./10.52716/jprs.v12i2.655.
  • Noah, A. Z., Mesbah, M. A., and Osman, H. (2023). Comprehensive Wellbore Instability Management by Determination of Safe Mud Weight Windows Using Mechanical Earth Model, Meleiha Field, Western Desert, Egypt. Egyptian Journal of Chemistry, vol. 66 , pp. 449-463, doi.org/10.21608/ejchem.2022.150856.6534.
  • Ounegh, A., Hasan-Zadeh, A., Khanaposhtani, M. M., and Kazaemzadeh, Y. (2024). Wellbore stability analysis based on the combination of geomechanical and petrophysical studies. Results in Engineering. Vol. 24, 103016, https://doi.org/10.1016/j.rineng.2024.103016.
  • Pirhadi, A., Kianoush, P., Ebrahimabadi, A., and Shirinabadi, R. (2023). Wellbore stability in a depleted reservoir by finite element analysis of coupled thermo-poro-elastic units in an oilfield, SW Iran. Results in Earth Sciences journal. Vol. 1, 100005, https://doi.org/10.1016/j.rines.2023.100005.
  • Plumb, R. A., and Richard, S. H. (1985). Stress-induced borehole elongation: A comparison between the four-arm dipmeter and the borehole televiewer in the Auburn Geothermal Well. Journal of Geophysical Research, vol. 90, pp. 5513–5521, https://doi.org/10.1029/JB090iB07p05513.
  • Rafieepour, S., Zamiran, S., and Ostadhassan, M. (2020). A cost-effective chemo-thermo-poroelastic wellbore stability model for mud weight design during drilling through shale formations. J. Rock Mech. Geotech. Eng. 12 (4), 768-779, https://doi.org/10.1016/j.jrmge.2019.12.008.
  • Ramjohn, R., Gan, T., Sarfare, M. (2018). 3D geomechanical modeling for wellbore stability analysis: starfish, ECMA, Trinidad and Tobago, in: SPE Trinidad and Tobago Section Energy Resources Conference, SPE, D031S027R002, https://doi.org/10.2118/191242-MS.
  • Rumaila Operating Organization, ROO. (2016). Integrated Subsurface Description (unpublished report).
  • Schlumberger, 2018. Techlog Software Manual.
  • Wang, Y., Duan, L., Zhang, F., Lian, M., and Li, B. (2023). Dynamic wellbore stability analysis based on thermo-poro-elastic model and quantitative risk assessment method. Geoenergy Sci. Eng., 212063, https://doi.org/10.1016/j.geoen.2023.212063.
  • Wei, Y., Feng, Y., Tan, Z., Yang, T., Yan, S., Li, X., and Deng, J. (2024). Simultaneously improving ROP and maintaining wellbore stability in shale gas well: A case study of Luzhou shale gas reservoirs. Rock Mech. Bull. 3 (3), 100124, https://doi.org/10.1016/j.rockmb.2024.100124.
  • Yan, C., Dong, L., Zhao, K., Cheng, Y., Li, X., Deng, J., Li, Z., and Chen, Y. (2022). Time-dependent borehole stability in hard-brittle shale. Pet. Sci. 19 (2), 663-677, https://doi.org/10.1016/j.petsci.2021.12.019.
  • Zeynali, M. E. (2012). Mechanical and physico-chemical aspects of wellbore stability during drilling operations. J. Pet. Sci. Eng. 82, 120-124, https://doi.org/10.1016/j.petrol.2012.01.006.
  • Zhang, J. (2013). Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. International Journal of Rock Mechanics and Mining Sciences 60, 160–70, https://doi.org/10.1016/j.ijrmms.2012.12.025.
  • Zoback, M. D., Moos, D., Mastin, L., and Anderson, R. N. (1985). Well bore breakouts and in situ stress, J. Geophys. Res. Solid Earth 90, 5523–5530, https://doi.org/10.1029/JB090iB07p05523.

Evaluation of the Safe Mud Weight Window: Wellbore Stability Analysis, Rumaila Oilfield, Southern Iraq

Yıl 2025, Cilt: 49 Sayı: 2, 77 - 100, 11.12.2025

Öz

Wellbore instability leads to severe operational interruption and financial losses during the drilling process, resulting in additional non-productive periods in the petroleum and natural gas sector. This study was undertaken to comprehend the nature of wellbore stability challenges at the Rumaila oilfield, southern Iraq for the purpose of enhancing well design. The aim of this study was to create a one-dimensional geomechanical model. Measurements from open hole well logs were required to create the model. Three failure criteria including Mohr-Coulomb, Mogi-Coulomb, and Modified Lade were utilized to figure out the minimum mud weight required for a solid (stable) wellbore wall and also to analyze borehole breakouts. To improve the precision of the geomechanical model, a comparison was made between the projected instability profile of the borehole with the observed failure of the borehole, as reported by the caliper log. The findings indicate that the Mogi-Coulomb criterion more accurately predicts well failure than the other two criteria, establishing it as the superior method for forecasting the rock lowest boundary of mud weight window in the study area. The study of wellbore instability indicated that low and vertical wells with a deviation of less than 40º are safer and more stable. The suggested mud weight was increased to 10.5 ppg to mitigate the majority of instability issues. The findings will aid in planning development for wells adjacent to the examined region, and hence reduce non-productive time and costs.

Etik Beyan

The authors have not disclosed any conflict of interest.

Teşekkür

Saadi and other authors would like to express gratitude to Mosul University, Mosul. Iraq for support in completing this work. For much fruitful cooperation on filed trips, laboratory work and reviews, we thank

Kaynakça

  • Aadnoy, B. and Looyeh, R., (2011). Petroleum rock mechanics: drilling operations and well design. Gulf Professional Publishing.
  • Aadnoy, B. and Looyeh, R., (2019). Petroleum Rock Mechanics Drilling Operations and Well Design Second Edition. Gulf Professional Publishing.
  • Abalioglu, I., Legarre, H., Garland, C., Sallier, B., Gao, J., van Galen, M., Chou, Q., Neil, B., Soroush, H., Qutob, H., Mahli, Z., (2011). The role of geomechanics in diagnosing drilling hazards and providing solutions to the northern Iraq fields, in: SPE Middle East Oil and Gas Show and Conference, SPE, pp. SPE–142022, https://doi.org/10.2118/142022-MS.
  • Al-Agaili, H. E. C. (2012). Palynofacies and hydrocarbon potential for selected samples from Subba oil field, south Iraq. University of Baghdad, Baghdad.
  • Al-Ajmi, A. M., and Zimmerman, R. W. (2006). Stability analysis of vertical boreholes using the Mogi–Coulomb failure criterion, International Journal of Rock Mechanics and Mining Sciences, vol 43, pp .1200-1211, https://doi.org/10.1016/j.ijrmms.2006.04.001.
  • Al-Ameri N. J., Hamd-allah S, Abass H. (2020b). Investigating geomechanical considerations on suitable layer selection for hydraulically fractured horizontal wells placement in tight reservoirs. In: Abu Dhabi international petroleum exhibition and conference (ADIPEC). SPE-203249-MS, https://doi.org/10.2118/203249-MS.
  • Al-Ameri N. J., Hamd-allah S, Abass H. (2020c). Specifying quality of a tight oil reservoir through 3-D reservoir modeling. Iraqi Journal of Science, 61(12), 3252–3265, https://doi.org/10.24996/ijs.2020.61.12.14.
  • Al-Ameri, N. J. (2015). Kick tolerance control during well drilling in southern Iraqi deep wells. IJCPE, vol. 16, no. 3, pp. 45–52, https://doi.org/10.31699/IJCPE.2015.3.5.
  • Algburi, A., Alatroshe, R. K., and Alrashedi, M. A., (2023). Study of Hydrocarbon Potentials and Sedimentary Properties of Ispartaçay Formation, Turkey. Iraqi Geological Journal. Vol. 56 (2C), 33-49. DOI: https://doi.org/10.46717/igj.56.2C.3ms-2023-9-9.
  • AlHusseini, A. K. & Hamed-Allah, S. M. (2023). Estimation Pore and Fracture Pressure Based on Log Data; Case Study: Mishrif Formation/Buzurgan Oilfield at Iraq. IJCPE, vol. 24, no. 1, pp. 65–78, https://doi.org/10.31699/IJCPE.2023.1.8.
  • Ali, R., A. (2023). Petrography and Geochemistry of Zubair Shale Formation in Rumaila oilfield southern Iraq: implications for provenance and tectonic setting. JPRS, Volume No. 40, pp. 19-40. http://doi.org./10.52716/jprs.v13i3.729.
  • Al-Juraisy, B.A. and Al-Majid, M.H.A. (2021). Importance of Velocity Deviation Technique and Negative Secondary Porosity in Detection of Hydrocarbon Zones in Khasib Formation, East Baghdad Oil Field. Iraqi Geological Journal. Vol. 54 (2E), 86-103. DOI: https://doi.org/10.46717/igj.54.2E.6Ms-2021-11-22.
  • Almasi, A., and Mohsenipour, A. (2022). Determining the mud window, geomechanical model (MEM), and well wall stability analysis, using analytical and numerical methods in one of the wells in Iran’s southwest fields, Advanced Applied Geology 12 (1), 1–11. DOI:10.22055/AAG.2020.34229.2135.
  • Al-Qahtani, M. Y., and Zillur, R. (2001). A mathematical algorithm for modeling geomechanical rock properties of the Khuff and Pre-Khuff reservoirs in Ghawar field, in: SPE Middle East Oil and Gas Show and Conference, pp. SPE–68194. SPE.
  • Al-Rubaye W. I. T., and Hamd-Allah, S. M. (2019). A High Resolution 3D Geomodel for Giant Carbonate Reservoir- A Field Case Study from an Iraqi Oil Field. Jcoeng, vol. 26, no. 1, pp. 160–173, 2019, https://doi.org/10.31026/j.eng.2020.01.12.
  • AlShibli, F. H., and Alrazzaq, A. A. A. (2022). Laboratory Testing and Evaluating of Shale Interaction with Mud for Tanuma Shale formation in Southern Iraq. IJCPE, vol. 23, no. 3, pp. 35–41, https://doi.org/10.31699/IJCPE.2022.3.5.
  • Bagheri, H., Ayatizadeh Tanha, A., Doulati Ardejani, F., Heydari-Tajareh, M., and Larki, E. (2021). Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir, J. Pet. Explor. Prod. Technol. 11, 3935–3961.
  • Balaky S. M., Al-Dabagh M. M., Asaad I. S., Tamar-Agha M., Ali M. S., Radwan A. E. (2023). Sedimentological and petrophysical heterogeneities controls on reservoir characterization of the Upper Triassic shallow marine carbonate Kurra Chine Formation, Northern Iraq: Integration of outcrop and subsurface data. Mar Pet Geol. 149. doi:10.1016/j.marpetgeo.2022.106085.
  • Bandara, M. K. and Al-Ameri, N. J. (2024). Wellbore Instability Analysis to Determine the Safe Mud Weight Window for Deep Well, Halfaya Oilfield. Iraqi Geological Journal. vol. 57 (1D), 153-173. DOI:10.46717/igj.57.1D.13ms-2024-4-23.
  • Bell, J. S. (2003). Practical methods for estimating in situ stresses for borehole stability applications in sedimentary basins. Journal of Petroleum Science and Engineering vol. 38, pp. 111–119, https://doi.org/10.1016/S0920-4105(03)00025-1.
  • Boutt, D. F., Cook, B. K. and Williams, J. R. (2011). A coupled fluid–solid model for problems in geomechanics: Application to sand production, International Journal for Numerical and Analytical Methods in Geomechanics, vol.35, pp. 997-1018, https://doi.org/10.1002/nag.
  • Bradley, W. B. (1979). Failure of inclined boreholes, J. Energy Resour. Technol. Trans. ASME, vol. 101, no. 4, pp. 232–239, 1979, https://doi.org/10.1115/1.3446925.
  • Chandong, C., Zoback, M. D. and Khaksar, A. (2006). Empirical Relations between Rock Strength and Physical Properties in Sedimentary Rocks. Journal of Petroleum Science and Engineering , vol.51 , pp.223–237, https://doi.org/10.1016/j.petrol.2006.01.003..
  • Ding, Y., Liu, X., Liang, L., Xiong, J., Li, W., Wei, X., Duan, X., and Hou, L. (2023). Wellbore stability model in shale formation under the synergistic effect of stress unloading-hydration. Pet. Explor. Dev. 50 (6), 1478-1486.
  • Ewy, R.T. (1999). Wellbore-Stability Predictions by Use of a Modified Lade Criterion,” SPE Drill & Compl, vol. 14 , pp. 85–91, https://doi.org/10.2118/56862-Pa.
  • Fischer, K., Henk, A. (2013). A workflow for building and calibrating 3-D geomechanical models &ndash a case study for a gas reservoir in the North German Basin, Solid Earth 4 347–355.
  • Gstalder, S. and Raynal, J. (1966). Measurement of Some Mechanical Properties of Rocks And Their Relationship to Rock Drillability, J. Pet. Technol., vol. 18, no. 08, pp. 991–996, https://doi.org/10.2118/1463-Pa.
  • Herwanger, J. (2014). Seismic geomechanics: how to build and calibrate geomechanical models using 3D and 4D seismic data, in: Fourth EAGE CO2 Geological Storage Workshop, European Association of Geoscientists & Engineers, 2014 cp-439.
  • Hoseinpour M. and Riahi, M. A. (2022). Determination of the mud weight window, optimum drilling trajectory, and wellbore stability using geomechanical parameters in one of the Iranian hydrocarbon reservoirs. J Petrol Explor Prod Technol, vol.12, pp. 63–82, https://doi.org/10.1007/s13202-021-01399-5.
  • Hosseini, S. A., Keshavarz Faraj Khah, N., Kianoush, P., Arjmand, Y., Ebrahimabadi, A., Jamshidi, E. (2023b). Tilt angle filter effect on noise cancellation and structural edges detection in hydrocarbon sources in a gravitational potential field. Results Geophys. Sci. 14, 100061, https://doi.org/10.1016/j.ringps.2023.100061.
  • Kianoush, P., Mohammadi, G., Hosseini, S. A., Keshavarz Faraj Khah, N., Afzal, P. (2023b). Determining the drilling mud window by integration of geostatistics, intelligent, and conditional programming models in an oilfield of SW Iran. J. Pet. Explor. Prod, https://doi.org/10.1007/s13202-023-01613-6.
  • Liu J, Ma T, Fu J, Gao J, Martyushev D. A., Ranjith PG. (2024). Thermodynamics based unsaturated hydro-mechanical-chemical coupling model for wellbore stability analysis in chemically active gas formations. Journal of Rock Mechanics and Geotechnical Engineering, https://doi.org/10.1016/j.jrmge.2024.09.024.
  • Ma, T., Chen, P. (2015). A wellbore stability analysis model with chemical-mechanical coupling for shale gas reservoirs. J. Nat. Gas Sci. Eng. 26, 72-98, https://doi.org/10.1016/j.jngse.2015.05.028.
  • Ma, T., Chen, P., Yang, C., and Zhao, J. (2015). Wellbore stability analysis and well path optimization based on the breakout width model and Mogi-Coulomb criterion. J. Pet. Sci. Eng. 135, 678-701, https://doi.org/10.1016/j.petrol.2015.10.029.
  • Manshad, A. K., Ali, J., Aghayari, M., Hayavi, M. T., Mohammadi, A. H., Iglauer, S., and Keshavarz, A. (2022). An insight into modeling wellbore stability using the extended Mogi-Coulomb criterion and poly-axial test data. Upstream Oil Gas Technol. Vol. 9, 100082, https://doi.org/10.1016/j.upstre.2022.100082.
  • Mohiuddin, M. A., Awal, M. R., Abdulraheem, A., and Khan, K. (2001). A new diagnostic approach to identify the causes of borehole instability problems in an offshore Arabian field, in: SPE Middle East Oil and Gas Show and Conference, SPE, pp. SPE–68095, https://doi.org/10.2118/68095-MS.
  • Moos, D., Peska, P., Finkbeiner, T., and Zoback, M. (2003). Comprehensive wellbore stability analysis utilizing Quantitative Risk Assessment. J. Pet. Sci. Eng., vol. 38, pp. 97–109, https://doi.org/10.1016/S0920-4105(03)00024-X.
  • Nader, A. F., Muhammad, R., J., Saleh, W., M., Abdullah, M., S., and Atwan, A., Q. (2022). evalution of main Pay-Zubair Formation after opertions re-injection of produced water dirwctly in Rumaila oil field norths under matrix condition. Journal of petroleum research and Studies. Volume No. 35, pp. 13-26. http://doi.org./10.52716/jprs.v12i2.655.
  • Noah, A. Z., Mesbah, M. A., and Osman, H. (2023). Comprehensive Wellbore Instability Management by Determination of Safe Mud Weight Windows Using Mechanical Earth Model, Meleiha Field, Western Desert, Egypt. Egyptian Journal of Chemistry, vol. 66 , pp. 449-463, doi.org/10.21608/ejchem.2022.150856.6534.
  • Ounegh, A., Hasan-Zadeh, A., Khanaposhtani, M. M., and Kazaemzadeh, Y. (2024). Wellbore stability analysis based on the combination of geomechanical and petrophysical studies. Results in Engineering. Vol. 24, 103016, https://doi.org/10.1016/j.rineng.2024.103016.
  • Pirhadi, A., Kianoush, P., Ebrahimabadi, A., and Shirinabadi, R. (2023). Wellbore stability in a depleted reservoir by finite element analysis of coupled thermo-poro-elastic units in an oilfield, SW Iran. Results in Earth Sciences journal. Vol. 1, 100005, https://doi.org/10.1016/j.rines.2023.100005.
  • Plumb, R. A., and Richard, S. H. (1985). Stress-induced borehole elongation: A comparison between the four-arm dipmeter and the borehole televiewer in the Auburn Geothermal Well. Journal of Geophysical Research, vol. 90, pp. 5513–5521, https://doi.org/10.1029/JB090iB07p05513.
  • Rafieepour, S., Zamiran, S., and Ostadhassan, M. (2020). A cost-effective chemo-thermo-poroelastic wellbore stability model for mud weight design during drilling through shale formations. J. Rock Mech. Geotech. Eng. 12 (4), 768-779, https://doi.org/10.1016/j.jrmge.2019.12.008.
  • Ramjohn, R., Gan, T., Sarfare, M. (2018). 3D geomechanical modeling for wellbore stability analysis: starfish, ECMA, Trinidad and Tobago, in: SPE Trinidad and Tobago Section Energy Resources Conference, SPE, D031S027R002, https://doi.org/10.2118/191242-MS.
  • Rumaila Operating Organization, ROO. (2016). Integrated Subsurface Description (unpublished report).
  • Schlumberger, 2018. Techlog Software Manual.
  • Wang, Y., Duan, L., Zhang, F., Lian, M., and Li, B. (2023). Dynamic wellbore stability analysis based on thermo-poro-elastic model and quantitative risk assessment method. Geoenergy Sci. Eng., 212063, https://doi.org/10.1016/j.geoen.2023.212063.
  • Wei, Y., Feng, Y., Tan, Z., Yang, T., Yan, S., Li, X., and Deng, J. (2024). Simultaneously improving ROP and maintaining wellbore stability in shale gas well: A case study of Luzhou shale gas reservoirs. Rock Mech. Bull. 3 (3), 100124, https://doi.org/10.1016/j.rockmb.2024.100124.
  • Yan, C., Dong, L., Zhao, K., Cheng, Y., Li, X., Deng, J., Li, Z., and Chen, Y. (2022). Time-dependent borehole stability in hard-brittle shale. Pet. Sci. 19 (2), 663-677, https://doi.org/10.1016/j.petsci.2021.12.019.
  • Zeynali, M. E. (2012). Mechanical and physico-chemical aspects of wellbore stability during drilling operations. J. Pet. Sci. Eng. 82, 120-124, https://doi.org/10.1016/j.petrol.2012.01.006.
  • Zhang, J. (2013). Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. International Journal of Rock Mechanics and Mining Sciences 60, 160–70, https://doi.org/10.1016/j.ijrmms.2012.12.025.
  • Zoback, M. D., Moos, D., Mastin, L., and Anderson, R. N. (1985). Well bore breakouts and in situ stress, J. Geophys. Res. Solid Earth 90, 5523–5530, https://doi.org/10.1029/JB090iB07p05523.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Saad Saadi 0009-0002-6712-0210

Nihad Saoud Aljuboori 0009-0002-3344-8373

Mohammed Zainal Qader 0000-0003-1986-548X

Elaf Mohammed Shakir 0009-0008-3091-8513

Ahmed Ibrahim Saleh Alnaemi Ibrahim Saleh 0000-0001-8920-295X

Lizan Ahmed Saleh 0000-0008-7601-7200

Gönderilme Tarihi 11 Mayıs 2025
Kabul Tarihi 6 Eylül 2025
Yayımlanma Tarihi 11 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 2

Kaynak Göster

APA Saadi, S., Aljuboori, N. S., Zainal Qader, M., … Mohammed Shakir, E. (2025). Evaluation of the Safe Mud Weight Window: Wellbore Stability Analysis, Rumaila Oilfield, Southern Iraq. Jeoloji Mühendisliği Dergisi, 49(2), 77-100. https://doi.org/10.24232/jmd.1694332