Araştırma Makalesi
BibTex RIS Kaynak Göster

Mineral Reaction Kinetics During CO2 Sequestration into Paleozoic Metamorphic Rocks

Yıl 2025, Cilt: 49 Sayı: 3, 43 - 80, 06.12.2025
https://doi.org/10.24232/jmd.1701986

Öz

Carbon dioxide (CO2) sequestration into geological formations is one of the most reliable methods for mitigating CO2 emissions. Geothermal reservoirs are excellent candidates for CO2 trapping due to considerable fracture pore volume, which provides safe and permanent storage. The stability of the target reservoir rock and caprock is a critical topic during long-term CO2 sequestration. This study examines the geochemical changes resulting from reactions between geothermal reservoir rock and CO2-saturated brine. The ultimate aim is to understand the efficiency of CO2 sequestration in a metamorphic geothermal reservoir regarding its geochemical impact. The study involves batch experiments on core samples taken from depths of 1900 m and 3000 m in the Kızıldere geothermal reservoir in western Turkey. We exposed crushed core samples to CO2-saturated geothermal brine at a temperature of 95 °C and a pressure of 10 bar for 21 days. Experimental changes in the concentrations of major elements (Mg2+, Ca2+, Al3+, Fe2+, SiO2, and Cl-) were simulated using PHREEQC software. Kinetic rates and activation energy were utilized as tuning parameters to align simulation outcomes with experimental observations. The behavior of Mg2+ and Ca2+ exhibited an increasing trend, while SiO2, Al3+, and Fe2+ demonstrated a decreasing trend. Consequently, the interaction between CO2-saturated brine and reservoir rock resulted in the precipitation of K-feldspar and kaolinite minerals, whereas other minerals, such as biotite, quartz, magnesite, and siderite, exhibited slight dissolution. The mineral assemblage remained consistent, while the abundance of the minerals exhibited slight variations. The study indicates that a high concentration of cations may facilitate the trapping of CO2 within metamorphic rocks. Furthermore, solubility trapping was determined to be more significant than mineral trapping in the batch experiments.

Kaynakça

  • Akın, T., & Kargı, H. (2019). Modeling the geochemical evolution of fluids in geothermal wells and its implication for sustainable energy production. Geothermics, 77, 115-129.
  • Akın, T., Erol, S., Tokel, A. B., Sevindik, D. B., & Akın, S. (2025). Monitoring CO2 injection in the Kızıldere geothermal field. International Journal of Greenhouse Gas Control, 146, 104413.
  • Aksu, B. (2019). Structural controls on Kızıldere geothermal field, Denizli-Turkey (Master's thesis, Middle East Technical University (Turkey).
  • Alçiçek, H. (2007). Denizli Havzası (Denizli-Buldan Bölgesi, GB Türkiye) Neojen Çökellerinin Sedimantolojik İncelemesi [Sedimentological Investigation of Neogene Deposits in Denizli Basin (Denizli-Buldan Region, SW Turkey)] (PhD thesis). Ankara University, Geological Engineering Department, p. 308.
  • Alçiçek, H., Varol, B., & Özkul, M. (2007). Sedimentary facies, depositional environments and palaeogeographic evolution of the Neogene Denizli Basin, SW Anatolia, Turkey. Sedimentary Geology, 202(4), 596–637. doi:10.1016/j.sedgeo.2007.06.002
  • Alt, J. C., Shanks III, W. C., Crispini, L., Gaggero, L., Schwarzenbach, E. M., Früh-Green, G. L., & Bernasconi, S. M. (2012). Uptake of carbon and sulfur during seafloor serpentinization and the effects of subduction metamorphism in Ligurian peridotites. Chemical Geology, 322, 268-277.
  • Aydin, H., & Akin, S. (2023). CO2 Dissolution in the reservoir brine: An experimental and simulation-based approach. Geothermics, 113, 102774.
  • Battles, D. A., & Barton, M. D. (1995). Arc-related sodic hydrothermal alteration in the western United States. Geology, 23(10), 913-916.
  • Bénézeth, P., Dandurand, J. L., & Harrichoury, J. C. (2009). Solubility product of siderite (FeCO3) as a function of temperature (25–250 C). Chemical Geology, 265(1-2), 3-12.
  • Berndsen, M., Erol, S., Akın, T., Akın, S., Nardini, I., Immenhauser, A., & Nehler, M. (2024). Experimental study and kinetic modeling of high temperature and pressure CO2 mineralization. International Journal of Greenhouse Gas Control, 132, 104044.
  • BingLin, Z., LiQiang, Y., SuoYing, H., Yue, L., WenLong, L., RongXin, Z., ... & ShengGuang, L. (2014). Hydrothermal alteration in the Jiaojia gold deposit, Jiaodong, China. Acta Petrologica Sinica, 30(9), 2533-2545.
  • Blanc, Ph., Lassin, A., Piantone, P., Azaroual, M., Jacquemet, N., Fabbri, A., and Gaucher, E.C.: Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials, Applied Geochemistry, 27, 10, (2012), 2107-2116.
  • Boray A. (1982). Selimiye‐Beşparmak yöresindeki (Muğla) Menderes Masifi kayalarının stratigrafisi: tartışma ve Yanıt. Türkiye Jeoloji Kurumu Bülteni, 25, 161–162.
  • Bozkaya, Ö., Bozkaya, G., Akın, T., & Atan, H. (2024). Mineralogical and geochemical characteristics of alteration minerals related to fossil geothermal activities in the Kızıldere geothermal field, Western Turkey. Geochemistry, 84(4), 126082.
  • Bozkurt, E. (2000). Timing of Extension on the Büyük Menderes Graben, Western Turkey, and Its Tectonic Implications. Geological Society, London, Special Publications, 173(1), 385–403. doi:10.1144/gsl.sp.2000.173.01.18
  • Bozkurt, E., & Oberhänsli, R. (2001). Menderes Massif (Western Turkey): structural, metamorphic and magmatic evolution - a synthesis. International Journal of Earth Sciences, 89(4), 679–708. doi:10.1007/s005310000173.
  • Bray, A. W., Oelkers, E. H., Bonneville, S., Wolff-Boenisch, D., Potts, N. J., Fones, G., & Benning, L. G. (2015). The effect of pH, grain size, and organic ligands on biotite weathering rates. Geochimica et Cosmochimica Acta, 164, 127-145.
  • Brimhall, G. H., & Ghiorso, M. S. (1983). Origin and ore-forming consequences of the advanced argillic alteration process in hypogene environments by magmatic gas contamination of meteoric fluids. Economic Geology, 78(1), 73-90.
  • Delerce, S., Marieni, C., & Oelkers, E. H. (2023). Carbonate geochemistry and its role in geologic carbon storage. Surface Process, Transportation, and Storage, 423-477.
  • Di Tommaso, I., & Rubinstein, N. (2007). Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32(1-2), 275-290.
  • Erol S, Akın T, Başer A, Saraçoğlu Ö, Akın S (2022a). Geofluid-CO2 injection impact in a geothermal reservoir: Evaluation with 3-D reactive transport modeling. Geothermics 98: 102271. https://doi.org/10.1016/j.geothermics.2021.102271.
  • Erten, A., Eroglu, M., Avci, İ ., Karan, T., & Çoban, A. E. (2021). Prevention of the Antimony Compounds at the Geothermal Power Plants with HYDRODIS® GE Products. Bilge International Journal of Science and Technology Research, 5(2), 146-156.
  • Feng, X., Zhang, B., & Chery, L. (2008). Effects of low temperature on aluminum (III) hydrolysis: Theoretical and experimental studies. Journal of Environmental Sciences, 20(8), 907-914.
  • Gürer, Ö. F., Sarıca-Filoreau, N., Özburan, M., Sangu, E., & Doğan, B. (2009). Progressive development of the Büyük Menderes Graben based on new data, western Turkey. Geological Magazine, 146(5), 652–673. doi:10.1017/s0016756809006359
  • Haklıdır, F. S. T., & Şengün, R. (2020). Hydrogeochemical similarities and differences between high temperature geothermal systems with similar geologic settings in the Büyük Menderes and Gediz Grabens of Turkey. Geothermics, 83, 101717.
  • Haklıdır, F. S. T., Şengün, R., & Aydın, H. (2021). Characterization and Comparison of geothermal fluids geochemistry within the Kızıldere Geothermal Field in Turkey: New findings with power capacity expanding studies. Geothermics, 94, 102110.
  • Hart, P. W., Colson, G. W., & Burris, J. (2013). Application of carbon dioxide to reduce water-side lime scale in heat exchangers. Pulp Pap. Canada, 114(1), 21-24.
  • Hellevang, H., Pham, V. T., & Aagaard, P. (2013). Kinetic modelling of CO2–water–rock interactions. International Journal of Greenhouse Gas Control, 15, 3-15.
  • Hikov, A. (2004). Geochemistry of strontium in advanced argillic alteration systems–a possible guide to exploration. Geology, 16-17.
  • Kampman, N., Bickle, M., Wigley, M., & Dubacq, B. (2014). Fluid flow and CO2–fluid–mineral interactions during CO2-storage in sedimentary basins. Chemical Geology, 369, 22-50.
  • Karamanderesi, İ. H., Helvaci C. (2003). Geology and hydrothermal alteration of the Aydın–Salavatlı geothermal field, western Anatolia, Turkey. Turk J Earth Sci 12:175–198.
  • Kaymakci, N. (2006). Kinematic development and paleostress analysis of the Denizli Basin (Western Turkey): implications of spatial variation of relative paleostress magnitudes and orientations. Journal of Asian Earth Sciences, 27(2), 207–222. doi:10.1016/j.jseaes.2005.03.003
  • Koçyiğit, A. (2015). An overview on the main stratigraphic and structural features of a geothermal area: the case of Nazilli-Buharkent section of the Büyük Menderes Graben, SW Turkey. Geodinamica Acta, 27(2-3), 85–109. doi:10.1080/09853111.2014.957501
  • Krauskopf, K. B. (1956). Dissolution and precipitation of silica at low temperatures. Geochimica et Cosmochimica Acta, 10(1-2), 1-26.
  • Krupp, R. E. (1988). Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 350°C. Geochimica et Cosmochimica Acta, 52(12), 3005–3015. https://doi.org/10.1016/0016-7037(88)90164-0
  • Kumar, G. S., & Ghassemi, A. (2005). Numerical modeling of non-isothermal quartz dissolution/precipitation in a coupled fracture–matrix system. Geothermic, 34(4), 411-439.
  • Liu, B., Xu, J., Li, Z., Malekian, R., & Xu, Z. (2018). Modeling of CO 2 transport and pressure buildup in reservoirs during CO 2 storage in saline aquifers: a case in Dongying Depression in China. Environmental earth sciences, 77, 1-14.
  • Liu, F., Lu, P., Griffith, C., Hedges, S. W., Soong, Y., Hellevang, H., & Zhu, C. (2012). CO2–brine–caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature. International Journal of Greenhouse Gas Control, 7, 153-167.
  • Malmström, M., & Banwart, S. (1997). Biotite dissolution at 25 C: The pH dependence of dissolution rate and stoichiometry. Geochimica et Cosmochimica Acta, 61(14), 2779-2799.
  • Mendoza, E. Y. M., Santos, A. S., López, E. V., Drozd, V., Durygin, A., Chen, J., & Saxena, S. K. (2019). Iron oxides as efficient sorbents for CO2 capture. Journal of Materials Research and Technology, 8(3), 2944-2956.
  • Merey, Ş., & Aydın, H. (2025). Simulating hydrogen adsorption-driven thermal variations for improved well integrity monitoring in underground hydrogen storage. International Journal of Hydrogen Energy.
  • Meunier, A., & Velde, B. (1976). Mineral reactions at grain contacts in early stages of granite weathering. Clay Minerals, 11(3), 235-240.
  • Musa, T. N., & Hamoshi, E. A. (2012). The effect of magnetic field on the solubility of NaCl and CaCl2. 2H2O at different temperature and pH values. Basrah Journal of Agricultural Sciences, 25(1), 19-26.
  • Nishiki, Y., Cama, J., Otake, T., Kikuchi, R., Shimbashi, M., & Sato, T. (2023). Formation of magnesium silicate hydrate (MSH) at pH 10 and 50° C in open-flow systems. Applied Geochemistry, 148, 105544.
  • Olsen, N. J., Mountain, B. W., & Seward, T. M. (2012). Experimental study of stibnite solubility in aqueous sulfide solutions from 25 to 90°C. New Zealand Geothermal Workshop, 19(November).
  • Palandri, J. L., & Kharaka, Y. K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. Geological Survey Menlo Park CA.
  • Parkhurst DL, Appelo CAJ (2013). Description of input and examples for PHREEQC version 3 a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods. Amsterdam, Netherlands. https://pubs.usgs.gov/tm/06/a43/.
  • Parkhust, David L. 2005. PHREEQC, Modeling of Geochemical Reactions, Calculation of pH, Redox Potential. PHREEQCI, Windows Interactive Version of PHREEQC. PHRQCGRF, code to create graphs from the data generated by PHREEQC. U.S. Geological Survey.
  • Parry, W. T., Jasumback, M., & Wilson, P. N. (2002). Clay mineralogy of phyllic and intermediate argillic alteration at Bingham, Utah. Economic Geology, 97(2), 221-239.
  • Pearce, J. K., Kirste, D. M., Dawson, G. K., Farquhar, S. M., Biddle, D., Golding, S. D., & Rudolph, V. (2015). SO2 impurity impacts on experimental and simulated CO2–water–reservoir rock reactions at carbon storage conditions. Chemical Geology, 399, 65-86.
  • Peng, D. Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64.
  • Phillipson, A. (1918). Kleinasien, Handbuch der Regionalen Geologie, edited by G. Steinmann and O. Wilckens, 5, Heidelberg.
  • Rao, F., Ramirez-Acosta, F. J., Sanchez-Leija, R. J., Song, S., & Lopez-Valdivieso, A. (2011). Stability of kaolinite dispersions in the presence of sodium and aluminum ions. Applied clay science, 51(1-2), 38-42.
  • Ratouis TMP, Snæbjörnsdóttir SO, Sigfússon B, Gunnarsson I, Voigt MJ et al. (2021). Reactive transport model of CO2 and H2S mineral sequestration at the CarbFix2 reinjection site, Hellisheiði Geothermal Power Plant, SW-Iceland. In: World Geothermal Congress (WGC) October 24-27, Reykjavik, Iceland.
  • Ratouis TMP, Snæbjörnsdóttir SÓ, Voigt MJ, Sigfússon B, Gunnarsson G et al. (2022). Carbfix 2: A transport model of long-term CO2 and H2S injection into basaltic rocks at Hellisheidi, SW-Iceland. International Journal of Greenhouse Gas Control 114: 103586. https://doi.org/10.1016/j.ijggc.2022.103586.
  • Samadi, R., Torabi, G., Kawabata, H., & Miller, N. R. (2021). Biotite as a petrogenetic discriminator: chemical insights from igneous, meta-igneous and meta-sedimentary rocks in Iran. Lithos, 386, 106016.
  • Seki, Y. (1973). Metamorphic facies of propylitic alteration. J. Geol. Soc. Japan, 79, 771-780.
  • Şengör, A. M. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3-4), 181–241. doi:10.1016/0040- 1951(81)90275-4
  • Sengör, A. M. C., Satir, M., & Akkök, R. (1984). Timing of tectonic events in the Menderes Massif, western Turkey: Implications for tectonic evolution and evidence for pan-African basement in Turkey. Tectonics, 3(7), 693–707. doi:10.1029/tc003i007p00693.
  • Senturk, E., Aydin, H., & Tuzen, M. K. (2020, February). Injection Rehabilitation at Kızıldere Geothermal Field: Use of Flow Rate Weighted Average Production Wellhead Pressure for Reservoir Management. In 45th Workshop on Geothermal Reservoir Engineering, Stanford University; Stanford, California, United States.
  • Shukla, R., Ranjith, P., Haque, A., & Choi, X. (2010). A review of studies on CO2 sequestration and caprock integrity. Fuel, 89(10), 2651-2664.
  • Silva, C. A., Liu, X., & Millero, F. J. (2002). Solubility of siderite (FeCO3) in NaCl solutions. Journal of solution chemistry, 31(2), 97-108.
  • Şimşek, Ş., (1984). Denizli-Kızıldere-Tekkehamam-Tosunlar-Buldan-Yenice alanının jeolojisi ve jeotermal enerji olanakları. Mineral Res. Expl. Direct. Turkey (MTA), Scientific Report No: 7846, p. 85. Ankara, Turkey (in Turkish).
  • Steel, L., Mackay, E., & Maroto-Valer, M. M. (2018). Experimental investigation of CO2-brine-calcite interactions under reservoir conditions. Fuel Processing Technology, 169, 122-131.
  • Straub, F. G. (1932). Solubility of calcium sulfate and calcium carbonate at temperatures between 182 oC and 316 oC. Industrial & Engineering Chemistry, 24(8), 914-917.
  • Sun, S. (1990). Denizli-Uşak Arasının Jeolojisi ve Linyit Olanakları [Geology of the area between Denizli and Uşak and lignite occurrences] (Report No. 9985) General Directorate of Mineral Research and Exploration (MTA) [in Turkish, unpublished].
  • Szymanek, K., Charmas, R., & Piasecki, W. (2021). Investigations of mechanism of Ca2+ adsorption on silica and alumina based on Ca-ISE monitoring, potentiometric titration, electrokinetic measurements and surface complexation modeling. Adsorption, 27(1), 105-115.
  • Teng, Y., Wang, P., Xie, H., & Zhu, J. (2022). Capillary trapping characteristics of CO2 sequestration in fractured carbonate rock and sandstone using MRI. Journal of Natural Gas Science and Engineering, 108, 104809.
  • Waldmann, S., Busch, A., Van Ojik, K., & Gaupp, R. (2014). Importance of mineral surface areas in Rotliegend sandstones for modeling CO2–water–rock interactions. Chemical Geology, 378, 89-109.
  • Wallace, C. J., & Maher, K. C. (2019). Phyllic alteration and the implications of fluid composition at the Copper Flat hydrothermal System, New Mexico, USA. Ore Geology Reviews, 104, 273-293.
  • Wang, K., Xu, T., Wang, F., & Tian, H. (2016). Experimental study of CO2–brine–rock interaction during CO2 sequestration in deep coal seams. International Journal of Coal Geology, 154, 265-274.
  • White, A. F., & Brantley, S. L. (2003). The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?. Chemical Geology, 202(3-4), 479-506.
  • Witt, W. K. (1988). Evolution of high-temperature hydrothermal fluids associated with greisenization and feldspathic alteration of a tin-mineralized granite, northeast Queensland. Economic Geology, 83(2), 310-334.
  • Zhang, D., & Song, J. (2014). Mechanisms for geological carbon sequestration. Procedia IUTAm, 10, 319-327.

Paleozoyik Yaşlı Metamorfik Kayaçlara CO2 Enjeksiyonu Sırasında Mineral Tepkime Kinetiği

Yıl 2025, Cilt: 49 Sayı: 3, 43 - 80, 06.12.2025
https://doi.org/10.24232/jmd.1701986

Öz

Jeolojik formasyonlara karbondioksit (CO2) enjeksiyonu, CO2 emisyonlarını azaltmak için en güvenilir yöntemlerden biridir. Jeotermal rezervuarlar, geniş kırık-gözenek hacimleri sayesinde CO2 tutumu için güvenli ve kalıcı depolama fırsatları sunan mükemmel adaylardır. Hedef rezervuar kayacı ve örtü kayacın uzun dönem CO2 enjeksiyonu süresince kararlılığı ise kritik bir konudur. Bu çalışma, jeotermal rezervuar kayacı ile CO2 doygunluğundaki akışkan arasındaki reaksiyonlar sonucu oluşan jeokimyasal değişimleri incelemektedir. Nihai amaç, metamorfik bir jeotermal rezervuarda CO2 tutumunun jeokimyasal etkiler açısından etkinliğini ortaya koymaktır. Çalışma kapsamında, Türkiye’nin Batısında yer alan Kızıldere jeotermal rezervuarında 1900 m ve 3000 m derinliklerden alınan karot numuneleriyle kesikli (batch) deneyler gerçekleştirilmiştir. Ufaltılmış karot örnekleri, 95 °C sıcaklık ve 10 bar basınçta CO2 doygunluğundaki jeotermal akışkana 21 gün süreyle maruz bırakılmıştır. Mg²⁺, Ca²⁺, Al³⁺, Fe²⁺, SiO2 ve Cl⁻ gibi temel element konsantrasyonlarındaki deneysel değişimler PHREEQC yazılımı kullanılarak modellenmiştir. Simülasyon çıktılarının deneysel gözlemlerle uyumlu olması için kinetik hızlar ve aktivasyon enerjisi ayar parametreleri olarak kullanılmıştır. Mg²⁺ ve Ca²⁺ konsantrasyonları artış eğilimi gösterirken; SiO2, Al³⁺ ve Fe²⁺ azalma eğilimi göstermiştir. Bu durum, CO2 doygun akışkan ile rezervuar kayacı arasındaki etkileşim sonucunda K-feldispat ve kaolinit minerallerinin çökelmesine yol açmış; biyotit, kuvars, magnezit ve siderit gibi diğer minerallerde ise hafif çözünme meydana gelmiştir. Mineral topluluğu genel olarak sabit kalmış, ancak minerallerin bollukları küçük değişiklikler göstermiştir. Çalışma, yüksek katyon konsantrasyonlarının metamorfik kayaçlar içerisinde CO2 tutumunu kolaylaştırabileceğini ortaya koymuştur. Ayrıca, gerçekleştirilen kesikli deneylerinde çözelti fazında CO2 tutulumu mineral tutulumuna kıyasla daha baskın olduğu belirlenmiştir.

Kaynakça

  • Akın, T., & Kargı, H. (2019). Modeling the geochemical evolution of fluids in geothermal wells and its implication for sustainable energy production. Geothermics, 77, 115-129.
  • Akın, T., Erol, S., Tokel, A. B., Sevindik, D. B., & Akın, S. (2025). Monitoring CO2 injection in the Kızıldere geothermal field. International Journal of Greenhouse Gas Control, 146, 104413.
  • Aksu, B. (2019). Structural controls on Kızıldere geothermal field, Denizli-Turkey (Master's thesis, Middle East Technical University (Turkey).
  • Alçiçek, H. (2007). Denizli Havzası (Denizli-Buldan Bölgesi, GB Türkiye) Neojen Çökellerinin Sedimantolojik İncelemesi [Sedimentological Investigation of Neogene Deposits in Denizli Basin (Denizli-Buldan Region, SW Turkey)] (PhD thesis). Ankara University, Geological Engineering Department, p. 308.
  • Alçiçek, H., Varol, B., & Özkul, M. (2007). Sedimentary facies, depositional environments and palaeogeographic evolution of the Neogene Denizli Basin, SW Anatolia, Turkey. Sedimentary Geology, 202(4), 596–637. doi:10.1016/j.sedgeo.2007.06.002
  • Alt, J. C., Shanks III, W. C., Crispini, L., Gaggero, L., Schwarzenbach, E. M., Früh-Green, G. L., & Bernasconi, S. M. (2012). Uptake of carbon and sulfur during seafloor serpentinization and the effects of subduction metamorphism in Ligurian peridotites. Chemical Geology, 322, 268-277.
  • Aydin, H., & Akin, S. (2023). CO2 Dissolution in the reservoir brine: An experimental and simulation-based approach. Geothermics, 113, 102774.
  • Battles, D. A., & Barton, M. D. (1995). Arc-related sodic hydrothermal alteration in the western United States. Geology, 23(10), 913-916.
  • Bénézeth, P., Dandurand, J. L., & Harrichoury, J. C. (2009). Solubility product of siderite (FeCO3) as a function of temperature (25–250 C). Chemical Geology, 265(1-2), 3-12.
  • Berndsen, M., Erol, S., Akın, T., Akın, S., Nardini, I., Immenhauser, A., & Nehler, M. (2024). Experimental study and kinetic modeling of high temperature and pressure CO2 mineralization. International Journal of Greenhouse Gas Control, 132, 104044.
  • BingLin, Z., LiQiang, Y., SuoYing, H., Yue, L., WenLong, L., RongXin, Z., ... & ShengGuang, L. (2014). Hydrothermal alteration in the Jiaojia gold deposit, Jiaodong, China. Acta Petrologica Sinica, 30(9), 2533-2545.
  • Blanc, Ph., Lassin, A., Piantone, P., Azaroual, M., Jacquemet, N., Fabbri, A., and Gaucher, E.C.: Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials, Applied Geochemistry, 27, 10, (2012), 2107-2116.
  • Boray A. (1982). Selimiye‐Beşparmak yöresindeki (Muğla) Menderes Masifi kayalarının stratigrafisi: tartışma ve Yanıt. Türkiye Jeoloji Kurumu Bülteni, 25, 161–162.
  • Bozkaya, Ö., Bozkaya, G., Akın, T., & Atan, H. (2024). Mineralogical and geochemical characteristics of alteration minerals related to fossil geothermal activities in the Kızıldere geothermal field, Western Turkey. Geochemistry, 84(4), 126082.
  • Bozkurt, E. (2000). Timing of Extension on the Büyük Menderes Graben, Western Turkey, and Its Tectonic Implications. Geological Society, London, Special Publications, 173(1), 385–403. doi:10.1144/gsl.sp.2000.173.01.18
  • Bozkurt, E., & Oberhänsli, R. (2001). Menderes Massif (Western Turkey): structural, metamorphic and magmatic evolution - a synthesis. International Journal of Earth Sciences, 89(4), 679–708. doi:10.1007/s005310000173.
  • Bray, A. W., Oelkers, E. H., Bonneville, S., Wolff-Boenisch, D., Potts, N. J., Fones, G., & Benning, L. G. (2015). The effect of pH, grain size, and organic ligands on biotite weathering rates. Geochimica et Cosmochimica Acta, 164, 127-145.
  • Brimhall, G. H., & Ghiorso, M. S. (1983). Origin and ore-forming consequences of the advanced argillic alteration process in hypogene environments by magmatic gas contamination of meteoric fluids. Economic Geology, 78(1), 73-90.
  • Delerce, S., Marieni, C., & Oelkers, E. H. (2023). Carbonate geochemistry and its role in geologic carbon storage. Surface Process, Transportation, and Storage, 423-477.
  • Di Tommaso, I., & Rubinstein, N. (2007). Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32(1-2), 275-290.
  • Erol S, Akın T, Başer A, Saraçoğlu Ö, Akın S (2022a). Geofluid-CO2 injection impact in a geothermal reservoir: Evaluation with 3-D reactive transport modeling. Geothermics 98: 102271. https://doi.org/10.1016/j.geothermics.2021.102271.
  • Erten, A., Eroglu, M., Avci, İ ., Karan, T., & Çoban, A. E. (2021). Prevention of the Antimony Compounds at the Geothermal Power Plants with HYDRODIS® GE Products. Bilge International Journal of Science and Technology Research, 5(2), 146-156.
  • Feng, X., Zhang, B., & Chery, L. (2008). Effects of low temperature on aluminum (III) hydrolysis: Theoretical and experimental studies. Journal of Environmental Sciences, 20(8), 907-914.
  • Gürer, Ö. F., Sarıca-Filoreau, N., Özburan, M., Sangu, E., & Doğan, B. (2009). Progressive development of the Büyük Menderes Graben based on new data, western Turkey. Geological Magazine, 146(5), 652–673. doi:10.1017/s0016756809006359
  • Haklıdır, F. S. T., & Şengün, R. (2020). Hydrogeochemical similarities and differences between high temperature geothermal systems with similar geologic settings in the Büyük Menderes and Gediz Grabens of Turkey. Geothermics, 83, 101717.
  • Haklıdır, F. S. T., Şengün, R., & Aydın, H. (2021). Characterization and Comparison of geothermal fluids geochemistry within the Kızıldere Geothermal Field in Turkey: New findings with power capacity expanding studies. Geothermics, 94, 102110.
  • Hart, P. W., Colson, G. W., & Burris, J. (2013). Application of carbon dioxide to reduce water-side lime scale in heat exchangers. Pulp Pap. Canada, 114(1), 21-24.
  • Hellevang, H., Pham, V. T., & Aagaard, P. (2013). Kinetic modelling of CO2–water–rock interactions. International Journal of Greenhouse Gas Control, 15, 3-15.
  • Hikov, A. (2004). Geochemistry of strontium in advanced argillic alteration systems–a possible guide to exploration. Geology, 16-17.
  • Kampman, N., Bickle, M., Wigley, M., & Dubacq, B. (2014). Fluid flow and CO2–fluid–mineral interactions during CO2-storage in sedimentary basins. Chemical Geology, 369, 22-50.
  • Karamanderesi, İ. H., Helvaci C. (2003). Geology and hydrothermal alteration of the Aydın–Salavatlı geothermal field, western Anatolia, Turkey. Turk J Earth Sci 12:175–198.
  • Kaymakci, N. (2006). Kinematic development and paleostress analysis of the Denizli Basin (Western Turkey): implications of spatial variation of relative paleostress magnitudes and orientations. Journal of Asian Earth Sciences, 27(2), 207–222. doi:10.1016/j.jseaes.2005.03.003
  • Koçyiğit, A. (2015). An overview on the main stratigraphic and structural features of a geothermal area: the case of Nazilli-Buharkent section of the Büyük Menderes Graben, SW Turkey. Geodinamica Acta, 27(2-3), 85–109. doi:10.1080/09853111.2014.957501
  • Krauskopf, K. B. (1956). Dissolution and precipitation of silica at low temperatures. Geochimica et Cosmochimica Acta, 10(1-2), 1-26.
  • Krupp, R. E. (1988). Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 350°C. Geochimica et Cosmochimica Acta, 52(12), 3005–3015. https://doi.org/10.1016/0016-7037(88)90164-0
  • Kumar, G. S., & Ghassemi, A. (2005). Numerical modeling of non-isothermal quartz dissolution/precipitation in a coupled fracture–matrix system. Geothermic, 34(4), 411-439.
  • Liu, B., Xu, J., Li, Z., Malekian, R., & Xu, Z. (2018). Modeling of CO 2 transport and pressure buildup in reservoirs during CO 2 storage in saline aquifers: a case in Dongying Depression in China. Environmental earth sciences, 77, 1-14.
  • Liu, F., Lu, P., Griffith, C., Hedges, S. W., Soong, Y., Hellevang, H., & Zhu, C. (2012). CO2–brine–caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature. International Journal of Greenhouse Gas Control, 7, 153-167.
  • Malmström, M., & Banwart, S. (1997). Biotite dissolution at 25 C: The pH dependence of dissolution rate and stoichiometry. Geochimica et Cosmochimica Acta, 61(14), 2779-2799.
  • Mendoza, E. Y. M., Santos, A. S., López, E. V., Drozd, V., Durygin, A., Chen, J., & Saxena, S. K. (2019). Iron oxides as efficient sorbents for CO2 capture. Journal of Materials Research and Technology, 8(3), 2944-2956.
  • Merey, Ş., & Aydın, H. (2025). Simulating hydrogen adsorption-driven thermal variations for improved well integrity monitoring in underground hydrogen storage. International Journal of Hydrogen Energy.
  • Meunier, A., & Velde, B. (1976). Mineral reactions at grain contacts in early stages of granite weathering. Clay Minerals, 11(3), 235-240.
  • Musa, T. N., & Hamoshi, E. A. (2012). The effect of magnetic field on the solubility of NaCl and CaCl2. 2H2O at different temperature and pH values. Basrah Journal of Agricultural Sciences, 25(1), 19-26.
  • Nishiki, Y., Cama, J., Otake, T., Kikuchi, R., Shimbashi, M., & Sato, T. (2023). Formation of magnesium silicate hydrate (MSH) at pH 10 and 50° C in open-flow systems. Applied Geochemistry, 148, 105544.
  • Olsen, N. J., Mountain, B. W., & Seward, T. M. (2012). Experimental study of stibnite solubility in aqueous sulfide solutions from 25 to 90°C. New Zealand Geothermal Workshop, 19(November).
  • Palandri, J. L., & Kharaka, Y. K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. Geological Survey Menlo Park CA.
  • Parkhurst DL, Appelo CAJ (2013). Description of input and examples for PHREEQC version 3 a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods. Amsterdam, Netherlands. https://pubs.usgs.gov/tm/06/a43/.
  • Parkhust, David L. 2005. PHREEQC, Modeling of Geochemical Reactions, Calculation of pH, Redox Potential. PHREEQCI, Windows Interactive Version of PHREEQC. PHRQCGRF, code to create graphs from the data generated by PHREEQC. U.S. Geological Survey.
  • Parry, W. T., Jasumback, M., & Wilson, P. N. (2002). Clay mineralogy of phyllic and intermediate argillic alteration at Bingham, Utah. Economic Geology, 97(2), 221-239.
  • Pearce, J. K., Kirste, D. M., Dawson, G. K., Farquhar, S. M., Biddle, D., Golding, S. D., & Rudolph, V. (2015). SO2 impurity impacts on experimental and simulated CO2–water–reservoir rock reactions at carbon storage conditions. Chemical Geology, 399, 65-86.
  • Peng, D. Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64.
  • Phillipson, A. (1918). Kleinasien, Handbuch der Regionalen Geologie, edited by G. Steinmann and O. Wilckens, 5, Heidelberg.
  • Rao, F., Ramirez-Acosta, F. J., Sanchez-Leija, R. J., Song, S., & Lopez-Valdivieso, A. (2011). Stability of kaolinite dispersions in the presence of sodium and aluminum ions. Applied clay science, 51(1-2), 38-42.
  • Ratouis TMP, Snæbjörnsdóttir SO, Sigfússon B, Gunnarsson I, Voigt MJ et al. (2021). Reactive transport model of CO2 and H2S mineral sequestration at the CarbFix2 reinjection site, Hellisheiði Geothermal Power Plant, SW-Iceland. In: World Geothermal Congress (WGC) October 24-27, Reykjavik, Iceland.
  • Ratouis TMP, Snæbjörnsdóttir SÓ, Voigt MJ, Sigfússon B, Gunnarsson G et al. (2022). Carbfix 2: A transport model of long-term CO2 and H2S injection into basaltic rocks at Hellisheidi, SW-Iceland. International Journal of Greenhouse Gas Control 114: 103586. https://doi.org/10.1016/j.ijggc.2022.103586.
  • Samadi, R., Torabi, G., Kawabata, H., & Miller, N. R. (2021). Biotite as a petrogenetic discriminator: chemical insights from igneous, meta-igneous and meta-sedimentary rocks in Iran. Lithos, 386, 106016.
  • Seki, Y. (1973). Metamorphic facies of propylitic alteration. J. Geol. Soc. Japan, 79, 771-780.
  • Şengör, A. M. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3-4), 181–241. doi:10.1016/0040- 1951(81)90275-4
  • Sengör, A. M. C., Satir, M., & Akkök, R. (1984). Timing of tectonic events in the Menderes Massif, western Turkey: Implications for tectonic evolution and evidence for pan-African basement in Turkey. Tectonics, 3(7), 693–707. doi:10.1029/tc003i007p00693.
  • Senturk, E., Aydin, H., & Tuzen, M. K. (2020, February). Injection Rehabilitation at Kızıldere Geothermal Field: Use of Flow Rate Weighted Average Production Wellhead Pressure for Reservoir Management. In 45th Workshop on Geothermal Reservoir Engineering, Stanford University; Stanford, California, United States.
  • Shukla, R., Ranjith, P., Haque, A., & Choi, X. (2010). A review of studies on CO2 sequestration and caprock integrity. Fuel, 89(10), 2651-2664.
  • Silva, C. A., Liu, X., & Millero, F. J. (2002). Solubility of siderite (FeCO3) in NaCl solutions. Journal of solution chemistry, 31(2), 97-108.
  • Şimşek, Ş., (1984). Denizli-Kızıldere-Tekkehamam-Tosunlar-Buldan-Yenice alanının jeolojisi ve jeotermal enerji olanakları. Mineral Res. Expl. Direct. Turkey (MTA), Scientific Report No: 7846, p. 85. Ankara, Turkey (in Turkish).
  • Steel, L., Mackay, E., & Maroto-Valer, M. M. (2018). Experimental investigation of CO2-brine-calcite interactions under reservoir conditions. Fuel Processing Technology, 169, 122-131.
  • Straub, F. G. (1932). Solubility of calcium sulfate and calcium carbonate at temperatures between 182 oC and 316 oC. Industrial & Engineering Chemistry, 24(8), 914-917.
  • Sun, S. (1990). Denizli-Uşak Arasının Jeolojisi ve Linyit Olanakları [Geology of the area between Denizli and Uşak and lignite occurrences] (Report No. 9985) General Directorate of Mineral Research and Exploration (MTA) [in Turkish, unpublished].
  • Szymanek, K., Charmas, R., & Piasecki, W. (2021). Investigations of mechanism of Ca2+ adsorption on silica and alumina based on Ca-ISE monitoring, potentiometric titration, electrokinetic measurements and surface complexation modeling. Adsorption, 27(1), 105-115.
  • Teng, Y., Wang, P., Xie, H., & Zhu, J. (2022). Capillary trapping characteristics of CO2 sequestration in fractured carbonate rock and sandstone using MRI. Journal of Natural Gas Science and Engineering, 108, 104809.
  • Waldmann, S., Busch, A., Van Ojik, K., & Gaupp, R. (2014). Importance of mineral surface areas in Rotliegend sandstones for modeling CO2–water–rock interactions. Chemical Geology, 378, 89-109.
  • Wallace, C. J., & Maher, K. C. (2019). Phyllic alteration and the implications of fluid composition at the Copper Flat hydrothermal System, New Mexico, USA. Ore Geology Reviews, 104, 273-293.
  • Wang, K., Xu, T., Wang, F., & Tian, H. (2016). Experimental study of CO2–brine–rock interaction during CO2 sequestration in deep coal seams. International Journal of Coal Geology, 154, 265-274.
  • White, A. F., & Brantley, S. L. (2003). The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?. Chemical Geology, 202(3-4), 479-506.
  • Witt, W. K. (1988). Evolution of high-temperature hydrothermal fluids associated with greisenization and feldspathic alteration of a tin-mineralized granite, northeast Queensland. Economic Geology, 83(2), 310-334.
  • Zhang, D., & Song, J. (2014). Mechanisms for geological carbon sequestration. Procedia IUTAm, 10, 319-327.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Jeotermal
Bölüm Araştırma Makalesi
Yazarlar

Hakkı Aydın 0000-0001-5653-0121

Sekçuk Erol 0000-0002-1886-059X

Serhat Akın 0000-0002-6865-9253

Gönderilme Tarihi 19 Mayıs 2025
Kabul Tarihi 4 Ağustos 2025
Erken Görünüm Tarihi 6 Aralık 2025
Yayımlanma Tarihi 6 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 3

Kaynak Göster

APA Aydın, H., Erol, S., & Akın, S. (2025). Mineral Reaction Kinetics During CO2 Sequestration into Paleozoic Metamorphic Rocks. Jeoloji Mühendisliği Dergisi, 49(3), 43-80. https://doi.org/10.24232/jmd.1701986