Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of GPM-IMERG V07 Precipitation Data Against In-Situ Measurements in a Semi-Arid Region of Türkiye

Yıl 2025, Cilt: 49 Sayı: 3, 1 - 12, 06.12.2025
https://doi.org/10.24232/jmd.1708249

Öz

Accurate precipitation data are essential for hydrological modeling, water resource management, and climate impact assessments, particularly in semi-arid regions that are increasingly affected by water scarcity. Satellite-based products, such as the Global Precipitation Measurement (GPM) mission’s Integrated Multi-satellite Retrievals for GPM (IMERG) Final Run Version 07 (V07), may offer a valuable alternative to sparse and unevenly distributed ground-based observations. The primary objective of this study is to assess the performance of GPM IMERG V07 precipitation estimates for the semi-arid region of southern Türkiye by comparing them with gauge data from Adana Meteorological Station for the period 1998–2024. Statistical evaluation was conducted using the coefficient of determination (R²), Pearson’s correlation coefficient (r), and root mean square error (RMSE) at both monthly and yearly scales. Furthermore, F-tests and Student t-tests were applied to assess differences in precipitation variability and mean values between satellite and ground observations. Results indicate that IMERG V07 exhibits strong agreement with in-situ measurements, with high correlation values (r≈0.95) and RMSE of 23.02 mm/month and 158.63 mm/year, demonstrating its reliability in capturing precipitation dynamics. Nonetheless, despite the strong correlation, IMERG V07 systematically overestimates precipitation totals. This trend of overestimation, confirmed through Student t-tests, suggests that correction methods must be applied to enhance the accuracy of the data before it is used in hydrological and water resource applications. Overall, the findings support the utility of IMERG V07 as a robust precipitation dataset in data-scarce environments like semi-arid regions, provided that its systematic deviation is effectively addressed.

Etik Beyan

The authors declare no conflicts of interest.

Destekleyen Kurum

Scientific and Technological Research Council of Turkiye (TÜBİTAK)

Proje Numarası

23O514

Teşekkür

This study was financially supported by the Scientific and Technological Research Council of Turkiye (TÜBİTAK) under project number 23O514. We would like to express our gratitude to TÜBİTAK for its support.

Kaynakça

  • Aksu, H., & Akgul, M.A. (2020). Performance evaluation of CHIRPS satellite precipitation estimates over Turkey. Theoretical and Applied Climatology, 142(1), 71-84.
  • Aksu, H., & Yaldiz, S.G. (2025). Performance comparison of GPM IMERG V07 with its predecessor V06 and its application in extreme precipitation clustering over Türkiye. Atmospheric Research, 315, 107840.
  • Aksu, H., Taflan, G. Y., Yaldiz, S.G., & Akgul, M.A. (2023). Evaluation of IMERG for GPM satellite-based precipitation products for extreme precipitation indices over Türkiye. Atmospheric Research, 291, 106826.
  • Alsenjar, O., Cetin, M., Aksu, H., Golpinar, M.S., & Akgul, M.A. (2023b). Actual Evapotranspiration estimation using METRIC Model and Landsat satellite images over an irrigated field in the Eastern Mediterranean Region of Turkey. Mediterranean Geoscience Reviews, 5, 35-49; https://doi.org/10.1007/s42990-023-00099-y
  • Alsenjar, O., Cetin, M., Aksu, H., Akgul, M.A., & Golpinar M.S. (2023a). Cropping pattern classification using artificial neural networks and evapotranspiration estimation in the Eastern Mediterranean Region of Türkiye. Journal of Agricultural Sciences, 29, 677-689; https://doi.org/10.15832/ankutbd.1174645
  • Çetin, M. (1997). Hidrolojik veri analizlerinde bazı ön istatistiksel analiz teknikleri ve uygulamaları. DSİ Teknik Bülteni, Sayı: 86, Sayfa: 53-63, Ankara, Türkiye.
  • Cetin, M. (2020). Agricultural Water Use. In: N. B. Harmancioglu, D. Altinbilek (eds.), Water Resources of Turkey, Chapter 9, World Water Resources, Vol. 2, https://doi.org/10.1007/978-3-030-11729-0_9, Springer Nature Switzerland AG 2020, ISBN 978-3-030-11728-3, pp. 257–302.
  • Cetin, M., Alsenjar, O., Aksu, H., Golpinar, M.S., & Akgul, M.A. (2023a). Estimation of crop water stress index and leaf area index based on remote sensing data. Water Supply (2023) 23 (3): 1390 -1404. https://doi.org/10.2166/ws.2023.051
  • Cetin, M., Alsenjar, O., Aksu, H., Golpinar, M.S., & Akgul, M.A. (2023b). Comparing actual evapotranspiration estimations by METRIC to in-situ water balance measurements over an irrigated field in Turkey. Hydrological Sciences Journal 2023, 68, 1162-1183; https://doi.org/10.1080/02626667.2023.2198649
  • Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E.J., Sorooshian, S., Tan, J., & Xie, P. (2019a). NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). In: Algorithm Theoretical Basis Document (ATBD) Version 06. National Aeronautics and Space Administration (NASA), March.
  • Huffman, G.J., Stocker, E.F., Bolvin, D.T., Nelkin, E.J., & Tan, J. (2019b). GPM IMERG early precipitation L3 1 day 0.1 degree x 0.1 degree V06. In: Savtchenko, A., Greenbelt, M. D. (Eds.), Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/GPM/IMERGDE/DAY/06
  • Islam, M.A., Yu, B., & Cartwright, N. (2020). Assessment and comparison of five satellite precipitation products in Australia. J. Hydrol. 590, 125474.
  • Keikhosravi-Kiany, M.S., & Balling Jr. R.C. (2024). Evaluation of GPM IMERG early, late, and Final Run in Representing Extreme Rainfall Indices in Southwestern Iran. Remote Sens. 16 (15), 2779.
  • Kronthaler, F. (2023). Statistics applied with Excel: data analysis is (not) an art, 2023. https://link.springer.com/book/9783662643204
  • Le, M.H., Lakshmi, V., Bolten, J., & Du Bui, D. (2020). Adequacy of satellite-derived precipitation estimate for hydrological modeling in Vietnam basins. J. Hydrol. 586, 124820.
  • Moazami, S., Najafi, M.R. (2021). A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based precipitation observations across Canada. J. Hydrol. 594, 125929
  • Ozcan, H., Cetin, M., & Diker, K. (2003). Monitoring and assessment of land use status by GIS. Environ Monit Assess 87, 33–45. https://doi.org/10.1023/A:1024433812336
  • Reddy, N.M., & Saravanan, S. (2023). Evaluation of the accuracy of seven gridded satellite precipitation products over the Godavari River basin, India. Int. J. Environ. Sci. Technol. 20 (9), 10179–10204.
  • TSMS. (2023). General directorate of state meteorology affairs. https://www.mgm.gov.tr/ veridegerlendirme/il-ve-ilceler-istatistik. aspx?k=unde- fined&m=ADANA.
  • Wang, Y. Z. Gao, L., Zhong, Y., & Peng, X. (2023). Comparison of GPM IMERG version 06 final run products and its latest version 07 precipitation products across scales: similarities, differences and improvements. Remote Sens. 15 (23), 5622.
  • Watters, D.C., Gatlin, P.N., Bolvin, D.T., Huffman, G.J., Joyce, R., Kirstetter, P., & Wolff, D. (2024). Oceanic validation of IMERG-GMI version 6 precipitation using the GPM validation network. J. Hydrometeorol. 25 (1), 125–142.
  • Xu, W., Zou, Y., Zhang, G., & Linderman, M. (2015). A comparison among spatial interpolation techniques for daily rainfall data in Sichuan Province, China. Int. J. Climatol. 35 (10), 2898–2907.
  • Yuan, Y., & Lia, O. B. (2025). Evaluation of multi source precipitation products for monitoring drought across China. Front. Environ. Sci. 13:1524937. https://doi.org/10.3389/fenvs.2025.1524937

Türkiye’nin Yarı Kurak Bölgesi için Tahmin Edilen GPM-IMERG V07 Yağış Verilerinin Gerçek Gözlemlerle Karşılaştırılması

Yıl 2025, Cilt: 49 Sayı: 3, 1 - 12, 06.12.2025
https://doi.org/10.24232/jmd.1708249

Öz

Yağış verileri, özellikle su kıtlığından giderek daha fazla etkilenen yarı kurak bölgelerde hidrolojik modelleme, su kaynakları yönetimi, iklim değişikliği ve etkilerinin değerlendirilmesine yönelik çalışmalarda büyük önem taşımaktadır. Küresel Yağış Ölçüm (GPM) misyonunun Entegre Çoklu Uydu Türevleri (IMERG) Nihai Ürün Sürüm 07 (V07) gibi uydu tabanlı ürünler, seyrek ve düzensiz dağılmış meteoroloji gözlem istasyonları gözlemlerine bir alternatif olmaktadır. Bu çalışmada, 1998–2024 döneminde Türkiye'nin güneyindeki yarı kurak bir bölgede IMERG V07 yağış tahminlerinin, aylık ve yıllık yağış gözlem verileriyle karşılaştırılarak kullanılabilirliğinin ortaya konulması amaçlanmıştır. Amaç doğrultusunda, Adana Meteoroloji İstasyonundan alınan veriler kullanılmıştır. İstatistiksel kıyaslamalar, aylık ve yıllık ölçeklerde belirleme katsayısı (R²), Pearson korelasyon katsayısı (r) ve ortalama karekök hata (RMSE) kullanılarak gerçekleştirilmiştir. Ayrıca, uydu ve yer gözlemleri arasındaki yağış değişkenliği ve ortalama değerlerin istatistiksel anlamda farklı olup olmadığının ortaya konulmasında, F-testi ve Student t-testi kullanılmıştır. Sonuçlar, IMERG V07'nin yer gözlemleriyle yüksek düzeyde uyum sağladığını, korelasyon değerlerinin yüksek olduğunu (r ≈ 0.95) ve RMSE değerlerinin aylık 23.02 mm ve yıllık 158.63 mm olduğunu göstermiştir. Bu durum, yağış dinamiklerini yakalama konusunda IMERG V07'nin güvenilirliğini ortaya koymuştur. Veri setleri arasındaki güçlü korelasyona rağmen, IMERG V07'nin yağış toplamlarını sistematik olarak fazla tahmin ettiği saptanmıştır. Student t-testleri ile doğrulanan bu aşırı tahmin eğilimi, GPM-IMERG V07 veri setlerinin hidrolojik modelleme, su kaynaklarının planlanması vb. uygulamalarda kullanılmadan önce, temsil niteliğini (doğruluğunu) artırmak amacıyla düzeltme yöntemlerinin uygulanmasının gerekliliğine işaret etmektedir. Araştırma bulguları bir bütün olarak değerlendirildiğinde, IMERG V07'nin yarı-kurak ve veri yetersizliği olan bölgelerde güçlü bir yağış verisi seti olarak kullanılabileceği; ancak, verilerdeki yanlılığın (sistematik sapmanın) uygun bir yöntem kullanılarak giderilmesi gerektiği sonucuna varılmıştır.

Proje Numarası

23O514

Kaynakça

  • Aksu, H., & Akgul, M.A. (2020). Performance evaluation of CHIRPS satellite precipitation estimates over Turkey. Theoretical and Applied Climatology, 142(1), 71-84.
  • Aksu, H., & Yaldiz, S.G. (2025). Performance comparison of GPM IMERG V07 with its predecessor V06 and its application in extreme precipitation clustering over Türkiye. Atmospheric Research, 315, 107840.
  • Aksu, H., Taflan, G. Y., Yaldiz, S.G., & Akgul, M.A. (2023). Evaluation of IMERG for GPM satellite-based precipitation products for extreme precipitation indices over Türkiye. Atmospheric Research, 291, 106826.
  • Alsenjar, O., Cetin, M., Aksu, H., Golpinar, M.S., & Akgul, M.A. (2023b). Actual Evapotranspiration estimation using METRIC Model and Landsat satellite images over an irrigated field in the Eastern Mediterranean Region of Turkey. Mediterranean Geoscience Reviews, 5, 35-49; https://doi.org/10.1007/s42990-023-00099-y
  • Alsenjar, O., Cetin, M., Aksu, H., Akgul, M.A., & Golpinar M.S. (2023a). Cropping pattern classification using artificial neural networks and evapotranspiration estimation in the Eastern Mediterranean Region of Türkiye. Journal of Agricultural Sciences, 29, 677-689; https://doi.org/10.15832/ankutbd.1174645
  • Çetin, M. (1997). Hidrolojik veri analizlerinde bazı ön istatistiksel analiz teknikleri ve uygulamaları. DSİ Teknik Bülteni, Sayı: 86, Sayfa: 53-63, Ankara, Türkiye.
  • Cetin, M. (2020). Agricultural Water Use. In: N. B. Harmancioglu, D. Altinbilek (eds.), Water Resources of Turkey, Chapter 9, World Water Resources, Vol. 2, https://doi.org/10.1007/978-3-030-11729-0_9, Springer Nature Switzerland AG 2020, ISBN 978-3-030-11728-3, pp. 257–302.
  • Cetin, M., Alsenjar, O., Aksu, H., Golpinar, M.S., & Akgul, M.A. (2023a). Estimation of crop water stress index and leaf area index based on remote sensing data. Water Supply (2023) 23 (3): 1390 -1404. https://doi.org/10.2166/ws.2023.051
  • Cetin, M., Alsenjar, O., Aksu, H., Golpinar, M.S., & Akgul, M.A. (2023b). Comparing actual evapotranspiration estimations by METRIC to in-situ water balance measurements over an irrigated field in Turkey. Hydrological Sciences Journal 2023, 68, 1162-1183; https://doi.org/10.1080/02626667.2023.2198649
  • Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E.J., Sorooshian, S., Tan, J., & Xie, P. (2019a). NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). In: Algorithm Theoretical Basis Document (ATBD) Version 06. National Aeronautics and Space Administration (NASA), March.
  • Huffman, G.J., Stocker, E.F., Bolvin, D.T., Nelkin, E.J., & Tan, J. (2019b). GPM IMERG early precipitation L3 1 day 0.1 degree x 0.1 degree V06. In: Savtchenko, A., Greenbelt, M. D. (Eds.), Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/GPM/IMERGDE/DAY/06
  • Islam, M.A., Yu, B., & Cartwright, N. (2020). Assessment and comparison of five satellite precipitation products in Australia. J. Hydrol. 590, 125474.
  • Keikhosravi-Kiany, M.S., & Balling Jr. R.C. (2024). Evaluation of GPM IMERG early, late, and Final Run in Representing Extreme Rainfall Indices in Southwestern Iran. Remote Sens. 16 (15), 2779.
  • Kronthaler, F. (2023). Statistics applied with Excel: data analysis is (not) an art, 2023. https://link.springer.com/book/9783662643204
  • Le, M.H., Lakshmi, V., Bolten, J., & Du Bui, D. (2020). Adequacy of satellite-derived precipitation estimate for hydrological modeling in Vietnam basins. J. Hydrol. 586, 124820.
  • Moazami, S., Najafi, M.R. (2021). A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based precipitation observations across Canada. J. Hydrol. 594, 125929
  • Ozcan, H., Cetin, M., & Diker, K. (2003). Monitoring and assessment of land use status by GIS. Environ Monit Assess 87, 33–45. https://doi.org/10.1023/A:1024433812336
  • Reddy, N.M., & Saravanan, S. (2023). Evaluation of the accuracy of seven gridded satellite precipitation products over the Godavari River basin, India. Int. J. Environ. Sci. Technol. 20 (9), 10179–10204.
  • TSMS. (2023). General directorate of state meteorology affairs. https://www.mgm.gov.tr/ veridegerlendirme/il-ve-ilceler-istatistik. aspx?k=unde- fined&m=ADANA.
  • Wang, Y. Z. Gao, L., Zhong, Y., & Peng, X. (2023). Comparison of GPM IMERG version 06 final run products and its latest version 07 precipitation products across scales: similarities, differences and improvements. Remote Sens. 15 (23), 5622.
  • Watters, D.C., Gatlin, P.N., Bolvin, D.T., Huffman, G.J., Joyce, R., Kirstetter, P., & Wolff, D. (2024). Oceanic validation of IMERG-GMI version 6 precipitation using the GPM validation network. J. Hydrometeorol. 25 (1), 125–142.
  • Xu, W., Zou, Y., Zhang, G., & Linderman, M. (2015). A comparison among spatial interpolation techniques for daily rainfall data in Sichuan Province, China. Int. J. Climatol. 35 (10), 2898–2907.
  • Yuan, Y., & Lia, O. B. (2025). Evaluation of multi source precipitation products for monitoring drought across China. Front. Environ. Sci. 13:1524937. https://doi.org/10.3389/fenvs.2025.1524937
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Doğal Afetler
Bölüm Araştırma Makalesi
Yazarlar

Omar Alsenjar 0000-0001-9471-794X

Mahmut Çetin 0000-0001-5751-0958

Proje Numarası 23O514
Gönderilme Tarihi 28 Mayıs 2025
Kabul Tarihi 20 Haziran 2025
Erken Görünüm Tarihi 6 Aralık 2025
Yayımlanma Tarihi 6 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 3

Kaynak Göster

APA Alsenjar, O., & Çetin, M. (2025). Evaluation of GPM-IMERG V07 Precipitation Data Against In-Situ Measurements in a Semi-Arid Region of Türkiye. Jeoloji Mühendisliği Dergisi, 49(3), 1-12. https://doi.org/10.24232/jmd.1708249