Araştırma Makalesi
BibTex RIS Kaynak Göster

Optically Stimulated Luminescence Dating in Earthquake Research: Applications of the SAR Protocol in Quartz Minerals

Yıl 2024, Cilt: 48 Sayı: 1, 59 - 76, 26.06.2024
https://doi.org/10.24232/jmd.1482238

Öz

Optically stimulated luminescence (OSL) dating is one of the most important methods in paleoseismology studies to calculate the ages of samples taken from fault segments over a wide range of up to 1 million years. Basically, the time when the samples last saw daylight can be calculated with the OSL method. The natural radiation energy that minerals such as quartz, feldspar, etc., which are abundant in the soil, accumulate during their burial is the data source of the OSL dating method. In this study, general information and important points to be considered about the processes of opening trenches, taking OSL samples and making age calculations are emphasized; and then experimental studies are included. OSL ages were calculated by determining the equivalent doses of quartz samples aged in the laboratory (M1: 940±65.8 years, M2: 6230±323.96 years, M3: 24000±715 years) using the single aliquot regeneration (SAR) protocol, and statistical evaluations were made for the calculation of age errors.

Kaynakça

  • Aitken, M.J., (1997). Luminescence dating. Chronometric dating in archaeology. Springer, US, Boston, MA, pp 183–216
  • Aitken, M.J. (1998). An Introduction to Optical Dating. Oxford University Press, Oxford.
  • Atlıhan, M.A., & Meriç, N., (2008). Luminescence dating of a geological sample from Denizli, Turkey, Applied Radiation and Isotopes, 66(1), 69-74. https://doi.org/10.1016/j. apradiso.2007.07.020.
  • Bejarano-Arias, I., Van Wees, R.M.J., Alexanderson, H., Janočko, J., & Perić, Z.M., (2023). Testing the Applicability of Quartz and Feldspar for Luminescence Dating of Pleistocene Alluvial Sediments in the Tatra Mountain Foothills, Slovakia, Geochronometria 2023;50(1):50-80.
  • Cordier, S., Frechen, M., Tsukamoto, S. (2010). Methodological Aspects on Luminescence Dating of Fluvial Sands from the Moselle Basin, Luxembourg. Geochronometria, 35, 67-74. https://doi.org/10.2478/v10003-010-0006-4
  • Dogan, T., Cetin, H., Yegingil, Z., Topaksu, M., Yüksel, M., Duygun, F., Nur, N., & Yegingil, I., (2015). Optically stimulated luminescence dating of Holocene alluvial fans, East Anatolian Fault System, Turkey. Radiation Effects and Defects in Solids, 170(7-8), 630-644.
  • Duller, G.A.T., (2003). Distinguishing quartz and feldspar in single grain luminescence measurements, Radiation Measurements, 37(2), 161-165, https://doi.org/10.1016/S1350-4487(02)00170-1.
  • Duran İ, Sözbilir H, Eski S, Softa M, Uytun H, Yüksel M., & Topaksu M., (2021). Paleoseismic history of the Manisa fault zone, Western Anatolia. Turk J Earth Sci 30(SI-1):806–832.
  • Fattahi, M., Nazari, H., Bateman, M.D., Meyer, B., Se´brier, M., et al., (2010). Refining the OSL age of the last earthquake on the Dheshir fault, Central Iran. Quat Geochronol 5(2–3):286–292. https://doi.org/10.1016/j.quageo.2009.04.005
  • Feathers, J., (2008). Luminescence Dating, Encyclopedia of Archaeology, Academic Press, 1590-1592, https://doi.org/10.1016/B978-012373962-9.00306-X.
  • Gribkovskii, V.P., Vij, D.R., (1998). Luminescence of Solids, Springer, US.
  • Huntley, D.J., Godfrey-Smith, D.I., & Thewalt, M.L.W., (1985). Optically dating of sediments. Nature, 313, 105-107.
  • Huntley, D.J., Hutton, J.T. and Prescott, J.R., (1993). Optical dating using inclusions within quartz grains. Geology, 21(12), 1087-1090.
  • Jayangondaperumal, R., Kumahara, Y., Thakur, V.C., Kumar, A., Srivastava, P., et al (2017). Great earthquake surface ruptures along backthrust of the Janauri anticline, NW Himalaya. J Asian Earth Sci 133:89–101
  • Jull, A.J.T., (2018). Past Glacial Environments (Second Edition), Chapter 19 - Geochronology Applied to Glacial Environments, Elsevier, 665- 687, https://doi.org/10.1016/B978-0-08-100524-8.00020-8.
  • Karabacak, V., Yönlü, Ö., Dökü, E., Kıyak, N.G., Altunel, E., Özüdoğru, Ş., Yalçıner, C.Ç. & Akyüz, H.S., (2013). Analyses of Seismic Deformation at the Kibyra Roman Stadium, Southwest Turkey. Geoarchaeology, 28, 531-543. https://doi.org/10.1002/gea.21456
  • Mahan, S.A., Rittenour, T.M., Nelson, M.S., Ataee, N., Brown, N., DeWitt, R., Durcan, J., Evans, M., Feathers, J., Frouin, M., Guérin, G., Heydari, M., Huot, S., Jain, M., Keen-Zebert, A., Li, B., López, G.I., Neudorf, C., Porat, N., Rodrigues, K., Sawakuchi, A.O., Spencer, J.Q.G., & Thomsen, K., (2022) Guide for interpreting and reporting luminescence dating results. GSA Bull 135:1480–1502. https://doi.org/10.1130/ B36404.1
  • Murray, A.S., & Wintle, A.G., (2000). Luminescence Dating of Quartz using an Improved Single Aliquot Regenerative-Dose Protocol. Radiation Measurements 32 (1): 57-73. https://doi. org/10.1016/S1350-4487(99)00253-X.
  • Öncü, U., Sözbilir, H., Özkaymak, Ç., Softa M., Sümer, Ö., Eski, S., Spencer, J.Q.G., Şahiner, E., Yüksel, M., Meriç, N., & Topaksu, M., (2024). Palaeoseismological assessment for a seismic gap located very close to the epicentre of the 30 October 2020 Samos Earthquake (M6.9), western Anatolia, Turkey. Nat Hazards 120, 4699–4727. https://doi.org/10.1007/s11069-023- 06290-6
  • Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Richter, D., & Spencer, J.Q.G., (2008). Luminescence dating: basics, methods and applications. E&G Quat Sci J 57(1/2):95–149. https://doi.org/10.3285/eg.57.1-2.5
  • Ran, Y., Chen, L., Chen, J., Wang, H., Chen, G., Yin, J., Shi, X., Li, C., & Xu, X., (2010). Paleoseismic evidence and repeat time of large earthquakes at three sites along the Longmenshan fault zone. Tectonophysics, 491(1–4), 141-153. https://doi. org/10.1016/j.tecto.2010.01.009
  • Rittase, W.M., Kirby, E., McDonald, E., Walker, J.D., Gosse, J., Spencer, J.Q.G., & Herrs, A.J., (2014). Temporal variations in Holocene slip rate along the central Garlock fault, Pilot Knob Valley, California. Lithosphere 6(1):48–58. https://doi. org/10.1130/L286.1
  • Softa M, Sahiner E, Sözbilir H, Spencer JQG, Utku M, & Büyüktopçu, F., (2023). The first application of the luminescence surface exposure dating method on active fault scarps in the Western Anatolia extensional province: the Manisa Fault as an example. Turki J Earth Sci 32(2):163–180. https://doi.org/10.55730/1300-0985.1836
  • Softa, M., ve Utku, M. (2022). Paleosismoloji Çalışmalarında Kolüvyal Çökellerdeki Su İçeriğinin Lüminesans Tarihlendirmeye Etkisinin Değerlendirilmesi; Soma-Kırkağaç Fayı’ndan Bir Örnek. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 22(2), 417-430. https://doi.org/10.35414/akufemubid.1077643
  • Spencer, J.Q.G., Huot, S., Archer, A.W., & Caldas, M.M., (2019) Testing luminescence dating methods for small samples from very young fluvial deposits. Methods Protoc 2(4):90. https:// doi.org/10.3390/mps2040090
  • Stahl, T., Quigley, M.C., McGill, A., & Bebbington, M.S., (2016). Modeling earthquake moment magnitudes on imbricate reverse faults from palaeoseismic data: fox peak and forest creek faults, South Island, New Zealand. Bull Seismol Soc Am 106(5):2345–2363
  • Tsodoulos, I.M., Stamoulis, K., Caputo, R., Koukouvelas, I., Chatzipetros, A., Pavlides, S., Gallousi, C., Papachristodoulou, C., & Ioannides, K., (2016). Middle–Late Holocene earthquake history of the Gyrtoni Fault, Central Greece: Insight from optically stimulated luminescence (OSL) dating and paleoseismology, Tectonophysics, 687, 14-27. https://doi.org/10.1016/j.tecto.2016.08.015.
  • Xiaobo, Z., Daoyang, Y., Yanxiu, S., Xingwang, L., Weipeng, G., & Bo, Z., (2003). The 2003 Ms6.1 Minle Earthquake: An Earthquake in the Minle- Yongchang Reverse Fault-Related Fold Belt in the Hexi Corridor, NW China, Frontiers in Earth Science, 9, DOI=10.3389/feart.2021.649268
  • Wallinga, J., & Cunningham, A.C., (2014). Luminescence Dating, Uncertainties, and Age Range. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi. org/10.1007/978-94-007-6326-5_197-1
  • Wintle AG, Murray AS (2006). A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation measurements 41 (4): 369-391
  • Yukihara, E. G., & McKeever, S. W., (2011). Optically stimulated luminescence: fundamentals and applications. John Wiley & Sons
  • Yüksel, M., (2018). Termolüminesans Yöntemi ve Dozimetrik Çalışmalar. Fen Bilimleri ve Matematik Temel Alanı Örnek Araştırmaları Kitabı (pp.171-192), Ankara: Nobel Akademik Yayıncılık.
  • Yüksel, M., (2018). Thermoluminescence and dosimetric characteristics study of quartz samples from Seyhan Dam Lake Terraces. Canadian Journal of Physics. 96(7): 779-783. https://doi.org/10.1139/cjp-2017-0741

Deprem Araştırmalarında Optik Uyarmalı Lüminesans Tarihlendirme: Kuvars Minerallerinde SAR Protokolü Uygulamaları

Yıl 2024, Cilt: 48 Sayı: 1, 59 - 76, 26.06.2024
https://doi.org/10.24232/jmd.1482238

Öz

Optik uyarmalı lüminesans (OSL) tarihlendirme, paleosismoloji çalışmalarında fay segmentlerinden alınan örneklerin yaşlarını 1 milyon yıla kadar geniş bir aralıkta hesaplamak için kullanılan en önemli yöntemlerden biridir. Temel olarak OSL yöntemi ile örneklerin gün ışığını en son gördükleri zaman hesaplanabilmektedir. Toprakta bol miktarda bulunan kuvars, feldspat vb. minerallerin gömülü oldukları süre boyunca biriktirdikleri doğal radyasyon enerjisi OSL tarihlendirme yönteminin veri kaynağını oluşturmaktadır. Bu çalışmada, hendeklerin açılması, OSL örneklerinin alınması ve yaş hesaplamalarının yapılması süreçleri ile ilgili genel bilgiler ve dikkat edilmesi gereken önemli noktalara vurgu yapılmış ve daha sonra deneysel çalışmalara yer verilmiştir. Deneysel çalışmalarla laboratuvar ortamında yaşlandırılan (M1: 940±65.8 yıl, M2: 6230±323.96 yıl, M3: 24000±715 yıl) kuvars örneklerinin tek tablet doz yenileme (SAR) protokolü ile eşdeğer dozları belirlenerek OSL yaşları hesaplanmış ve yaşa karışan hataların hesaplanması ile ilgili istatistiksel değerlendirmeler yapılmıştır.

Kaynakça

  • Aitken, M.J., (1997). Luminescence dating. Chronometric dating in archaeology. Springer, US, Boston, MA, pp 183–216
  • Aitken, M.J. (1998). An Introduction to Optical Dating. Oxford University Press, Oxford.
  • Atlıhan, M.A., & Meriç, N., (2008). Luminescence dating of a geological sample from Denizli, Turkey, Applied Radiation and Isotopes, 66(1), 69-74. https://doi.org/10.1016/j. apradiso.2007.07.020.
  • Bejarano-Arias, I., Van Wees, R.M.J., Alexanderson, H., Janočko, J., & Perić, Z.M., (2023). Testing the Applicability of Quartz and Feldspar for Luminescence Dating of Pleistocene Alluvial Sediments in the Tatra Mountain Foothills, Slovakia, Geochronometria 2023;50(1):50-80.
  • Cordier, S., Frechen, M., Tsukamoto, S. (2010). Methodological Aspects on Luminescence Dating of Fluvial Sands from the Moselle Basin, Luxembourg. Geochronometria, 35, 67-74. https://doi.org/10.2478/v10003-010-0006-4
  • Dogan, T., Cetin, H., Yegingil, Z., Topaksu, M., Yüksel, M., Duygun, F., Nur, N., & Yegingil, I., (2015). Optically stimulated luminescence dating of Holocene alluvial fans, East Anatolian Fault System, Turkey. Radiation Effects and Defects in Solids, 170(7-8), 630-644.
  • Duller, G.A.T., (2003). Distinguishing quartz and feldspar in single grain luminescence measurements, Radiation Measurements, 37(2), 161-165, https://doi.org/10.1016/S1350-4487(02)00170-1.
  • Duran İ, Sözbilir H, Eski S, Softa M, Uytun H, Yüksel M., & Topaksu M., (2021). Paleoseismic history of the Manisa fault zone, Western Anatolia. Turk J Earth Sci 30(SI-1):806–832.
  • Fattahi, M., Nazari, H., Bateman, M.D., Meyer, B., Se´brier, M., et al., (2010). Refining the OSL age of the last earthquake on the Dheshir fault, Central Iran. Quat Geochronol 5(2–3):286–292. https://doi.org/10.1016/j.quageo.2009.04.005
  • Feathers, J., (2008). Luminescence Dating, Encyclopedia of Archaeology, Academic Press, 1590-1592, https://doi.org/10.1016/B978-012373962-9.00306-X.
  • Gribkovskii, V.P., Vij, D.R., (1998). Luminescence of Solids, Springer, US.
  • Huntley, D.J., Godfrey-Smith, D.I., & Thewalt, M.L.W., (1985). Optically dating of sediments. Nature, 313, 105-107.
  • Huntley, D.J., Hutton, J.T. and Prescott, J.R., (1993). Optical dating using inclusions within quartz grains. Geology, 21(12), 1087-1090.
  • Jayangondaperumal, R., Kumahara, Y., Thakur, V.C., Kumar, A., Srivastava, P., et al (2017). Great earthquake surface ruptures along backthrust of the Janauri anticline, NW Himalaya. J Asian Earth Sci 133:89–101
  • Jull, A.J.T., (2018). Past Glacial Environments (Second Edition), Chapter 19 - Geochronology Applied to Glacial Environments, Elsevier, 665- 687, https://doi.org/10.1016/B978-0-08-100524-8.00020-8.
  • Karabacak, V., Yönlü, Ö., Dökü, E., Kıyak, N.G., Altunel, E., Özüdoğru, Ş., Yalçıner, C.Ç. & Akyüz, H.S., (2013). Analyses of Seismic Deformation at the Kibyra Roman Stadium, Southwest Turkey. Geoarchaeology, 28, 531-543. https://doi.org/10.1002/gea.21456
  • Mahan, S.A., Rittenour, T.M., Nelson, M.S., Ataee, N., Brown, N., DeWitt, R., Durcan, J., Evans, M., Feathers, J., Frouin, M., Guérin, G., Heydari, M., Huot, S., Jain, M., Keen-Zebert, A., Li, B., López, G.I., Neudorf, C., Porat, N., Rodrigues, K., Sawakuchi, A.O., Spencer, J.Q.G., & Thomsen, K., (2022) Guide for interpreting and reporting luminescence dating results. GSA Bull 135:1480–1502. https://doi.org/10.1130/ B36404.1
  • Murray, A.S., & Wintle, A.G., (2000). Luminescence Dating of Quartz using an Improved Single Aliquot Regenerative-Dose Protocol. Radiation Measurements 32 (1): 57-73. https://doi. org/10.1016/S1350-4487(99)00253-X.
  • Öncü, U., Sözbilir, H., Özkaymak, Ç., Softa M., Sümer, Ö., Eski, S., Spencer, J.Q.G., Şahiner, E., Yüksel, M., Meriç, N., & Topaksu, M., (2024). Palaeoseismological assessment for a seismic gap located very close to the epicentre of the 30 October 2020 Samos Earthquake (M6.9), western Anatolia, Turkey. Nat Hazards 120, 4699–4727. https://doi.org/10.1007/s11069-023- 06290-6
  • Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Richter, D., & Spencer, J.Q.G., (2008). Luminescence dating: basics, methods and applications. E&G Quat Sci J 57(1/2):95–149. https://doi.org/10.3285/eg.57.1-2.5
  • Ran, Y., Chen, L., Chen, J., Wang, H., Chen, G., Yin, J., Shi, X., Li, C., & Xu, X., (2010). Paleoseismic evidence and repeat time of large earthquakes at three sites along the Longmenshan fault zone. Tectonophysics, 491(1–4), 141-153. https://doi. org/10.1016/j.tecto.2010.01.009
  • Rittase, W.M., Kirby, E., McDonald, E., Walker, J.D., Gosse, J., Spencer, J.Q.G., & Herrs, A.J., (2014). Temporal variations in Holocene slip rate along the central Garlock fault, Pilot Knob Valley, California. Lithosphere 6(1):48–58. https://doi. org/10.1130/L286.1
  • Softa M, Sahiner E, Sözbilir H, Spencer JQG, Utku M, & Büyüktopçu, F., (2023). The first application of the luminescence surface exposure dating method on active fault scarps in the Western Anatolia extensional province: the Manisa Fault as an example. Turki J Earth Sci 32(2):163–180. https://doi.org/10.55730/1300-0985.1836
  • Softa, M., ve Utku, M. (2022). Paleosismoloji Çalışmalarında Kolüvyal Çökellerdeki Su İçeriğinin Lüminesans Tarihlendirmeye Etkisinin Değerlendirilmesi; Soma-Kırkağaç Fayı’ndan Bir Örnek. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 22(2), 417-430. https://doi.org/10.35414/akufemubid.1077643
  • Spencer, J.Q.G., Huot, S., Archer, A.W., & Caldas, M.M., (2019) Testing luminescence dating methods for small samples from very young fluvial deposits. Methods Protoc 2(4):90. https:// doi.org/10.3390/mps2040090
  • Stahl, T., Quigley, M.C., McGill, A., & Bebbington, M.S., (2016). Modeling earthquake moment magnitudes on imbricate reverse faults from palaeoseismic data: fox peak and forest creek faults, South Island, New Zealand. Bull Seismol Soc Am 106(5):2345–2363
  • Tsodoulos, I.M., Stamoulis, K., Caputo, R., Koukouvelas, I., Chatzipetros, A., Pavlides, S., Gallousi, C., Papachristodoulou, C., & Ioannides, K., (2016). Middle–Late Holocene earthquake history of the Gyrtoni Fault, Central Greece: Insight from optically stimulated luminescence (OSL) dating and paleoseismology, Tectonophysics, 687, 14-27. https://doi.org/10.1016/j.tecto.2016.08.015.
  • Xiaobo, Z., Daoyang, Y., Yanxiu, S., Xingwang, L., Weipeng, G., & Bo, Z., (2003). The 2003 Ms6.1 Minle Earthquake: An Earthquake in the Minle- Yongchang Reverse Fault-Related Fold Belt in the Hexi Corridor, NW China, Frontiers in Earth Science, 9, DOI=10.3389/feart.2021.649268
  • Wallinga, J., & Cunningham, A.C., (2014). Luminescence Dating, Uncertainties, and Age Range. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi. org/10.1007/978-94-007-6326-5_197-1
  • Wintle AG, Murray AS (2006). A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation measurements 41 (4): 369-391
  • Yukihara, E. G., & McKeever, S. W., (2011). Optically stimulated luminescence: fundamentals and applications. John Wiley & Sons
  • Yüksel, M., (2018). Termolüminesans Yöntemi ve Dozimetrik Çalışmalar. Fen Bilimleri ve Matematik Temel Alanı Örnek Araştırmaları Kitabı (pp.171-192), Ankara: Nobel Akademik Yayıncılık.
  • Yüksel, M., (2018). Thermoluminescence and dosimetric characteristics study of quartz samples from Seyhan Dam Lake Terraces. Canadian Journal of Physics. 96(7): 779-783. https://doi.org/10.1139/cjp-2017-0741
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sismoloji, Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Yüksel 0000-0002-9921-3756

Yayımlanma Tarihi 26 Haziran 2024
Gönderilme Tarihi 11 Mayıs 2024
Kabul Tarihi 26 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 48 Sayı: 1

Kaynak Göster

APA Yüksel, M. (2024). Deprem Araştırmalarında Optik Uyarmalı Lüminesans Tarihlendirme: Kuvars Minerallerinde SAR Protokolü Uygulamaları. Jeoloji Mühendisliği Dergisi, 48(1), 59-76. https://doi.org/10.24232/jmd.1482238