Araştırma Makalesi
BibTex RIS Kaynak Göster

EnMAP Hiperspektral Uydusunun Batimetri Kabiliyeti

Yıl 2024, Cilt: 48 Sayı: 2, 161 - 178, 24.12.2024
https://doi.org/10.24232/jmd.1568433

Öz

Rezervuardaki su miktarı göl gözlem istasyonları vasıtasıyla anında tespit edilebilirken, bu değer en son üretilen batimetrik haritaya dayalı olarak hesaplanan miktarı temsil etmektedir. Rezervuara su girişi beraberinde sedimantasyonu da getirmekte, bu da rezervuarda su hacmini azaltmaktadır. Batimetrik haritaların periyodik olarak üretilmesi bu tür değişikliklerin tespiti için gereklidir. Çalışma alanı olarak seçilen Seyhan Barajı, Türkiye'nin güneyinde Çukurova bölgesinde yer almakta olup sulama, taşkın kontrolü ve enerji üretimi amacıyla inşa edilmiştir.
Bu çalışmada, hiperspektral EnMAP uydu verisi ile bağımsız bileşen analizi (ICA), temel bileşen analizi (PCA) ve log oran dönüşümü (LRT) olmak üzere üç yöntem kullanılarak uydu-kaynaklı batimetri (SDB) haritaları üretilmiştir. Ağustos-Eylül 2019 tarihleri arasında sonar yöntemiyle ölçülen batimetrik harita ile 2024 tarihli uydu görüntüsü kullanılarak üretilen SDB haritaları arasındaki ilişki incelenmiştir. Çalışma sonucunda, Pearson korelasyon katsayısı (r) sonuçları açısından en iyi sonuçları 0.811 ile PCA1 ve 0.790 ile LRT yöntemi, ortalama hata (ME) sonuçları açısından -11.822 ile ICA2 ve -12.027 ile LRT, yüzde yanlılık (PB) istatistikleri sonuçları açısından -113.907 ile ICA2 ve -96.640 ile LRT istatistikleri verdiği görülmüştür. Tahminlerin standart hataları da hesaplanmış, en iyi sonucun 0.102 ile LRT yöntemi olduğu görülmüştür. Bu çalışmanın bulguları, hiperspektral EnMAP uydu verilerine dayalı olarak SDB haritalarının üretilmesi aşamasında en uygun analiz yönteminin seçilmesini sağlayacaktır.

Kaynakça

  • Akgül, M.A., Dağdeviren, M., Biroğlu, İ. (2018). Çok Zamanlı Uydu Görüntüleri Kullanılarak Uydu-Kaynaklı Batimetri. DSİ Teknik Bülten, Sayı:127, Ocak 2018, Sayfa:14-27.
  • Akgül, M.A., Yurtal, R. (2023). Seyhan Baraj Gölünde Askıda Sedimentin Alansal Dağılımının ve Zamansal Değişiminin Uzaktan Algılama ile Belirlenmesi. Jeoloji Mühendisliği Dergisi, 47(2), 103-118. https://doi.org/10.24232/ jmd.1311124.
  • Akgül, M.A. (2024). Comparison of Bathymetric Maps of a Dam Reservoir Produced by Empirical Methods from Satellite Images with Different Spatial Resolutions with In-Situ Data. J Indian Soc Remote Sens 52, 257–269. https://doi. org/10.1007/s12524-024-01824-2.
  • Akgül, M.A., Güvel, Ş.P., Aksu, H. (2024). Sedimentation Analysis on Seyhan Dam Reservoir Using Long Term Bathymetry Data, Journal of Engineering Sciences and Design, 12(1), 16-33. https://doi.org/10.21923/ jesd.1353462.
  • Bachmann, M., Alonso, K., Carmona, E., et al., (2021). Analysis-ready data from hyperspectral sensors—the design of the EnMAP CARD4L- SR data product. Remote Sens. 13, 4536. https:// doi.org/10.3390/RS13224536.
  • Bernstein, L.S., Adler-Golden, S.M., Sundberg, R.L., Levine, R.Y., Perkins, T.C., Berk, A. (2005). Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR- SWIR multi- and hyperspectral imagery. SPIE, Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Vol. 5806, pp. 668-678. https://doi. org/10.1117/12.603359.
  • Caballero, I., Stumpf, R.P. (2023). Confronting turbidity, the major challenge for satellite- derived coastal bathymetry. The Science of the total environment, 870, 161898. https://doi. org/10.1016/j.scitotenv.2023.161898.
  • Canty, J.M. (2014). Image Analysis, Classification and Change Detection in Remote Sensing, with Algorithms for ENVI/IDL and Python, Third Edition. CRC Press.
  • Chang, C.I. (2003). Unconstrained Mixed Pixel Classification: Least-Squares Subspace Projection. In: Hyperspectral Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1- 4419-9170-6_8.
  • Darama, Y., Selek, Z., Selek, B., Akgül, M.A., Dağdeviren, M. (2019). Determination of sediment deposition of Hasanlar Dam using bathymetric and remote sensing studies. Nat Hazards 97, 211–227. https://doi.org/10.1007/ s11069-019-03635-y.
  • DSİ (2014). Dams of Turkey, International Commission on Large Dams Turkish National Committee (TRCOLD), Dams of Turkey: Seyhan Dam. State Hydraulic Works (DSİ), Ankara, Türkiye.
  • DSİ (2019). Adana-Seyhan Barajı Hidrografik Harita Yapımı İşi. Yağmur Harita –Kaya Mühendislik ortaklığı, Ankara, Türkiye.
  • Erkinbaev, C., Derksen, K., Paliwal, J., (2019). Single kernel wheat hardness estimation using near infrared hyperspectral imaging. Infrared Phys. Technol. 98, 250–255.
  • ESRI (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
  • Fakıoglu, M. (2005). Seyhan Barajı Hidrografik Harita Alımı Değerlendirilmesi ve Sonuçları. TMMOB Harita ve Kadastro Mühendisleri Odası ve İTÜ Jeodezi ve Fotogrametri Müh.Bölümü, 2. Ulusal Mühendislik Ölçmeleri Sempozyumu Bildiriler Kitabı, İstanbul.
  • Gupta, H.V., Sorooshian S., and Yapo, P.O. (1999). Status Of Automatic Calibration For Hydrologic Models: Comparison with Multilevel Expert Calibration, Journal of Hydrologic Engineering. 4(2), 135-143. https://doi.org/10.1061/ (ASCE)1084-0699(1999)4:2(135)
  • Güvel, Ş.P., Akgül, M.A., Yurtal, R. (2021). Investigation of sediment accumulation in Berdan Dam Reservoir using bathymetric measurements and Sentinel-2 Data. Arab J Geosci 14, 2723. https://doi.org/10.1007/s12517-021-09089-6.
  • Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Networks, vol. 10, no. 3, pp. 626-634.
  • Hyvarinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks : the official journal of the International Neural Network Society, 13 4-5, 411-30.
  • Huizingh, E. (2007). Applied Statistics with SPSS. SAGE Publications Ltd, London. https://doi. org/10.4135/9781446249390.
  • IECO (1966). Water Resources Development Ceyhan Basin Projects, Seyhan Basin Projects, Berdan Project, Develi Project, Amik Project, Master Plan Report. (in Turkish).
  • Kwon, J., Shin, H., Kim, D., Lee, H., Bouk, J., Kim, J., & Kim, T. (2024). Estimation of shallow bathymetry using Sentinel-2 satellite data and random forest machine learning: a case study for Cheonsuman, Hallim, and Samcheok Coastal Seas. Journal of Applied Remote Sensing, 18, 014522. https://doi.org/10.1117/1. JRS.18.014522.
  • Le Quilleuc, A., Collin, A., Jasinski, M.F., Devillers, R. (2022). Very High-Resolution Satellite- Derived Bathymetry and Habitat Mapping Using Pleiades-1 and ICESat-2. Remote Sens. 2022, 14, 133. https://doi.org/10.3390/rs14010133.
  • Lyzenga, D.R. (1978). Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features. Applied Optics, 17(3), pp.379- 383.
  • Mateo-Pérez, V., Corral-Bobadilla, M., Ortega- Fernández, F., Vergara-González, E.P. (2020). Port Bathymetry Mapping Using Support Vector Machine Technique and Sentinel-2 Satellite Imagery. Remote Sens. 2020, 12, 2069. https:// doi.org/10.3390/rs12132069.
  • Mudiyanselage, S.S.J.D., Abd-Elrahman, A., Wilkinson, B., & Lecours, V. (2022). Satellite- derived bathymetry using machine learning and optimal Sentinel-2 imagery in South-West Florida coastal waters. GIScience & Remote Sensing, 59(1), 1143–1158. https://doi.org/10.10 80/15481603.2022.2100597.
  • NASA, (2024). Catalog of Spaceborne Imaging, NASA Space Science Data Coordinated Archive (NSSDC), NASA Goddard Space Flight Center (GSFC), https://nssdc.gsfc.nasa.gov/, Erişim Tarihi: 01.07.2024.
  • Nash, J.E., Sutcliffe, J.V. (1970). River Flow Forecasting through Conceptual Models 1. A Discussion of Principles. Journal of Hydrology 10(3), 282-290.
  • NV5 (2024a). Independent Components Analysis, https://www.nv5geospatialsoftware.com/docs/ IndependentComponentsAnalysis.html. Date of access: 01.07.2024.

Bathymetry Capability of EnMAP Hyperspectral Satellite

Yıl 2024, Cilt: 48 Sayı: 2, 161 - 178, 24.12.2024
https://doi.org/10.24232/jmd.1568433

Öz

Kaynakça

  • Akgül, M.A., Dağdeviren, M., Biroğlu, İ. (2018). Çok Zamanlı Uydu Görüntüleri Kullanılarak Uydu-Kaynaklı Batimetri. DSİ Teknik Bülten, Sayı:127, Ocak 2018, Sayfa:14-27.
  • Akgül, M.A., Yurtal, R. (2023). Seyhan Baraj Gölünde Askıda Sedimentin Alansal Dağılımının ve Zamansal Değişiminin Uzaktan Algılama ile Belirlenmesi. Jeoloji Mühendisliği Dergisi, 47(2), 103-118. https://doi.org/10.24232/ jmd.1311124.
  • Akgül, M.A. (2024). Comparison of Bathymetric Maps of a Dam Reservoir Produced by Empirical Methods from Satellite Images with Different Spatial Resolutions with In-Situ Data. J Indian Soc Remote Sens 52, 257–269. https://doi. org/10.1007/s12524-024-01824-2.
  • Akgül, M.A., Güvel, Ş.P., Aksu, H. (2024). Sedimentation Analysis on Seyhan Dam Reservoir Using Long Term Bathymetry Data, Journal of Engineering Sciences and Design, 12(1), 16-33. https://doi.org/10.21923/ jesd.1353462.
  • Bachmann, M., Alonso, K., Carmona, E., et al., (2021). Analysis-ready data from hyperspectral sensors—the design of the EnMAP CARD4L- SR data product. Remote Sens. 13, 4536. https:// doi.org/10.3390/RS13224536.
  • Bernstein, L.S., Adler-Golden, S.M., Sundberg, R.L., Levine, R.Y., Perkins, T.C., Berk, A. (2005). Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR- SWIR multi- and hyperspectral imagery. SPIE, Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Vol. 5806, pp. 668-678. https://doi. org/10.1117/12.603359.
  • Caballero, I., Stumpf, R.P. (2023). Confronting turbidity, the major challenge for satellite- derived coastal bathymetry. The Science of the total environment, 870, 161898. https://doi. org/10.1016/j.scitotenv.2023.161898.
  • Canty, J.M. (2014). Image Analysis, Classification and Change Detection in Remote Sensing, with Algorithms for ENVI/IDL and Python, Third Edition. CRC Press.
  • Chang, C.I. (2003). Unconstrained Mixed Pixel Classification: Least-Squares Subspace Projection. In: Hyperspectral Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1- 4419-9170-6_8.
  • Darama, Y., Selek, Z., Selek, B., Akgül, M.A., Dağdeviren, M. (2019). Determination of sediment deposition of Hasanlar Dam using bathymetric and remote sensing studies. Nat Hazards 97, 211–227. https://doi.org/10.1007/ s11069-019-03635-y.
  • DSİ (2014). Dams of Turkey, International Commission on Large Dams Turkish National Committee (TRCOLD), Dams of Turkey: Seyhan Dam. State Hydraulic Works (DSİ), Ankara, Türkiye.
  • DSİ (2019). Adana-Seyhan Barajı Hidrografik Harita Yapımı İşi. Yağmur Harita –Kaya Mühendislik ortaklığı, Ankara, Türkiye.
  • Erkinbaev, C., Derksen, K., Paliwal, J., (2019). Single kernel wheat hardness estimation using near infrared hyperspectral imaging. Infrared Phys. Technol. 98, 250–255.
  • ESRI (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
  • Fakıoglu, M. (2005). Seyhan Barajı Hidrografik Harita Alımı Değerlendirilmesi ve Sonuçları. TMMOB Harita ve Kadastro Mühendisleri Odası ve İTÜ Jeodezi ve Fotogrametri Müh.Bölümü, 2. Ulusal Mühendislik Ölçmeleri Sempozyumu Bildiriler Kitabı, İstanbul.
  • Gupta, H.V., Sorooshian S., and Yapo, P.O. (1999). Status Of Automatic Calibration For Hydrologic Models: Comparison with Multilevel Expert Calibration, Journal of Hydrologic Engineering. 4(2), 135-143. https://doi.org/10.1061/ (ASCE)1084-0699(1999)4:2(135)
  • Güvel, Ş.P., Akgül, M.A., Yurtal, R. (2021). Investigation of sediment accumulation in Berdan Dam Reservoir using bathymetric measurements and Sentinel-2 Data. Arab J Geosci 14, 2723. https://doi.org/10.1007/s12517-021-09089-6.
  • Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Networks, vol. 10, no. 3, pp. 626-634.
  • Hyvarinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks : the official journal of the International Neural Network Society, 13 4-5, 411-30.
  • Huizingh, E. (2007). Applied Statistics with SPSS. SAGE Publications Ltd, London. https://doi. org/10.4135/9781446249390.
  • IECO (1966). Water Resources Development Ceyhan Basin Projects, Seyhan Basin Projects, Berdan Project, Develi Project, Amik Project, Master Plan Report. (in Turkish).
  • Kwon, J., Shin, H., Kim, D., Lee, H., Bouk, J., Kim, J., & Kim, T. (2024). Estimation of shallow bathymetry using Sentinel-2 satellite data and random forest machine learning: a case study for Cheonsuman, Hallim, and Samcheok Coastal Seas. Journal of Applied Remote Sensing, 18, 014522. https://doi.org/10.1117/1. JRS.18.014522.
  • Le Quilleuc, A., Collin, A., Jasinski, M.F., Devillers, R. (2022). Very High-Resolution Satellite- Derived Bathymetry and Habitat Mapping Using Pleiades-1 and ICESat-2. Remote Sens. 2022, 14, 133. https://doi.org/10.3390/rs14010133.
  • Lyzenga, D.R. (1978). Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features. Applied Optics, 17(3), pp.379- 383.
  • Mateo-Pérez, V., Corral-Bobadilla, M., Ortega- Fernández, F., Vergara-González, E.P. (2020). Port Bathymetry Mapping Using Support Vector Machine Technique and Sentinel-2 Satellite Imagery. Remote Sens. 2020, 12, 2069. https:// doi.org/10.3390/rs12132069.
  • Mudiyanselage, S.S.J.D., Abd-Elrahman, A., Wilkinson, B., & Lecours, V. (2022). Satellite- derived bathymetry using machine learning and optimal Sentinel-2 imagery in South-West Florida coastal waters. GIScience & Remote Sensing, 59(1), 1143–1158. https://doi.org/10.10 80/15481603.2022.2100597.
  • NASA, (2024). Catalog of Spaceborne Imaging, NASA Space Science Data Coordinated Archive (NSSDC), NASA Goddard Space Flight Center (GSFC), https://nssdc.gsfc.nasa.gov/, Erişim Tarihi: 01.07.2024.
  • Nash, J.E., Sutcliffe, J.V. (1970). River Flow Forecasting through Conceptual Models 1. A Discussion of Principles. Journal of Hydrology 10(3), 282-290.
  • NV5 (2024a). Independent Components Analysis, https://www.nv5geospatialsoftware.com/docs/ IndependentComponentsAnalysis.html. Date of access: 01.07.2024.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Ali Akgül 0000-0002-5517-9576

Yayımlanma Tarihi 24 Aralık 2024
Gönderilme Tarihi 16 Ekim 2024
Kabul Tarihi 2 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 48 Sayı: 2

Kaynak Göster

APA Akgül, M. A. (2024). EnMAP Hiperspektral Uydusunun Batimetri Kabiliyeti. Jeoloji Mühendisliği Dergisi, 48(2), 161-178. https://doi.org/10.24232/jmd.1568433