Derleme
BibTex RIS Kaynak Göster

Maden Kaynak Belirleme Sondaj Programlarının Optimizasyonu

Yıl 2024, Cilt: 48 Sayı: 2, 203 - 228, 24.12.2024
https://doi.org/10.24232/jmd.1568824

Öz

Kaynak belirleme sondaj programları, maden yataklarının sınırlarını ve işletilebilirliğini belirlemek için yapılan bir örnekleme sürecidir. Bu süreçte, sistematik ve tesadüfi olmak üzere iki tür örnekleme hatası bulunur. Sistematik hatalar, cihaz kalibrasyon hataları veya örneklerin yatağı yetersiz temsil etmesi gibi durumlarda ortaya çıkar ve tahminlerin doğruluğunu olumsuz etkiler. Tesadüfi hatalar ise örneklerin rastgele dağılımı veya doğal değişkenlikten kaynaklanır ve tahminlerde belirsizliğe neden olur. Bu hataların etkisi, daha fazla örnekleme yaparak azaltılabilir, ancak sondaj maliyetli bir işlem olduğu için kabul edilebilir belirsizlik düzeyine ulaşmak adına maliyet ve belirsizlik arasında bir denge kurulması zorunludur. Kaynak belirleme sondajlarının optimizasyonu, bu dengeyi sağlayacak şekilde sondaj noktalarının yerleşimini veya sondaj aralıklarını belirlemeye dayanır. Geometrik yaklaşım, sondaj etki alanlarının örtüşmesini en aza indirerek optimizasyon yaparken, jeoistatistik yöntemler kriging varyansı gibi ölçütlere göre belirsizliği kabul edilebilir seviyelere düşürmeye çalışır. Bilginin değeri yaklaşımı, elde edilen bilgiden ekonomik olarak en yüksek faydayı sağlarken, yanlış sınıflandırma maliyetlerini minimize etmek, ekonomik kayıpları önlemeyi hedefler. Genetik algoritmalar ve parçacık sürü optimizasyonu gibi meta-sezgisel yöntemler de belirsizlik yönetiminde etkilidir, ancak yüksek hesaplama gücü gerektirdiğinden sınırlı uygulanmaktadır. Bu optimizasyon yöntemleri, maliyetleri düşürerek ve kaynak modelinin doğruluğunu artırarak önemli katkılar sağlar.

Etik Beyan

Etik Beyan ve Telif Hakkı Devir Formu ıslak imzalı olarak posta ile gönderilecektir

Teşekkür

Bu yazıyı yayın öncesi okuyup görüş ve önerilerini bildiren DAMA Mühendislik A.Ş. Genel Müdür Yardımcısı Mehmet Ali Akbaba'ya teşekkür ederim.

Kaynakça

  • Armstrong, M., & Dowd, P. A. (Eds.). (1994). Geostatistical simulations. Springer Science & Business Media.
  • Bertoli, O., Paul, A., Casley, Z., & Dunn, D. (2013). Geostatistical drillhole spacing analysis for coal resource classification in the Bowen Basin, Queensland. International Journal of Coal Geology, 112, 107–113. https://doi. org/10.1016/j.coal.2013.08.001
  • Boucher, A., Dimitrakopoulos, R., & Vargas-Guzman, J. A. (2005). Joint simulations, optimal drill hole spacing and the role of stockpile. In Leuangthong, O., & Deutsch, C. (Eds.), Geostatistics Banff 2004: Quantitative Geology and Geostatistics (Vol. 14, pp. 35–44). Springer.
  • Caers, J., Scheidt, C., Yin, Z., Wang, L., Mukerji, T., & House, K. (2022). Efficacy of information in mineral exploration drilling. Natural Resources Research, 31, 1157–1173. https://doi. org/10.1007/s11053-022-10002-8
  • Chilès, J. P., & Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty. John Wiley & Sons.
  • Clark, I. (1979). Practical geostatistics. Applied Science Publishers.
  • Clark, I., & Harper, W. V. (2000). Practical geostatistics. Ecosse North America.
  • David, M. (1977). Geostatistical ore reserve estimation. Elsevier.
  • Deutsch, C. V. (2002). Geostatistical reservoir modeling. Oxford University Press.
  • Deutsch, C. V., & Journel, A. G. (1997). GSLIB: Geostatistical software library and user’s guide (2nd ed.). Oxford University Press.
  • Diehl, P., & David, M. (1982). Classification of ore reserves/resources based on geostatistical methods. CIM Bulletin, 75(838).
  • Dimitrakopoulos, R. (2011). Stochastic optimization for strategic mine planning: A decade of developments. Journal of Mining Science, 47(2), 138–150. https://doi.org/10.1134/ S1062739111020039
  • Dirkx, R., & Dimitrakopoulos, R. (2017). Optimizing infill drilling decisions using multi-armed bandits: Application in a long-term, multi- element stockpile. Mathematical Geosciences, 50, 35–52. https://doi.org/10.1007/s11004-017-9691-y
  • Dohm, C. (2004). Quantifiable mineral resource classification: A logical approach. In Leuangthong, O., & Deutsch, C. V. (Eds.), Geostatistics Banff 2004 (pp. 333–342). Springer.
  • Dowd, P. A., (1997). Risk in minerals projects: Analysis, perception and management. Transactions of the Institution of Mining and Metallurgy, Section A: Minerals Industry, 106, A9–A18.
  • Drumond, D. A., Amarante, F. A. N., Koppe, V. C., & Costa, J. (2019). A chart for judging optimal sample spacing for ore grade estimation. Part II. Natural Resources Research, 29, 551–560. https://doi.org/10.1007/s11053-019-09457-9
  • Eidsvik, J., & Ellefmo, S. L. (2013). The value of information in mineral exploration within a multi-Gaussian framework. Mathematical Geosciences, 45(7), 777–798. https://doi. org/10.1007/s11004-013-9482-7
  • Eidsvik, J., Mukerji, T., & Bhattacharjya, D. (2015). Value of information in the Earth sciences: Integrating spatial modeling and decision analysis. Cambridge University Press.
  • Emery, X., & Séguret, S. A. (2020). Geostatistics for the mining industry: Applications to porphyry copper deposits. CRC Press.
  • Englund, E. J., & Heravi, N. (1993). Conditional simulation: Practical application for sampling design optimization. In Soares, A. (Ed.), Proceedings of the Fourth International Geostatistics Congress (Vol. 2, pp. 613–624). Kluwer Academic.
  • Fatehi, M., Asadi Haroni, H., & Hossein Morshedy, A. (2017). Designing infill directional drilling in mineral exploration by using particle swarm optimization algorithm. Arabian Journal of Geosciences, 10, 487. https://doi.org/10.1007/ s12517-017-3212-3
  • Froyland, G., Menabde, M., Stone, P., & Hodson, D. (2018). The value of additional drilling to open pit mining projects. In Dimitrakopoulos, R. (Ed.), Advances in applied strategic mine planning (pp. 119–138). Springer.
  • Haining, R. P. (2003). Spatial data analysis: Theory and practice. Cambridge University Press.
  • Harding, B. E. (2021). Drillhole spacing determination with value of information. Retrieved from https://era.library.ualberta.ca/items/fa0321f4- a91b-4202-bf92-a58fdd53842a
  • Harding, B., & Deutsch, C. V. (2022). Drillhole spacing determination with value of information. CIM Journal, 13(1), 38–51.
  • Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. Academic Press.
  • Koppe, V. C., Rubio, R. H., & Costa, J. F. C. L. (2017). A chart for judging optimal sample spacing for ore grade estimation. Natural Resources Research, 26(2), 191–199.
  • Özkan, Y. Z. (2023). Maden arama projelerinin optimizasyonu. Mayeb Basın Yayın İnsan Kaynakları Ltd. Şti.
  • Rivoirard, J. (1994). Introduction to disjunctive kriging and non-linear geostatistics. Clarendon Press.
  • Rossi, M. E., & Deutsch, C. V. (2014). Mineral resource estimation. Springer.
  • Soltani-Mohammadi, S., & Hezarkhani, A. (2013). A simulated annealing-based algorithm to locate additional drillholes for maximizing the realistic value of information. Natural Resources Research, 22(3), 229–237.
  • Soltani-Mohammadi, S., Hezarkhani, A., & Tercan, E. (2012). Optimally locating additional drill holes in three dimensions using grade and simulated annealing. Journal Geological Society of India, 80, 700–706.
  • Soltani, S., Hezarkhani, A., Tercan, E., & Karimi, B. (2011). Use of genetic algorithm in optimally locating additional drillholes. Journal of Mining Science, 47(1), 62–72.
  • Soltani-Mohammadi, S., Safa, M., & Mokhtari, H. (2016). Comparison of particle swarm optimization and simulated annealing for locating additional boreholes considering combined variance minimization. Computers & Geosciences, 95, 146–155.
  • Usero, G., Misk, S., & Saldanha, A. (2019). An approach for drilling pattern simulation. In Mining Goes Digital: Proceedings of the 39th International Symposium on Application of Computers and Operations Research in the Mineral Industry (pp. 59–66). CRC Press.
  • Vargas, A. M. (2017). Optimizing grade-control drill hole spacing with conditional simulation. Minería y Geología, 33(1), 1–12.
  • Wang, J., Zhang, T., & Fu, B. (2016). A measure of spatial stratified heterogeneity. Ecological Indicators, 67, 250–256. https://doi. org/10.1016/j.ecolind.2016.02.052

Optimization of Mineral Resource Definition Drilling Programs

Yıl 2024, Cilt: 48 Sayı: 2, 203 - 228, 24.12.2024
https://doi.org/10.24232/jmd.1568824

Öz

Kaynakça

  • Armstrong, M., & Dowd, P. A. (Eds.). (1994). Geostatistical simulations. Springer Science & Business Media.
  • Bertoli, O., Paul, A., Casley, Z., & Dunn, D. (2013). Geostatistical drillhole spacing analysis for coal resource classification in the Bowen Basin, Queensland. International Journal of Coal Geology, 112, 107–113. https://doi. org/10.1016/j.coal.2013.08.001
  • Boucher, A., Dimitrakopoulos, R., & Vargas-Guzman, J. A. (2005). Joint simulations, optimal drill hole spacing and the role of stockpile. In Leuangthong, O., & Deutsch, C. (Eds.), Geostatistics Banff 2004: Quantitative Geology and Geostatistics (Vol. 14, pp. 35–44). Springer.
  • Caers, J., Scheidt, C., Yin, Z., Wang, L., Mukerji, T., & House, K. (2022). Efficacy of information in mineral exploration drilling. Natural Resources Research, 31, 1157–1173. https://doi. org/10.1007/s11053-022-10002-8
  • Chilès, J. P., & Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty. John Wiley & Sons.
  • Clark, I. (1979). Practical geostatistics. Applied Science Publishers.
  • Clark, I., & Harper, W. V. (2000). Practical geostatistics. Ecosse North America.
  • David, M. (1977). Geostatistical ore reserve estimation. Elsevier.
  • Deutsch, C. V. (2002). Geostatistical reservoir modeling. Oxford University Press.
  • Deutsch, C. V., & Journel, A. G. (1997). GSLIB: Geostatistical software library and user’s guide (2nd ed.). Oxford University Press.
  • Diehl, P., & David, M. (1982). Classification of ore reserves/resources based on geostatistical methods. CIM Bulletin, 75(838).
  • Dimitrakopoulos, R. (2011). Stochastic optimization for strategic mine planning: A decade of developments. Journal of Mining Science, 47(2), 138–150. https://doi.org/10.1134/ S1062739111020039
  • Dirkx, R., & Dimitrakopoulos, R. (2017). Optimizing infill drilling decisions using multi-armed bandits: Application in a long-term, multi- element stockpile. Mathematical Geosciences, 50, 35–52. https://doi.org/10.1007/s11004-017-9691-y
  • Dohm, C. (2004). Quantifiable mineral resource classification: A logical approach. In Leuangthong, O., & Deutsch, C. V. (Eds.), Geostatistics Banff 2004 (pp. 333–342). Springer.
  • Dowd, P. A., (1997). Risk in minerals projects: Analysis, perception and management. Transactions of the Institution of Mining and Metallurgy, Section A: Minerals Industry, 106, A9–A18.
  • Drumond, D. A., Amarante, F. A. N., Koppe, V. C., & Costa, J. (2019). A chart for judging optimal sample spacing for ore grade estimation. Part II. Natural Resources Research, 29, 551–560. https://doi.org/10.1007/s11053-019-09457-9
  • Eidsvik, J., & Ellefmo, S. L. (2013). The value of information in mineral exploration within a multi-Gaussian framework. Mathematical Geosciences, 45(7), 777–798. https://doi. org/10.1007/s11004-013-9482-7
  • Eidsvik, J., Mukerji, T., & Bhattacharjya, D. (2015). Value of information in the Earth sciences: Integrating spatial modeling and decision analysis. Cambridge University Press.
  • Emery, X., & Séguret, S. A. (2020). Geostatistics for the mining industry: Applications to porphyry copper deposits. CRC Press.
  • Englund, E. J., & Heravi, N. (1993). Conditional simulation: Practical application for sampling design optimization. In Soares, A. (Ed.), Proceedings of the Fourth International Geostatistics Congress (Vol. 2, pp. 613–624). Kluwer Academic.
  • Fatehi, M., Asadi Haroni, H., & Hossein Morshedy, A. (2017). Designing infill directional drilling in mineral exploration by using particle swarm optimization algorithm. Arabian Journal of Geosciences, 10, 487. https://doi.org/10.1007/ s12517-017-3212-3
  • Froyland, G., Menabde, M., Stone, P., & Hodson, D. (2018). The value of additional drilling to open pit mining projects. In Dimitrakopoulos, R. (Ed.), Advances in applied strategic mine planning (pp. 119–138). Springer.
  • Haining, R. P. (2003). Spatial data analysis: Theory and practice. Cambridge University Press.
  • Harding, B. E. (2021). Drillhole spacing determination with value of information. Retrieved from https://era.library.ualberta.ca/items/fa0321f4- a91b-4202-bf92-a58fdd53842a
  • Harding, B., & Deutsch, C. V. (2022). Drillhole spacing determination with value of information. CIM Journal, 13(1), 38–51.
  • Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. Academic Press.
  • Koppe, V. C., Rubio, R. H., & Costa, J. F. C. L. (2017). A chart for judging optimal sample spacing for ore grade estimation. Natural Resources Research, 26(2), 191–199.
  • Özkan, Y. Z. (2023). Maden arama projelerinin optimizasyonu. Mayeb Basın Yayın İnsan Kaynakları Ltd. Şti.
  • Rivoirard, J. (1994). Introduction to disjunctive kriging and non-linear geostatistics. Clarendon Press.
  • Rossi, M. E., & Deutsch, C. V. (2014). Mineral resource estimation. Springer.
  • Soltani-Mohammadi, S., & Hezarkhani, A. (2013). A simulated annealing-based algorithm to locate additional drillholes for maximizing the realistic value of information. Natural Resources Research, 22(3), 229–237.
  • Soltani-Mohammadi, S., Hezarkhani, A., & Tercan, E. (2012). Optimally locating additional drill holes in three dimensions using grade and simulated annealing. Journal Geological Society of India, 80, 700–706.
  • Soltani, S., Hezarkhani, A., Tercan, E., & Karimi, B. (2011). Use of genetic algorithm in optimally locating additional drillholes. Journal of Mining Science, 47(1), 62–72.
  • Soltani-Mohammadi, S., Safa, M., & Mokhtari, H. (2016). Comparison of particle swarm optimization and simulated annealing for locating additional boreholes considering combined variance minimization. Computers & Geosciences, 95, 146–155.
  • Usero, G., Misk, S., & Saldanha, A. (2019). An approach for drilling pattern simulation. In Mining Goes Digital: Proceedings of the 39th International Symposium on Application of Computers and Operations Research in the Mineral Industry (pp. 59–66). CRC Press.
  • Vargas, A. M. (2017). Optimizing grade-control drill hole spacing with conditional simulation. Minería y Geología, 33(1), 1–12.
  • Wang, J., Zhang, T., & Fu, B. (2016). A measure of spatial stratified heterogeneity. Ecological Indicators, 67, 250–256. https://doi. org/10.1016/j.ecolind.2016.02.052
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

Yusuf Ziya Özkan 0009-0005-1722-9228

Yayımlanma Tarihi 24 Aralık 2024
Gönderilme Tarihi 17 Ekim 2024
Kabul Tarihi 6 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 48 Sayı: 2

Kaynak Göster

APA Özkan, Y. Z. (2024). Maden Kaynak Belirleme Sondaj Programlarının Optimizasyonu. Jeoloji Mühendisliği Dergisi, 48(2), 203-228. https://doi.org/10.24232/jmd.1568824