Çift eksenli basınç yükleri altında auxetic çekirdek katmanlı akıllı sandviç plakanın mekanik özelliklerinin incelenmesi
Yıl 2025,
Cilt: 6 Sayı: 1, 103 - 120, 19.06.2025
Mustafa Buğday
Öz
Bu çalışma, auxetic çekirdek katmanlı akıllı sandviç plakaları modellemek için yüksek dereceli paylaşım deformasyon teorisini kullanır ve mekanik özelliklerini inceler. Akıllı plakanın dış katmanları elektro-elastik BaTiO3 (Baryum Titanat) ve manyetostriktif CoFe2O4 (Kobalt Ferrit) malzemelerinden oluşur. auxetic çekirdek katmanı, değişken auxetic hücre parametrelerine sahip metalik bir malzemeden (Nikel) oluşur. auxetic çekirdek hücresinin üç temel parametrik karakteristiği modellenmiştir: duvar kalınlığı parametresi, uzunluk parametresi ve eğim açısı. Hareket denklemleri Hamilton ilkesinden türetilmiş ve Navier yöntemi kullanılarak çözülmüştür. Bu çalışmanın bulguları, yüksek sıcaklık ortamlarında çalışması amaçlanan akıllı elektromekanik sistemlerin optimum tasarımını kolaylaştıracaktır.
Kaynakça
-
Abdelmola F., Carlsson L. A., State of water in void-free and void-containing epoxy specimens. Journal of Reinforced Plastics and Composites 38(12), 556-566, 2019. https://doi.org/10.1177/0731684419833469
-
Aboudi J., Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Materials and Structures 10(5), 867-877, 2001 https://doi.org/10.1088/0964-1726/10/5/303
-
Aktaş K. G., Güvenç M. A., Numerical and Analytical Free Vibration Analysis of Composite Plate with Auxetic Core Layer and Functionally Graded Surface Layers. ASREL 2024. https://doi.org/10.56753/ASREL.2024.2.6
-
Bagheri R., Ayatollahi M., Mousavi S., Stress analysis of a functionally graded magneto-electro-elastic strip with multiple moving cracks. Mathematics and Mechanics of Solids 22(3), 304-323, 2017. https://doi.org/10.1177/1081286515591303
-
Ersoy H., Mercan K., Civalek Ö., Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods. Composite Structures 183, 7-20, 2018. https://doi.org/10.1016/j.compstruct.2016.11.051
-
Esen I., Abdelrhmaan A. A., Eltaher M. A., Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields. Engineering with Computers 38(4), 3463-3482, 2022. https://doi.org/10.1007/s00366-021-01389-5
-
Esen I., Özmen R., Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates. Mechanics Based Design of Structures and Machines 52(3), 1505-1542, 2024. https://doi.org/10.1080/15397734.2022.2152045
-
Gao Y., Chen X., Finite element analysis study of parameters influencing the Poisson’s ratio of auxetic woven fabrics. Textile Research Journal 94(7-8), 886-905, 2024. https://doi.org/10.1177/00405175231221598
-
Kamrul H., Zulifqar A., Yang Y., Zhao S., Zhang M., Hu H., Geometrical analysis of auxetic woven fabrics based on foldable geometry. Textile Research Journal 92(3-4), 317-329, 2022. https://doi.org/10.1177/00405175211008663
-
Kiani Y., Eslami M. R., An exact solution for thermal buckling of annular FGM plates on an elastic medium. Composites Part B: Engineering 45(1), 101-110, 2013. https://doi.org/10.1016/j.compositesb.2012.09.034
-
Koç M. A., Esen İ., Eroğlu M., Thermal and Mechanical Vibration Response of Auxetic Core Sandwich Smart Nanoplate. Advanced Engineering Materials 26(20), 2024. https://doi.org/10.1002/adem.202400797
-
Li F., Yuan W., Zhang C., Free vibration and sound insulation of functionally graded honeycomb sandwich plates. Journal of Sandwich Structures Materials 24(1), 565-600, 2022a. https://doi.org/10.1177/10996362211020440
-
Li F., Yuan W., Zhang C., Free vibration and sound insulation of functionally graded honeycomb sandwich plates. Journal of Sandwich Structures Materials 24(1), 565-600, 2022b. https://doi.org/10.1177/10996362211020440
-
Ma L., Li J., Abdelmoula R., Wu L. Z., Mode III crack problem in a functionally graded magneto-electro-elastic strip. International Journal of Solids and Structures, 44(17), 5518-5537, 2007. https://doi.org/10.1016/j.ijsolstr.2007.01.012
-
Mahesh V., Kattimani S., Finite element simulation of controlled frequency response of skew multiphase magneto-electro-elastic plates. Journal of Intelligent Material Systems and Structures 30(12), 1757-1771, 2019. https://doi.org/10.1177/1045389X19843674
-
Mahesh V., Mahesh V., Harursampath D., Abouelregal A. E., Simulation-based assessment of coupled frequency response of magneto-electro-elastic auxetic multifunctional structures subjected to various electromagnetic circuits. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 236(11), 2281-2296, 2022. https://doi.org/10.1177/14644207211021933
-
Miehe C., Vallicotti D., Variational Structural and Material Stability Analysis in Finite Electro‐Magneto‐Mechanics of Active Materials. PAMM 15(1), 7-10, 2015. https://doi.org/10.1002/pamm.201510003
-
Moshtagh E., Eskandari-Ghadi M., Pan E., Time-harmonic dislocations in a multilayered transversely isotropic magneto-electro-elastic half-space. Journal of Intelligent Material Systems and Structures 30(13), 1932-1950, 2019. https://doi.org/10.1177/1045389X19849286
-
Nouraei M., Zamani V., Civalek Ö., Vibration of smart sandwich plate with an auxetic core and dual-FG nanocomposite layers integrated with piezoceramic actuators. Composite Structures 315, 117014, 2023. https://doi.org/10.1016/j.compstruct.2023.117014
-
Pan E., Han F., Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science 43(3-4), 321-339, 2005. https://doi.org/10.1016/j.ijengsci.2004.09.006
-
Park W. T., Han S. C., Buckling analysis of nano-scale magneto-electro-elastic plates using the nonlocal elasticity theory. Advances in Mechanical Engineering 10(8), 168781401879333, 2018. https://doi.org/10.1177/1687814018793335
-
Peliński K., Smardzewski J., Narojczyk J., Stiffness of Synclastic Wood‐Based Auxetic Sandwich Panels. Physica Status Solidi (b) 257(10), 2020. https://doi.org/10.1002/pssb.201900749
-
Rayneau-Kirkhope D., Stiff auxetics: Hierarchy as a route to stiff, strong lattice based auxetic meta-materials. Scientific Reports 8(1), 12437, 2018. https://doi.org/10.1038/s41598-018-30822-x
-
Shukla S., Behera B. K., Comparative analysis of Poisson’s ratio of <scp>2D</scp> woven constructions and their composites produced from different auxetic geometries. Polymer Composites 44(3), 1636-1647, 2023. https://doi.org/10.1002/pc.27193
-
Tocci Monaco G., Fantuzzi N., Fabbrocino F., Luciano R., Critical Temperatures for Vibrations and Buckling of Magneto-Electro-Elastic Nonlocal Strain Gradient Plates. Nanomaterials 11(1), 87, 2021. https://doi.org/10.3390/nano11010087
-
Tornabene F., Viola E., Free vibration analysis of functionally graded panels and shells of revolution. Meccanica 44(3), 255-281, 2009. https://doi.org/10.1007/s11012-008-9167-x
-
Wang Y. Z., Kuna M., General solutions of mechanical‐electric‐magnetic fields in magneto‐electro‐elastic solid containing a moving anti‐plane crack and a screw dislocation. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik 95(7), 703-713, 2015. https://doi.org/10.1002/zamm.201300279
-
Wright J. R., Burns M. K., James E., Sloan M. R., Evans K. E., On the design and characterisation of low-stiffness auxetic yarns and fabrics. Textile Research Journal 82(7), 645-654, 2012. https://doi.org/10.1177/0040517512436824
-
Wu B., Zhang C., Chen W., Zhang C., Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates. Smart Materials and Structures 24(9), 095017, 2015. https://doi.org/10.1088/0964-1726/24/9/095017
-
Xu W., Sun Y., Lin H., Wei C., Ma P., Xia F., Preparation of soft composite reinforced with auxetic warp-knitted spacer fabric for stab resistance. Textile Research Journal 90(3-4), 323-332, 2020. https://doi.org/10.1177/0040517519866938
-
Yıldız T., Esen I., On the effect of the Casimir, van der Waals and electrostatic forces on the thermomechanical buckling of sandwich smart piezo magnetic nanosensor/switch plates. Microsystem Technologies, 2024 https://doi.org/10.1007/s00542-024-05813-w
-
Yuan W. X., Dawe D. J., Free vibration of sandwich plates with laminated faces. International Journal for Numerical Methods in Engineering 54(2), 195-217, 2002. https://doi.org/10.1002/nme.411
-
Zhang D. G., Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica 49(2), 283-293, 2014. https://doi.org/10.1007/s11012-013-9793-9
-
Zhou L., Li M., Meng G., Zhao H., An effective cell-based smoothed finite element model for the transient responses of magneto-electro-elastic structures. Journal of Intelligent Material Systems and Structures 29(14), 3006-3022, 2018. https://doi.org/10.1177/1045389X18781258
-
Zulifqar A., Hu H., Geometrical analysis of bi-stretch auxetic woven fabric based on re-entrant hexagonal geometry. Textile Research Journal 89(21-22), 4476-4490, 2019. https://doi.org/10.1177/0040517519836936
Investigation of mechanical properties of auxetic core layered smart sandwich plate under biaxial compression loads
Yıl 2025,
Cilt: 6 Sayı: 1, 103 - 120, 19.06.2025
Mustafa Buğday
Öz
This study uses high-order sharing deformation theory to model auxetic core layer smart sandwich plates and examines their mechanical properties. The outer layers of the smart plate consist of electro-elastic BaTiO3 (Barium Titanate) and magnetostrictive CoFe2O4 (Cobalt Ferrite) materials. The auxetic core layer consists of a metallic material (Nickel) with varying auxetic cell parameters. Three fundamental parametric characteristics of the auxetic core cell are modeled: wall thickness parameter, length parameter, and inclination angle. The equations of motion are derived from Hamilton's principle and resolved using the Navier method. The findings of this study will facilitate the optimal design of smart electromechanical systems intended for operation in high-temperature environments.
Teşekkür
I am truly grateful to Prof. Dr. İsmail ESEN for his generous support, thoughtful guidance, and meaningful contributions throughout this study. His encouragement and insightful feedback made a real difference and helped shape this work into its final form.
Kaynakça
-
Abdelmola F., Carlsson L. A., State of water in void-free and void-containing epoxy specimens. Journal of Reinforced Plastics and Composites 38(12), 556-566, 2019. https://doi.org/10.1177/0731684419833469
-
Aboudi J., Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Materials and Structures 10(5), 867-877, 2001 https://doi.org/10.1088/0964-1726/10/5/303
-
Aktaş K. G., Güvenç M. A., Numerical and Analytical Free Vibration Analysis of Composite Plate with Auxetic Core Layer and Functionally Graded Surface Layers. ASREL 2024. https://doi.org/10.56753/ASREL.2024.2.6
-
Bagheri R., Ayatollahi M., Mousavi S., Stress analysis of a functionally graded magneto-electro-elastic strip with multiple moving cracks. Mathematics and Mechanics of Solids 22(3), 304-323, 2017. https://doi.org/10.1177/1081286515591303
-
Ersoy H., Mercan K., Civalek Ö., Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods. Composite Structures 183, 7-20, 2018. https://doi.org/10.1016/j.compstruct.2016.11.051
-
Esen I., Abdelrhmaan A. A., Eltaher M. A., Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields. Engineering with Computers 38(4), 3463-3482, 2022. https://doi.org/10.1007/s00366-021-01389-5
-
Esen I., Özmen R., Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates. Mechanics Based Design of Structures and Machines 52(3), 1505-1542, 2024. https://doi.org/10.1080/15397734.2022.2152045
-
Gao Y., Chen X., Finite element analysis study of parameters influencing the Poisson’s ratio of auxetic woven fabrics. Textile Research Journal 94(7-8), 886-905, 2024. https://doi.org/10.1177/00405175231221598
-
Kamrul H., Zulifqar A., Yang Y., Zhao S., Zhang M., Hu H., Geometrical analysis of auxetic woven fabrics based on foldable geometry. Textile Research Journal 92(3-4), 317-329, 2022. https://doi.org/10.1177/00405175211008663
-
Kiani Y., Eslami M. R., An exact solution for thermal buckling of annular FGM plates on an elastic medium. Composites Part B: Engineering 45(1), 101-110, 2013. https://doi.org/10.1016/j.compositesb.2012.09.034
-
Koç M. A., Esen İ., Eroğlu M., Thermal and Mechanical Vibration Response of Auxetic Core Sandwich Smart Nanoplate. Advanced Engineering Materials 26(20), 2024. https://doi.org/10.1002/adem.202400797
-
Li F., Yuan W., Zhang C., Free vibration and sound insulation of functionally graded honeycomb sandwich plates. Journal of Sandwich Structures Materials 24(1), 565-600, 2022a. https://doi.org/10.1177/10996362211020440
-
Li F., Yuan W., Zhang C., Free vibration and sound insulation of functionally graded honeycomb sandwich plates. Journal of Sandwich Structures Materials 24(1), 565-600, 2022b. https://doi.org/10.1177/10996362211020440
-
Ma L., Li J., Abdelmoula R., Wu L. Z., Mode III crack problem in a functionally graded magneto-electro-elastic strip. International Journal of Solids and Structures, 44(17), 5518-5537, 2007. https://doi.org/10.1016/j.ijsolstr.2007.01.012
-
Mahesh V., Kattimani S., Finite element simulation of controlled frequency response of skew multiphase magneto-electro-elastic plates. Journal of Intelligent Material Systems and Structures 30(12), 1757-1771, 2019. https://doi.org/10.1177/1045389X19843674
-
Mahesh V., Mahesh V., Harursampath D., Abouelregal A. E., Simulation-based assessment of coupled frequency response of magneto-electro-elastic auxetic multifunctional structures subjected to various electromagnetic circuits. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 236(11), 2281-2296, 2022. https://doi.org/10.1177/14644207211021933
-
Miehe C., Vallicotti D., Variational Structural and Material Stability Analysis in Finite Electro‐Magneto‐Mechanics of Active Materials. PAMM 15(1), 7-10, 2015. https://doi.org/10.1002/pamm.201510003
-
Moshtagh E., Eskandari-Ghadi M., Pan E., Time-harmonic dislocations in a multilayered transversely isotropic magneto-electro-elastic half-space. Journal of Intelligent Material Systems and Structures 30(13), 1932-1950, 2019. https://doi.org/10.1177/1045389X19849286
-
Nouraei M., Zamani V., Civalek Ö., Vibration of smart sandwich plate with an auxetic core and dual-FG nanocomposite layers integrated with piezoceramic actuators. Composite Structures 315, 117014, 2023. https://doi.org/10.1016/j.compstruct.2023.117014
-
Pan E., Han F., Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science 43(3-4), 321-339, 2005. https://doi.org/10.1016/j.ijengsci.2004.09.006
-
Park W. T., Han S. C., Buckling analysis of nano-scale magneto-electro-elastic plates using the nonlocal elasticity theory. Advances in Mechanical Engineering 10(8), 168781401879333, 2018. https://doi.org/10.1177/1687814018793335
-
Peliński K., Smardzewski J., Narojczyk J., Stiffness of Synclastic Wood‐Based Auxetic Sandwich Panels. Physica Status Solidi (b) 257(10), 2020. https://doi.org/10.1002/pssb.201900749
-
Rayneau-Kirkhope D., Stiff auxetics: Hierarchy as a route to stiff, strong lattice based auxetic meta-materials. Scientific Reports 8(1), 12437, 2018. https://doi.org/10.1038/s41598-018-30822-x
-
Shukla S., Behera B. K., Comparative analysis of Poisson’s ratio of <scp>2D</scp> woven constructions and their composites produced from different auxetic geometries. Polymer Composites 44(3), 1636-1647, 2023. https://doi.org/10.1002/pc.27193
-
Tocci Monaco G., Fantuzzi N., Fabbrocino F., Luciano R., Critical Temperatures for Vibrations and Buckling of Magneto-Electro-Elastic Nonlocal Strain Gradient Plates. Nanomaterials 11(1), 87, 2021. https://doi.org/10.3390/nano11010087
-
Tornabene F., Viola E., Free vibration analysis of functionally graded panels and shells of revolution. Meccanica 44(3), 255-281, 2009. https://doi.org/10.1007/s11012-008-9167-x
-
Wang Y. Z., Kuna M., General solutions of mechanical‐electric‐magnetic fields in magneto‐electro‐elastic solid containing a moving anti‐plane crack and a screw dislocation. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik 95(7), 703-713, 2015. https://doi.org/10.1002/zamm.201300279
-
Wright J. R., Burns M. K., James E., Sloan M. R., Evans K. E., On the design and characterisation of low-stiffness auxetic yarns and fabrics. Textile Research Journal 82(7), 645-654, 2012. https://doi.org/10.1177/0040517512436824
-
Wu B., Zhang C., Chen W., Zhang C., Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates. Smart Materials and Structures 24(9), 095017, 2015. https://doi.org/10.1088/0964-1726/24/9/095017
-
Xu W., Sun Y., Lin H., Wei C., Ma P., Xia F., Preparation of soft composite reinforced with auxetic warp-knitted spacer fabric for stab resistance. Textile Research Journal 90(3-4), 323-332, 2020. https://doi.org/10.1177/0040517519866938
-
Yıldız T., Esen I., On the effect of the Casimir, van der Waals and electrostatic forces on the thermomechanical buckling of sandwich smart piezo magnetic nanosensor/switch plates. Microsystem Technologies, 2024 https://doi.org/10.1007/s00542-024-05813-w
-
Yuan W. X., Dawe D. J., Free vibration of sandwich plates with laminated faces. International Journal for Numerical Methods in Engineering 54(2), 195-217, 2002. https://doi.org/10.1002/nme.411
-
Zhang D. G., Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica 49(2), 283-293, 2014. https://doi.org/10.1007/s11012-013-9793-9
-
Zhou L., Li M., Meng G., Zhao H., An effective cell-based smoothed finite element model for the transient responses of magneto-electro-elastic structures. Journal of Intelligent Material Systems and Structures 29(14), 3006-3022, 2018. https://doi.org/10.1177/1045389X18781258
-
Zulifqar A., Hu H., Geometrical analysis of bi-stretch auxetic woven fabric based on re-entrant hexagonal geometry. Textile Research Journal 89(21-22), 4476-4490, 2019. https://doi.org/10.1177/0040517519836936