Araştırma Makalesi
BibTex RIS Kaynak Göster

Thermomechanical buckling behavior of FGM sandwich nanoplate with honeycomb core based on NSGT

Yıl 2025, Cilt: 6 Sayı: 1, 83 - 102, 19.06.2025
https://doi.org/10.55546/jmm.1610751

Öz

This study investigates the nondimensional buckling behavior of a functionally graded material (FGM) sandwich nanoplate. The analysis consider variations in material gradation parameter, length ratio, thickness ratio, incline angle, nonlocal parameter and size parameter. Higher-order shear deformation theory (HSDT), Nonlocal strain gradient theory (NSGT), Hamilton's principle, and the Navier solution with simply supported boundary conditions are employed to derive and solve the governing equations of motion. The effects of nonlocal elasticity, strain gradient elasticity, dimension change of the core layer on the thermomechanical buckling behavior of the sandwich nanoplate have been examined in a broad framework. It is observed that the thickness ratio and incline angle in the core layer are effective on the thermomechanical buckling behavior of the sandwich nanoplate whereas length ratio change has a neglectable results. Material gradation parameter changes buckling behavior significantly. The research provides critical conclusions for the design of FG nanoplates in advanced thermal and mechanical applications, emphasizing the adjustability of buckling behavior via material and structural modifications.

Kaynakça

  • Abuteir B. W., Boutagouga D., Free-vibration response of functionally graded porous shell structures in thermal environments with temperature-dependent material properties. Acta Mechanica 233(11), 4877-4901, 2022.
  • Akgöz B., Civalek Ö., Shear deformation beam models for functionally graded microbeams with new shear correction factors. Composite Structures 112, 214-225, 2014.
  • Al-Waily M., Raad H., Njim E. K., Free Vibration Analysis of Sandwich Plate-Reinforced Foam Core Adopting Micro Aluminum Powder. Physics and Chemistry of Solid State 23(4), 659-668, 2022.
  • Arani A. G., Jalaei M. H., Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory. Physica B: Condensed Matter 506, 94-104, 2017.
  • Arslan K., Gunes R., Experimental Damage Evaluation of Honeycomb Sandwich Structures With Al/B4c FGM Face Plates Under High Velocity Impact Loads. Composite Structures 202, 304-312, 2018.
  • Boudjemai A., Bouanane M. H., Mankour A., Salem H., Hocine R., Amri R., Thermo-mechanical design of honeycomb panel with fully-potted inserts used for spacecraft design. 2013 6th International Conference on Recent Advances in Space Technologies (RAST), 39–46, Istanbul, Turkey: IEEE, 2013.
  • Chen X., Zhao J. L., She G. L., Jing Y., Luo J., Pu H. Y., On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment. European Physical Journal Plus 137(10), 2022.
  • Dang X. H., Nguyen V. L., Tran M. T., Tran B. D., Nguyen V. L., Nonlinear Dynamic Analysis of Auxetic-FGM Sandwich Plates Resting on a Kerr Elastic Substrate Under Blast Loading. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 238(14), 6831-6846, 2024.
  • Gibson L. J., Cellular Solids. MRS Bulletin 28(4), 270-274, 2003.
  • Kiani Y., Eslami M. R., An exact solution for thermal buckling of annular FGM plates on an elastic medium. Composites Part B: Engineering 45(1), 101-110, 2013.
  • Kitipornchai S., Yang J., Liew K. M., Random vibration of the functionally graded laminates in thermal environments. Computer Methods in Applied Mechanics and Engineering 195(9-12), 1075-1095, 2006.
  • Lim C. W., Zhang G., Reddy J. N., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids 78, 298-313, 2015.
  • Lin C., Nicaise S. M., Lilley D. E., Cortes J., Jiao P., Singh J., Bargatin I., Nanocardboard as a nanoscale analog of hollow sandwich plates. Nature Communications 9(1), 4442, 2018.
  • Markworth A. J., Ramesh K. S., Parks W. P., Modelling studies applied to functionally graded materials. Journal of Materials Science 30(9), 2183-2193, 1995.
  • Ozalp A. F., Esen I., Magnetic field effects on the thermomechanical vibration behavior of functionally graded biocompatible material sandwich nanobeams. Mechanics of Advanced Materials and Structures 32(3), 459-477, 2024.
  • Ozalp A. F., Esen I., Thermal buckling response of foam core smart sandwich nanoplates with electro-elastic and magneto-strictive layers. Acta Mechanica 236, 469-497, 2025.
  • Qi C., Jiang F., Yang S., Remennikov A., Chen S., Ding C., Dynamic Crushing Response of Novel Re-Entrant Circular Auxetic Honeycombs: Numerical Simulation and Theoretical Analysis. Aerospace Science and Technology 124, 107548, 2022.
  • Reddy J. N., A Simple Higher-Order Theory for Laminated Composite Plates. Journal of Applied Mechanics 51(4), 745-752, 1984.
  • Reddy J. N., Chin C. D., THERMOMECHANICAL ANALYSIS OF FUNCTIONALLY GRADED CYLINDERS AND PLATES. Journal of Thermal Stresses 21(6), 593-626, 1998.
  • Shimpi R. P., Refined Plate Theory and Its Variants. AIAA Journal 40(1), 137-146, 2002.
  • Thai H. T., Choi D. H., A refined plate theory for functionally graded plates resting on elastic foundation. Composites Science and Technology 71(16), 1850-1858, 2011.
  • Thai H. T., Choi D. H., A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation. Composites Part B: Engineering 43(5), 2335-2347, 2012.
  • Thai H. T., Park T., Choi D. H., An efficient shear deformation theory for vibration of functionally graded plates. Archive of Applied Mechanics 83(1), 137-149, 2012.
  • Touloukian Y., Thermophysical properties of high temperature solid materials, Volume 3: Ferrous alloys. Macmillan: New York, 1967.
  • Van Lieu P., Zenkour A. M., Luu G. T., Static bending and buckling of FG sandwich nanobeams with auxetic honeycomb core. European Journal of Mechanics-A/Solids 103, 105181, 2024.
  • Wang Z. W., Zhang Q., Xia L. Z., Wu J. T., Liu P. Q., Thermomechanical Analysis of Pressure Vessels with Functionally Graded Material Coating. Journal of Pressure Vessel Technology 138(1), 011205, 2016.
  • Yang J., Liew K. M., Kitipornchai S., Stochastic analysis of compositionally graded plates with system randomness under static loading. International Journal of Mechanical Sciences 47(10), 1519-1541, 2005.
  • Yin H., Huang X., Scarpa F., Wen G., Chen Y., Zhang C., In-Plane Crashworthiness of Bio-Inspired Hierarchical Honeycombs. Composite Structures 192, 516-527, 2018.

Bal peteği çekirdekli FGM sandviç nanoplakanın NSGT kullanılarak termomekanik burkulma davranışı

Yıl 2025, Cilt: 6 Sayı: 1, 83 - 102, 19.06.2025
https://doi.org/10.55546/jmm.1610751

Öz

Bu çalışmada fonksiyonel derecelendirilmiş malzeme (FGM) sandviç nanoplakanın boyutsuz burkulma davranışı araştırılmıştır. Analizde malzeme derecelendirme parametresi, uzunluk oranı, kalınlık oranı, eğim açısı, yerel olmayan parametre ve boyut parametresindeki değişimler göz önünde bulundurulmuştur. Yüksek mertebeden kesme deformasyon teorisi (HSDT), Yerel olmayan gerinim gradyanı teorisi (NSGT), Hamilton prensibi ve basit destekli sınır koşullarına sahip Navier çözümü, hareketin yönetici denklemlerini türetmek ve çözmek için kullanılmıştır. Yerel olmayan elastikiyet, gerinim gradyanı elastikiyeti ve çekirdek tabakasının boyut değişiminin sandviç nanoplakanın termomekanik burkulma davranışı üzerindeki etkileri geniş bir çerçevede incelenmiştir. Çekirdek tabakasındaki kalınlık oranı ve eğim açısının sandviç nanoplakanın termomekanik burkulma davranışı üzerinde etkili olduğu, buna karşın uzunluk oranı değişiminin ihmal edilebilir sonuçlara sahip olduğu görülmüştür. Malzeme derecelendirme parametresi burkulma davranışını önemli ölçüde değiştirmektedir. Araştırma, ileri termal ve mekanik uygulamalarda FG nanoplakaların tasarımı için kritik sonuçlar sunmakta olup, malzeme ve yapısal modifikasyonlar yoluyla burkulma davranışının ayarlanabilirliğini vurgulamaktadır.

Kaynakça

  • Abuteir B. W., Boutagouga D., Free-vibration response of functionally graded porous shell structures in thermal environments with temperature-dependent material properties. Acta Mechanica 233(11), 4877-4901, 2022.
  • Akgöz B., Civalek Ö., Shear deformation beam models for functionally graded microbeams with new shear correction factors. Composite Structures 112, 214-225, 2014.
  • Al-Waily M., Raad H., Njim E. K., Free Vibration Analysis of Sandwich Plate-Reinforced Foam Core Adopting Micro Aluminum Powder. Physics and Chemistry of Solid State 23(4), 659-668, 2022.
  • Arani A. G., Jalaei M. H., Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory. Physica B: Condensed Matter 506, 94-104, 2017.
  • Arslan K., Gunes R., Experimental Damage Evaluation of Honeycomb Sandwich Structures With Al/B4c FGM Face Plates Under High Velocity Impact Loads. Composite Structures 202, 304-312, 2018.
  • Boudjemai A., Bouanane M. H., Mankour A., Salem H., Hocine R., Amri R., Thermo-mechanical design of honeycomb panel with fully-potted inserts used for spacecraft design. 2013 6th International Conference on Recent Advances in Space Technologies (RAST), 39–46, Istanbul, Turkey: IEEE, 2013.
  • Chen X., Zhao J. L., She G. L., Jing Y., Luo J., Pu H. Y., On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment. European Physical Journal Plus 137(10), 2022.
  • Dang X. H., Nguyen V. L., Tran M. T., Tran B. D., Nguyen V. L., Nonlinear Dynamic Analysis of Auxetic-FGM Sandwich Plates Resting on a Kerr Elastic Substrate Under Blast Loading. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 238(14), 6831-6846, 2024.
  • Gibson L. J., Cellular Solids. MRS Bulletin 28(4), 270-274, 2003.
  • Kiani Y., Eslami M. R., An exact solution for thermal buckling of annular FGM plates on an elastic medium. Composites Part B: Engineering 45(1), 101-110, 2013.
  • Kitipornchai S., Yang J., Liew K. M., Random vibration of the functionally graded laminates in thermal environments. Computer Methods in Applied Mechanics and Engineering 195(9-12), 1075-1095, 2006.
  • Lim C. W., Zhang G., Reddy J. N., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids 78, 298-313, 2015.
  • Lin C., Nicaise S. M., Lilley D. E., Cortes J., Jiao P., Singh J., Bargatin I., Nanocardboard as a nanoscale analog of hollow sandwich plates. Nature Communications 9(1), 4442, 2018.
  • Markworth A. J., Ramesh K. S., Parks W. P., Modelling studies applied to functionally graded materials. Journal of Materials Science 30(9), 2183-2193, 1995.
  • Ozalp A. F., Esen I., Magnetic field effects on the thermomechanical vibration behavior of functionally graded biocompatible material sandwich nanobeams. Mechanics of Advanced Materials and Structures 32(3), 459-477, 2024.
  • Ozalp A. F., Esen I., Thermal buckling response of foam core smart sandwich nanoplates with electro-elastic and magneto-strictive layers. Acta Mechanica 236, 469-497, 2025.
  • Qi C., Jiang F., Yang S., Remennikov A., Chen S., Ding C., Dynamic Crushing Response of Novel Re-Entrant Circular Auxetic Honeycombs: Numerical Simulation and Theoretical Analysis. Aerospace Science and Technology 124, 107548, 2022.
  • Reddy J. N., A Simple Higher-Order Theory for Laminated Composite Plates. Journal of Applied Mechanics 51(4), 745-752, 1984.
  • Reddy J. N., Chin C. D., THERMOMECHANICAL ANALYSIS OF FUNCTIONALLY GRADED CYLINDERS AND PLATES. Journal of Thermal Stresses 21(6), 593-626, 1998.
  • Shimpi R. P., Refined Plate Theory and Its Variants. AIAA Journal 40(1), 137-146, 2002.
  • Thai H. T., Choi D. H., A refined plate theory for functionally graded plates resting on elastic foundation. Composites Science and Technology 71(16), 1850-1858, 2011.
  • Thai H. T., Choi D. H., A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation. Composites Part B: Engineering 43(5), 2335-2347, 2012.
  • Thai H. T., Park T., Choi D. H., An efficient shear deformation theory for vibration of functionally graded plates. Archive of Applied Mechanics 83(1), 137-149, 2012.
  • Touloukian Y., Thermophysical properties of high temperature solid materials, Volume 3: Ferrous alloys. Macmillan: New York, 1967.
  • Van Lieu P., Zenkour A. M., Luu G. T., Static bending and buckling of FG sandwich nanobeams with auxetic honeycomb core. European Journal of Mechanics-A/Solids 103, 105181, 2024.
  • Wang Z. W., Zhang Q., Xia L. Z., Wu J. T., Liu P. Q., Thermomechanical Analysis of Pressure Vessels with Functionally Graded Material Coating. Journal of Pressure Vessel Technology 138(1), 011205, 2016.
  • Yang J., Liew K. M., Kitipornchai S., Stochastic analysis of compositionally graded plates with system randomness under static loading. International Journal of Mechanical Sciences 47(10), 1519-1541, 2005.
  • Yin H., Huang X., Scarpa F., Wen G., Chen Y., Zhang C., In-Plane Crashworthiness of Bio-Inspired Hierarchical Honeycombs. Composite Structures 192, 516-527, 2018.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Katı Mekanik, Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makalesi
Yazarlar

Adem Fatih Özalp 0000-0001-8873-4663

Gönderilme Tarihi 31 Aralık 2024
Kabul Tarihi 27 Şubat 2025
Erken Görünüm Tarihi 15 Haziran 2025
Yayımlanma Tarihi 19 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Özalp, A. F. (2025). Thermomechanical buckling behavior of FGM sandwich nanoplate with honeycomb core based on NSGT. Journal of Materials and Mechatronics: A, 6(1), 83-102. https://doi.org/10.55546/jmm.1610751
AMA Özalp AF. Thermomechanical buckling behavior of FGM sandwich nanoplate with honeycomb core based on NSGT. J. Mater. Mechat. A. Haziran 2025;6(1):83-102. doi:10.55546/jmm.1610751
Chicago Özalp, Adem Fatih. “Thermomechanical buckling behavior of FGM sandwich nanoplate with honeycomb core based on NSGT”. Journal of Materials and Mechatronics: A 6, sy. 1 (Haziran 2025): 83-102. https://doi.org/10.55546/jmm.1610751.
EndNote Özalp AF (01 Haziran 2025) Thermomechanical buckling behavior of FGM sandwich nanoplate with honeycomb core based on NSGT. Journal of Materials and Mechatronics: A 6 1 83–102.
IEEE A. F. Özalp, “Thermomechanical buckling behavior of FGM sandwich nanoplate with honeycomb core based on NSGT”, J. Mater. Mechat. A, c. 6, sy. 1, ss. 83–102, 2025, doi: 10.55546/jmm.1610751.
ISNAD Özalp, Adem Fatih. “Thermomechanical buckling behavior of FGM sandwich nanoplate with honeycomb core based on NSGT”. Journal of Materials and Mechatronics: A 6/1 (Haziran2025), 83-102. https://doi.org/10.55546/jmm.1610751.
JAMA Özalp AF. Thermomechanical buckling behavior of FGM sandwich nanoplate with honeycomb core based on NSGT. J. Mater. Mechat. A. 2025;6:83–102.
MLA Özalp, Adem Fatih. “Thermomechanical buckling behavior of FGM sandwich nanoplate with honeycomb core based on NSGT”. Journal of Materials and Mechatronics: A, c. 6, sy. 1, 2025, ss. 83-102, doi:10.55546/jmm.1610751.
Vancouver Özalp AF. Thermomechanical buckling behavior of FGM sandwich nanoplate with honeycomb core based on NSGT. J. Mater. Mechat. A. 2025;6(1):83-102.