Araştırma Makalesi
BibTex RIS Kaynak Göster

MATEMATİKTE YARATICILIK

Yıl 2018, Cilt: 3 Sayı: 5, 309 - 314, 10.01.2019
https://doi.org/10.26809/joa.2018548641

Öz

Bu çalışmanın amacı matematiksel yaratıcılığı tartışmak ve matematik ve yaratıcılık arasındaki ilişkiyi ortaya koymaktır.

Kaynakça

  • S. Dündar, Matematiksel Yaratıcılığa Yönelik Matematik Öğretmen Adaylarının Görüşlerinin İncelenmesi, OMÜ Eğt. Fak. Derg. / OMU J. Fac. Educ. 2015, 34(1), 18-34.
  • Aydoğdu, N. & Yüksel, Ġ. (2013). The relationship between prospective mathematics teachers‟ beliefs and attitudes towards history of mathematics and their creativeness level. Journal of Research in Education and Teaching, 2(4), 186-194.
  • Bessis, P. & Japui, B. (1973). Yaratıcılık nedir? (S. Gürbaşkan, Trans.). İstanbul: Reklam Ofset Tesisleri.
  • Birgin, O. & Baki, A. (2012). An investigation of the purposes of the measurement and assessment practice of primary school teachers within the context of the new mathematics curriculum. Education and Science, 37(165), 152-167.
  • Büyüköztürk, ġ., Kılıç-Çakmak, E., Akgün, Ö. E., Karadeniz, ġ. & Demirel, F. (2014). Bilimsel araştırma yöntemi, Ankara: Pegem Akademi.
  • Chamberlin, S. A. & Moon, S. M. (2005). Model-eliciting activities as a tool to develop and identify creatively gifted mathematicians. Prufrock Journal, 17(1), 37-47.
  • Chiu, M. S. (2009). Approaches to the teaching of creative and non-creative mathematical problems. International Journal of Science and Mathematics Education, 7(1), 55-79.
  • Ervynck, G. (1991). Mathematical creativity advanced mathematical thinking (pp. 42-53), Springer.
  • Fraenkel, J.R., Wallen, N.E. & Huy, H.H. (2011). How to Design and Evaluate Research in Education (Eighth Edition). Mc Graw Hill Companies: New York.
  • Haylock, D. W. (1987). A framework for assessing mathematical creativity in school chilren. Educational Studies in Mathematics, 18(1), 59-74.
  • Haylock, D. (1997). Recognizing mathematical creativity in school children. International Reviews on Mathematical Education, 29(3), 68-74.
  • Johnson, B. & Christensen, L., (2014). Educational research: Quantitative, Qualitative, and mixed approaches (Çev. Ed. Selçuk BeĢir Demir), Ankara: Eğiten Kitap.
  • Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., & Christou, C. (2012). Connecting mathematical creativity to mathematical ability, 45(2), 167-181.
  • Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61.
  • Laycock, M. (1970). Creative mathematics at Nueva. The Arithmetic Teacher, 325-328.
  • Lee, K. S., Hwang, D.-j., & Seo, J. J. (2003). A development of the test for mathematical creative problem solving ability. Journal of the Korea Society of Mathematical Education Series: Research in Mathematical Education, 7(3), 163-189.
  • Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. Creativity in mathematics and the education of gifted students, 129-145.
  • Leikin, R. (2012). Creativity in teaching mathematics as an indication of teachers‟expertise. Paper presented at the 36th Conference of the International Group for the Psychology of Mathematics Education.
  • Leikin, R. (2013). Evaluating mathematical creativity: The interplay between multiplicity and insight. Psychological Test and Assessment Modeling, 55(4), 385-400.
  • Leikin, R., Berman, A., & Koichu, B. (2010). Creativity in mathematics and the education of gifted students. Rotterdam: Sense Publishers.
  • Leikin, R., & Lev, M. (2012). Mathematical creativity in generally gifted and mathematically excelling adolescents: what makes the difference? Zdm, 45(2), 183-197.

CREATIVITY IN MATHEMATICS

Yıl 2018, Cilt: 3 Sayı: 5, 309 - 314, 10.01.2019
https://doi.org/10.26809/joa.2018548641

Öz

The aim of this study is to discuss mathematical creativity and to reveal the relationship between mathematics and creativity.

Kaynakça

  • S. Dündar, Matematiksel Yaratıcılığa Yönelik Matematik Öğretmen Adaylarının Görüşlerinin İncelenmesi, OMÜ Eğt. Fak. Derg. / OMU J. Fac. Educ. 2015, 34(1), 18-34.
  • Aydoğdu, N. & Yüksel, Ġ. (2013). The relationship between prospective mathematics teachers‟ beliefs and attitudes towards history of mathematics and their creativeness level. Journal of Research in Education and Teaching, 2(4), 186-194.
  • Bessis, P. & Japui, B. (1973). Yaratıcılık nedir? (S. Gürbaşkan, Trans.). İstanbul: Reklam Ofset Tesisleri.
  • Birgin, O. & Baki, A. (2012). An investigation of the purposes of the measurement and assessment practice of primary school teachers within the context of the new mathematics curriculum. Education and Science, 37(165), 152-167.
  • Büyüköztürk, ġ., Kılıç-Çakmak, E., Akgün, Ö. E., Karadeniz, ġ. & Demirel, F. (2014). Bilimsel araştırma yöntemi, Ankara: Pegem Akademi.
  • Chamberlin, S. A. & Moon, S. M. (2005). Model-eliciting activities as a tool to develop and identify creatively gifted mathematicians. Prufrock Journal, 17(1), 37-47.
  • Chiu, M. S. (2009). Approaches to the teaching of creative and non-creative mathematical problems. International Journal of Science and Mathematics Education, 7(1), 55-79.
  • Ervynck, G. (1991). Mathematical creativity advanced mathematical thinking (pp. 42-53), Springer.
  • Fraenkel, J.R., Wallen, N.E. & Huy, H.H. (2011). How to Design and Evaluate Research in Education (Eighth Edition). Mc Graw Hill Companies: New York.
  • Haylock, D. W. (1987). A framework for assessing mathematical creativity in school chilren. Educational Studies in Mathematics, 18(1), 59-74.
  • Haylock, D. (1997). Recognizing mathematical creativity in school children. International Reviews on Mathematical Education, 29(3), 68-74.
  • Johnson, B. & Christensen, L., (2014). Educational research: Quantitative, Qualitative, and mixed approaches (Çev. Ed. Selçuk BeĢir Demir), Ankara: Eğiten Kitap.
  • Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., & Christou, C. (2012). Connecting mathematical creativity to mathematical ability, 45(2), 167-181.
  • Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61.
  • Laycock, M. (1970). Creative mathematics at Nueva. The Arithmetic Teacher, 325-328.
  • Lee, K. S., Hwang, D.-j., & Seo, J. J. (2003). A development of the test for mathematical creative problem solving ability. Journal of the Korea Society of Mathematical Education Series: Research in Mathematical Education, 7(3), 163-189.
  • Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. Creativity in mathematics and the education of gifted students, 129-145.
  • Leikin, R. (2012). Creativity in teaching mathematics as an indication of teachers‟expertise. Paper presented at the 36th Conference of the International Group for the Psychology of Mathematics Education.
  • Leikin, R. (2013). Evaluating mathematical creativity: The interplay between multiplicity and insight. Psychological Test and Assessment Modeling, 55(4), 385-400.
  • Leikin, R., Berman, A., & Koichu, B. (2010). Creativity in mathematics and the education of gifted students. Rotterdam: Sense Publishers.
  • Leikin, R., & Lev, M. (2012). Mathematical creativity in generally gifted and mathematically excelling adolescents: what makes the difference? Zdm, 45(2), 183-197.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Ayhan Esi

Yayımlanma Tarihi 10 Ocak 2019
Yayımlandığı Sayı Yıl 2018 Cilt: 3 Sayı: 5

Kaynak Göster

APA Esi, A. (2019). MATEMATİKTE YARATICILIK. Journal of Awareness, 3(5), 309-314. https://doi.org/10.26809/joa.2018548641