Research Article
BibTex RIS Cite

Numerical and Experimental Analysis of Aerodynamic Performance in Next-Generation Unmanned Aerial Vehicles (UAVs)

Year 2025, Volume: 04, 43 - 55, 31.10.2025
https://doi.org/10.54709/joebs.1670623

Abstract

This study presents a comprehensive numerical and experimental analysis of the aerodynamic performance of next-generation fixed-wing Unmanned Aerial Vehicles (UAVs) to enhance design accuracy and operational efficiency. Using Computational Fluid Dynamics (CFD) simulations performed with ANSYS Fluent and Open FOAM, alongside experimental validations via wind tunnel testing and controlled flight trials, critical aerodynamic parameters such as lift, drag, pressure distribution, stability, and efficiency were investigated. The UAV prototype featured a 2.5 m wingspan, 0.4 m chord length, and a NACA 2412 airfoil.
CFD simulations utilized a pressure-based solver with the k-ω SST turbulence model and a 3.2 million-element hybrid mesh across a Reynolds number range of 1.2×10⁵–4.8×10⁵. Experimental tests were conducted at varying angles of attack (AoA) and airspeeds ranging from 10 to 40 m/s. Results revealed strong agreement between numerical and experimental data. Peak lift coefficients of 1.20 (CFD) and 1.18 (experimental) were observed at AoA = 15°, with corresponding drag coefficients of 0.09 and 0.095. Pressure coefficient distributions along the chord at AoA = 10° demonstrated near-identical profiles, confirming simulation reliability. Stall onset occurred at AoA = 20°, with flow separation initiating around 50% of the chord length.
Flight performance metrics showed a max range of 35 km (CFD) and 33.5 km (experimental), and glide ratios of 16 and 15.2, respectively. The study validates CFD as a robust predictive tool, bridging simulation and real-world performance, and offers a reliable methodology for optimizing UAV aerodynamic design for improved endurance, range, and overall flight efficiency.

References

  • Zhang, Z., Xie, C., Wang, W., & An, C. (2023). An Experimental and Numerical Evaluation of the Aerodynamic Performance of a UAV Propeller Considering Pitch Motion. Drones, 7(7), 447. https://doi.org/10.3390/drones7070447
  • Al-Khafaji, J. D., Panatov, G. S., & Boldyrev, A. S. (2023). Unmanned aerial vehiCLe aerodynamics performance optimization using variable sweep wing angle. Izvestiâ ÛFU, 3, 212–223. https://doi.org/10.18522/2311-3103-2023-3-212-223
  • Krishna, B. V., & Manoj, D. (2024). Advancements In UAV Wing Design: Aerodynamic Performance, Structural Integrity and Optimization Techniques. IOSR Journal of Mechanical and Civil Engineer-ing. 21(6); 34–37 https://doi.org/10.9790/1684-2106013437
  • Geydirici, E., Derman, K. C., & Cadirci, S. (2024). Aerodynamic Performance Evaluation of a Coaxi-al Octocopter Based on Taguchi Method, 146(10), Article No. 101204 https://doi.org/10.1115/1.4065229
  • Oladejo, K. L., Alabi, A. A., & Dambatta, Y. S. (2023). Aerodynamic Performance Analysis of an Optimized Aerofoil for Unmanned Aerial Vehi-CLes. https://doi.org/10.21203/rs.3.rs-3361965/v1
  • Muta’ali, A. B. A., Nasir, R. E. M., & Kuntjoro, W. (2024). Aerodynamic investigation by experi-mental and computational simulation of a flying wing unmanned aerial vehiCLe for cargo delivery and surveillance missions. Aviation, 28(4), 264–278. https://doi.org/10.3846/aviation.2024.22639
  • Gan, W., Wang, Y., Wang, H., & Zhuang, J. (2024). Aerodynamic Investigation on a Coaxial-Rotors Unmanned Aerial VehiCLe of Bionic Chinese Parasol Seed. Biomimetics, 9(7), 403. https://doi.org/10.3390/biomimetics9070403
  • Khan Martins, M. H., Islam, A., Arif, M. A., Moiz, A., Iqbal, S., Rasheed, S. M. M. H., & Abbas, H. (2024). Comparative Analysis of Tandem Wing Tube-Launched UAV Aerodynamics: Computa-tional Fluid Dynamics (CFD). 1–8. https://doi.org/10.1109/icodt262145.2024.10740235
  • Asral, K. A., & Soegihin, A. (2022). Aerodynamic Analysis of Unnamed Aerial VehiCLe Serindit V-2 Using Computational Fluid Dynamics. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 93(1), 83–93. https://doi.org/10.37934/arfmts.93.1.8393
  • Ünsal, H., & Düzgün, M. (2024). Modeling the aerodynamic performance of unmanned aerial vehiCLe (UAV) propellers with multifidelity method. International Journal of Automotive En-gineering and Technologies, 13(4), 153–169. https://doi.org/10.18245/ijaet.1485834
  • Santos, D. F., Rogers, J. V., de Rezende, A., & Maldonado, V. (2023). Exploring the Perfor-mance Boundaries of a Small Reconfigurable Multi-Mission UAV through Multidisciplinary Analysis. Aerospace. 10(8), 684-688. https://doi.org/10.3390/aerospace10080684
  • Moustafa, M. H., Khashwain, H. S., Dol, S. S., & Ramahi, A. A. (2024). Enhancing Aerodynamic Performance in UAV Design: CFD Analysis. https://doi.org/10.20944/preprints202409.0340.v1
  • Toman, U. T. (2024). High-fidelity aerodynamic and aerostructural optimization of UAV propellers. https://doi.org/10.31274/td-20240329-383
  • He, P., Koyuncuoglu, H., Dhulipalla, A., Hu, H. X. S., & Hu, H. (2023). High-fidelity aerodynamic and aerostructural optimization of UAV propel-lers using the adjoint method. AIAA SCITECH 2023 Forum. https://doi.org/10.2514/6.2023-0531
  • Wang, H., Zhang, C., & Chen, J. (2024). Effective Aerodynamics Modeling Based on Phys-ics-Informed Neural Network and Flight Data. 1–7. https://doi.org/10.1109/dasc62030.2024.10748687
  • Lee, H. M., Ryu, J. K., Ahn, S. J., & Kwon, O. J. (2014). Aerodynamic Design Optimization of Mul-ti-rotor UAV Rotor Blades Using a Genetic Algo-rithm in Hover. 362–366.
  • Wu, Y., Liu, D., Wang, T., & Zhao, A. (2023). Re-search of a novel aerodynamic evaluation method for fixed-wing UAV. 2633(1), 012001 https://doi.org/10.1088/1742-6596/2633/1/012001
  • Zhu, H., Jiang, Z., Hang, Z., Siyu, P., Li, H., & Lan, Y. (2021). Aerodynamic Performance of Propellers for Multirotor Unmanned Aerial Ve-hiCLes: Measurement, Analysis, and Experiment. Shock and Vibration, 2021, 1–11. https://doi.org/10.1155/2021/9538647
  • Pezzella, G. (2023). Aerodynamic analysis of a high-speed aircraft from hypersonic down to subsonic speeds. Materials Research Proceedings, 37, 230-233. https://doi.org/10.21741/9781644902813-50
  • Kalgutkar, S. V., & Devi, B. (2024). Aerodynamic Assessment of Flying Wing UAV and Impact of Dimples on its Performance. SSRG International Journal of Mechanical Engineering. 11(7), 109-115. https://doi.org/10.14445/23488360/ijme-v11i7p109
  • Pérez Gordillo, A. M., Escobar, J. A., Poroseva, S. V., & Lopez, O. D. (2023). Aerodynamic perfor-mance of a Quadcopter in Hover Flight with the Unsteady Vortex Lattice Method. AIAA Scitech 2023 Forum, Paper 2023-3756, pp. 1-13. https://doi.org/10.2514/6.2023-3756.
  • Prakash, R. A., Kumar, M. S., Vijayanandh, R., Kumar, K. N., Prathap, M., Aswanth, S., Ajithku-mar, A., & Jagadeeshwaran, P. (2022). Design and performance investigations on UAV’s conver-gent-divergent nozzle through validated computational aerodynamic simulation. NuCLeation and Atmospheric Aerosols. https://doi.org/10.1063/5.0108306
  • Pertiwi, F. D., & Wahjudi, A. (2022). Numerical Study of Blended Winglet Geometry Variations on Unmanned Aerial VehiCLe Aerodynamic Per-formance. JMES: The International Journal of Mechanical Engineering and Sciences, 6(1), 31. https://doi.org/10.12962/j25807471.v6i1.12317
  • Numerical Investigation of Aerodynamic Char-acteristics of Wing of Ichoku-18 Unmanned Aerial VehiCLe. (2022). https://doi.org/10.21203/rs.3.rs-1194453/v1
  • Kaynak, B., & Arabul, A. Y. (2023). Aerodynamic Efficiency and Performance Development in an Electric Powered Fixed Wing Unmanned Aerial VehiCLe. Electric Power Components and Sys-tems, 51, 724–732. https://doi.org/10.1080/15325008.2023.2187097
  • Si, P., Wu, M., Huo, Y., & Wu, Z. (2024). Investiga-tion on the transient aerodynamics of a tube-launched unmanned aerial vehiCLe with a span-extended wing. Journal of Physics, 2820(1), 012074. https://doi.org/10.1088/1742-6596/2820/1/012074
  • Aleisa, H., Kontis, K., & Nikbay, M. (2023). Nu-merical Investigations on Low-Speed Aerody-namic Characteristics of Generic Unmanned Combat Aerial VehiCLe Configurations. Journal of Aircraft, 1–11. https://doi.org/10.2514/1.c037258
  • Gao, X., & Wu, T. (2023). A novel aerodynamic layout design of composite wing unmanned aerial vehiCLe based on canard configuration. Applied and Computational Engineering. Article 20230085, pp. 1-15. https://doi.org/10.54254/2755-2721/9/20230085
  • Ugbane, S. I., Umeaku, C., Idoko, I. P., Enyejo, L. A., Michael, C. I., & Efe, F. (2024). Optimization of Quadcopter Propeller Aerodynamics Using Blade Element and Vortex Theory. International Journal of Innovative Science and Research Technology, 11(10), 1708-1756. https://doi.org/10.38124/ijisrt/ijisrt24oct1820
  • Patel, K. R., & Sivapragasam, M. (2023). Aero-dynamic Performance of an Unmanned Aerial VehiCLe Wing for Varied Wing Geometric Pa-rameters. Journal of Applied Science & Technol-ogy (JOAST), 75(3), 888-900.https://doi.org/10.61653/joast.v75i3.2023.888
  • Durmuş, S. (2023). Uçan Kanat Tipi İHA’larda Kanat Profillerinin Aerodinamik Performans Karşılaştırması. International Journal of Innova-tive Engineering Applications. 6(4), 150-157. https://doi.org/10.46460/ijiea.1169652
There are 31 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering, Machine Theory and Dynamics, Flight Dynamics
Journal Section Research Article
Authors

Dıckson Davıd Olodu 0000-0003-3383-2543

Osagie Imevbore Ihenyen 0000-0003-4499-7845

Andrew Erameh 0000-0002-6463-143X

Early Pub Date October 31, 2025
Publication Date October 31, 2025
Submission Date April 7, 2025
Acceptance Date October 13, 2025
Published in Issue Year 2025 Volume: 04

Cite

Vancouver Olodu DD, Ihenyen OI, Erameh A. Numerical and Experimental Analysis of Aerodynamic Performance in Next-Generation Unmanned Aerial Vehicles (UAVs). JOEBS. 2025;04:43-55.

     download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjY0YjkvZGMxZC80MzY5LzY4Njc5ODZkMjZmMzEucG5nIiwiZXhwIjoxNzU5MDQ4OTc4LCJub25jZSI6IjRiNjgxM2VkMjdlOGRlYzdjN2ZjM2E1OWYwMDMzOGM2In0.muS64PI-pzVj3uw574Iq70DPGP35CC848_IRD2XGN8Q            download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6ImJiMzYvZmU4NS9jMDMyLzY4OWM5MTkxYjk3ZTcucG5nIiwiZXhwIjoxNzU5MDQ5MDkxLCJub25jZSI6ImIxMjllNWRlMWNhNjYwNjBmMmEwZTk5ODNkY2I0MzkwIn0.DxiKu0Zpn-vPFgUBGsuiCr39WTnZPy8JTQbJWrG4Xs0             download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6ImQ2NjAvMjFjYS9kNTJkLzY4OWM4YWRmODhiMzcucG5nIiwiZXhwIjoxNzU5MDQ5Mjg5LCJub25jZSI6Ijk5NDNlOTRiN2NkY2ZlNDdjY2ViYjdmMjYwOWFhMmU4In0.FdEZrYIbOOKE9ViBoDcEp2PUU5HWJc6EgaKe2KfZqU0

Flag Counter

(CC BY-NC-SA 4.0). Deed | Attribution-NonCommercial-ShareAlike 4.0 International | Creative Commons