Araştırma Makalesi
BibTex RIS Kaynak Göster

Omurga Rehabilitasyonunda Fizyoterapistlerin Yapay Zekâ ve Teknoloji Kullanımı

Yıl 2026, Cilt: 6 Sayı: 1, 18 - 24, 29.01.2026

Öz

Amaç: Yapay zekâ (YZ), modern tıpta, özellikle fizyoterapi ve rehabilitasyonu alanlarında dönüştürücü bir teknoloji olarak dikkat çekmektedir. Bu çalışma, Türkiye genelindeki fizyoterapistlerin omurga rehabilitasyonun alanında YZ ve ileri teknolojilere dair bilgi, tutum ve kullanım düzeylerini değerlendirmeyi amaçlayan tanımlayıcı bir araştırmadır.
Yöntemler: Bu araştırmada veri toplama süreci, çevrimiçi anket yöntemi kullanılarak gerçekleştirilmiştir. Katılımcılar, araştırmacı tarafından oluşturulan ve Google Forms platformu üzerinden sunulan anket formunu yanıtlayarak veri sağlamıştır. Araştırmaya, kamu ve özel sağlık kuruluşlarında çalışan 88 fizyoterapist katılmıştır.
Bulgular: Klinik uygulamalarda ise egzersiz oyunları (%37,5) ve robotik cihazlar (%26,1) en yaygın kullanılan teknolojiler arasında yer almaktadır. YZ’nin gelecekte tedavi süreçlerine etkisi konusunda fizyoterapistler genel olarak olumlu bir yaklaşım sergilemiştir. Katılımcıların %54,5’i teknolojinin tedavi sürecine yardımcı olacağını, ancak asıl kararların insanlar tarafından verilmesi gerektiğini düşünmektedir. Tedaviye yönelik faydalar arasında zaman yönetiminin iyileştirilmesi (%75), hasta takibinin kolaylaştırılması (%64,8) ve kişiselleştirilmiş tedavi planlarının geliştirilmesi (%52,3) öne çıkmaktadır. Bununla birlikte, fizyoterapistler, teknolojinin bireysel hasta ihtiyaçlarına her zaman tam olarak uyum sağlayamayacağı konusunda dikkatli bir yaklaşım sergilemektedir.
Sonuç: YZ ve ileri teknolojiler, omurga rehabilitasyonunda önemli bir potansiyele sahip olsa da klinik uygulamalarda benimsenmesi sınırlıdır. Bu durum, fizyoterapistlerin teknolojik yeniliklere uyum sağlamasını ve bu alanda daha fazla eğitim ve farkındalık çalışmalarını gerekli kılmaktadır.

Kaynakça

  • [1] Akalın, B., & Demirbaş, M. B. (2022). Rehabilitasyon hizmetlerinde yapay zekâ uygulamaları. Acta Infologica, 6(2), 141–161. https://doi.org/10.26650/acin.1068576
  • [2] Alsobhi, M., Khan, F., Chevidikunnan, M. F., Basuodan, R., Shawli, L., & Neamatallah, Z. (2022). Physical therapists’ knowledge and attitudes regarding artificial intelligence applications in health care and rehabilitation: Cross-sectional study. Journal of Medical Internet Research, 24(10), e39565. https://doi.org/10.2196/39565
  • [3] Alsobhi, M., Sachdev, H. S., Chevidikunnan, M. F., Basuodan, R., KU, D. K., & Khan, F. (2022). Facilitators and barriers of artificial intelligence applications in rehabilitation: A mixed-method approach. International Journal of Environmental Research and Public Health, 19(23), 15919. https://doi.org/10.3390/ijerph192315919
  • [4] Bell, E., Harley, B., & Bryman, A. (2022). Business research methods. Oxford University Press.
  • [5] Bhardwaj, S., Khan, A. A., & Muzammil, M. (2021). Lower limb rehabilitation robotics: The current understanding and technology. Work, 69(3), 775–793. https://doi.org/10.3233/WOR-205012
  • [6] Bocanegra-Becerra, J. E., Ferreira, J. S. N., Simoni, G., Hong, A., Rios-Garcia, W., Eraghi, M. M., Castilla-Encinas, A. M., Colan, J. A., Rojas-Apaza, R., & Trevejo, E. E. F. P. (2025). Machine learning algorithms for neurosurgical preoperative planning: A scoping review. World Neurosurgery, 194, 123465. https://doi.org/10.1016/j.wneu.2024.11.048
  • [7] Brandes, G. I. G., D’Ippolito, G., Azzolini, A. G., & Meirelles, G. (2020). Impact of artificial intelligence on the choice of radiology as a specialty by medical students from the city of São Paulo. Radiologia Brasileira, 53, 167–170. https://doi.org/10.1590/0100-3984.2019.0101
  • [8] Davids, J., Lidströmer, N., & Ashrafian, H. (2022). Artificial intelligence for physiotherapy and rehabilitation. In Artificial Intelligence in Medicine (pp. 1789–1807). Springer Publishing.
  • [9] Low, X. Z., Furqan, M. S., Makmur, A., Lim, D. S. W., Liu, R. W., Lim, X., Chan, Y. H., Tan, J. H., Lau, L. L., & Hallinan, J. T. P. D. (2024). Automated Cobb angle measurement in scoliosis radiographs: A deep learning approach for screening. Annals of the Academy of Medicine, Singapore, 53(10), 635–637. https://doi.org/10.47102/annals-acadmedsg.2023300
  • [10] Lowe, S. W. (2024). The role of artificial intelligence in physical therapy education. Bulletin of Faculty of Physical Therapy, 29(1), 13. https://doi.org/10.1186/s43161-024-00177-8
  • [11] Luchmann, D., Jecklin, S., Cavalcanti, N. A., Laux, C. J., Massalimova, A., Esfandiari, H., Farshad, M., & Fürnstahl, P. (2024). Spinal navigation with AI-driven 3D-reconstruction of fluoroscopy images: An ex-vivo feasibility study. BMC Musculoskeletal Disorders, 25(1), 925. https://doi.org/10.1186/s12891-024-08052-2
  • [12] Malik, P., Pathania, M., & Rathaur, V. K. (2019). Overview of artificial intelligence in medicine. Journal of Family Medicine and Primary Care, 8(7), 2328–2331. https://doi.org/10.4103/jfmpc.jfmpc_440_19
  • [13] Mehta, N., Harish, V., Bilimoria, K., Morgado, F., Ginsburg, S., Law, M., & Das, S. (2021). Knowledge of and attitudes on artificial intelligence in healthcare: A provincial survey study of medical students. medRxiv. https://doi.org/10.1101/2021.01.14.21249830
  • [14] Mobbs, R. J. (2024). Artificial intelligence in spine care: A paradigm shift in diagnosis, surgery, and rehabilitation. Journal of Spine Surgery, 10(4), 775. https://doi.org/10.21037/jss-24-156
  • [15] Mousavi Baigi, S. F., Sarbaz, M., Ghaddaripouri, K., Ghaddaripouri, M., Mousavi, A. S., & Kimiafar, K. (2023). Attitudes, knowledge, and skills towards artificial intelligence among healthcare students: A systematic review. Health Science Reports, 6(3), e1138. https://doi.org/10.1002/hsr2.1138
  • [16] Raghunathan, K., Morris, M. E., Wani, T. A., Edvardsson, K., Peiris, C., Fowler-Davis, S., McKercher, J. P., Bourke, S., Danish, S., & Johnston, J. (2025). Using artificial intelligence to improve healthcare delivery in select allied health disciplines: A scoping review protocol. BMJ Open, 15(3), e098290. https://doi.org/10.1136/bmjopen-2024-098290
  • [17] Rouse, M., Spohrer J.C. (2017). AUTOMATING VERSUS AUGMENTING INTELLIGENCE. Journal of Enterprise Transformation.
  • [18] Tack, C. (2019). Artificial intelligence and machine learning applications in musculoskeletal physiotherapy. Musculoskeletal Science and Practice, 39, 164–169. https://doi.org/10.1016/j.msksp.2018.11.012
  • [19] Tarakçı, D. (2021). Rehabilitasyonda yapay zekâ. SD Platform. Retrieved June 3, 2021.
  • [20] Truong, N. M., Vo, T. Q., Tran, H. T. B., Nguyen, H. T., & Pham, V. N. H. (2023). Healthcare students’ knowledge, attitudes, and perspectives toward artificial intelligence in southern Vietnam. Heliyon, 9(12), e22653. https://doi.org/10.1016/j.heliyon.2023.e22653
  • [21] Veras, M., Dyer, J.-O., & Kairy, D. (2024). Artificial intelligence and digital divide in physiotherapy education. Cureus, 16(1), e52617. https://doi.org/10.7759/cureus.52617
  • [22] Verma, M. (2018). Artificial intelligence and its scope in different areas with special reference to the field of education. Online Submission, 3(1), 5–10.

Use of Artificial Intelligence and Technology by Physiotherapists in Spine Rehabilitation

Yıl 2026, Cilt: 6 Sayı: 1, 18 - 24, 29.01.2026

Öz

Aim: Artificial Intelligence (AI) has emerged as a transformative technology in modern medicine, particularly in the fields of physiotherapy and rehabilitation in spine rehabilitation. This descriptive study aims to evaluate the knowledge, attitudes, and usage levels of AI and advanced technologies among physiotherapists across Türkiye.
Methods: The data collection process was conducted using an online survey method. Participants provided data by responding to a questionnaire created by the researcher and administered via the Google Forms platform. The study included 88 physiotherapists working in public and private healthcare facilities.
Results: In clinical practice, exercise games (37.5%) and robotic devices (26.1%) were identified as the most commonly used technologies. Physiotherapists generally expressed a positive attitude toward the potential impact of AI on future treatment processes. A majority (54.5%) believe that technology will assist in treatment processes, but ultimate decisions should be made by humans. Key benefits of AI in treatment include improved time management (75%), enhanced patient monitoring (64.8%), and the development of personalized treatment plans (52.3%). However, physiotherapists remain cautious about the ability of technology to fully address individual patient needs.
Conclusions: While AI and advanced technologies hold significant potential in spine rehabilitation, their adoption in clinical practice remains limited. This highlights the need for physiotherapists to adapt to technological advancements and underscores the importance of further education and awareness initiatives in this area.

Kaynakça

  • [1] Akalın, B., & Demirbaş, M. B. (2022). Rehabilitasyon hizmetlerinde yapay zekâ uygulamaları. Acta Infologica, 6(2), 141–161. https://doi.org/10.26650/acin.1068576
  • [2] Alsobhi, M., Khan, F., Chevidikunnan, M. F., Basuodan, R., Shawli, L., & Neamatallah, Z. (2022). Physical therapists’ knowledge and attitudes regarding artificial intelligence applications in health care and rehabilitation: Cross-sectional study. Journal of Medical Internet Research, 24(10), e39565. https://doi.org/10.2196/39565
  • [3] Alsobhi, M., Sachdev, H. S., Chevidikunnan, M. F., Basuodan, R., KU, D. K., & Khan, F. (2022). Facilitators and barriers of artificial intelligence applications in rehabilitation: A mixed-method approach. International Journal of Environmental Research and Public Health, 19(23), 15919. https://doi.org/10.3390/ijerph192315919
  • [4] Bell, E., Harley, B., & Bryman, A. (2022). Business research methods. Oxford University Press.
  • [5] Bhardwaj, S., Khan, A. A., & Muzammil, M. (2021). Lower limb rehabilitation robotics: The current understanding and technology. Work, 69(3), 775–793. https://doi.org/10.3233/WOR-205012
  • [6] Bocanegra-Becerra, J. E., Ferreira, J. S. N., Simoni, G., Hong, A., Rios-Garcia, W., Eraghi, M. M., Castilla-Encinas, A. M., Colan, J. A., Rojas-Apaza, R., & Trevejo, E. E. F. P. (2025). Machine learning algorithms for neurosurgical preoperative planning: A scoping review. World Neurosurgery, 194, 123465. https://doi.org/10.1016/j.wneu.2024.11.048
  • [7] Brandes, G. I. G., D’Ippolito, G., Azzolini, A. G., & Meirelles, G. (2020). Impact of artificial intelligence on the choice of radiology as a specialty by medical students from the city of São Paulo. Radiologia Brasileira, 53, 167–170. https://doi.org/10.1590/0100-3984.2019.0101
  • [8] Davids, J., Lidströmer, N., & Ashrafian, H. (2022). Artificial intelligence for physiotherapy and rehabilitation. In Artificial Intelligence in Medicine (pp. 1789–1807). Springer Publishing.
  • [9] Low, X. Z., Furqan, M. S., Makmur, A., Lim, D. S. W., Liu, R. W., Lim, X., Chan, Y. H., Tan, J. H., Lau, L. L., & Hallinan, J. T. P. D. (2024). Automated Cobb angle measurement in scoliosis radiographs: A deep learning approach for screening. Annals of the Academy of Medicine, Singapore, 53(10), 635–637. https://doi.org/10.47102/annals-acadmedsg.2023300
  • [10] Lowe, S. W. (2024). The role of artificial intelligence in physical therapy education. Bulletin of Faculty of Physical Therapy, 29(1), 13. https://doi.org/10.1186/s43161-024-00177-8
  • [11] Luchmann, D., Jecklin, S., Cavalcanti, N. A., Laux, C. J., Massalimova, A., Esfandiari, H., Farshad, M., & Fürnstahl, P. (2024). Spinal navigation with AI-driven 3D-reconstruction of fluoroscopy images: An ex-vivo feasibility study. BMC Musculoskeletal Disorders, 25(1), 925. https://doi.org/10.1186/s12891-024-08052-2
  • [12] Malik, P., Pathania, M., & Rathaur, V. K. (2019). Overview of artificial intelligence in medicine. Journal of Family Medicine and Primary Care, 8(7), 2328–2331. https://doi.org/10.4103/jfmpc.jfmpc_440_19
  • [13] Mehta, N., Harish, V., Bilimoria, K., Morgado, F., Ginsburg, S., Law, M., & Das, S. (2021). Knowledge of and attitudes on artificial intelligence in healthcare: A provincial survey study of medical students. medRxiv. https://doi.org/10.1101/2021.01.14.21249830
  • [14] Mobbs, R. J. (2024). Artificial intelligence in spine care: A paradigm shift in diagnosis, surgery, and rehabilitation. Journal of Spine Surgery, 10(4), 775. https://doi.org/10.21037/jss-24-156
  • [15] Mousavi Baigi, S. F., Sarbaz, M., Ghaddaripouri, K., Ghaddaripouri, M., Mousavi, A. S., & Kimiafar, K. (2023). Attitudes, knowledge, and skills towards artificial intelligence among healthcare students: A systematic review. Health Science Reports, 6(3), e1138. https://doi.org/10.1002/hsr2.1138
  • [16] Raghunathan, K., Morris, M. E., Wani, T. A., Edvardsson, K., Peiris, C., Fowler-Davis, S., McKercher, J. P., Bourke, S., Danish, S., & Johnston, J. (2025). Using artificial intelligence to improve healthcare delivery in select allied health disciplines: A scoping review protocol. BMJ Open, 15(3), e098290. https://doi.org/10.1136/bmjopen-2024-098290
  • [17] Rouse, M., Spohrer J.C. (2017). AUTOMATING VERSUS AUGMENTING INTELLIGENCE. Journal of Enterprise Transformation.
  • [18] Tack, C. (2019). Artificial intelligence and machine learning applications in musculoskeletal physiotherapy. Musculoskeletal Science and Practice, 39, 164–169. https://doi.org/10.1016/j.msksp.2018.11.012
  • [19] Tarakçı, D. (2021). Rehabilitasyonda yapay zekâ. SD Platform. Retrieved June 3, 2021.
  • [20] Truong, N. M., Vo, T. Q., Tran, H. T. B., Nguyen, H. T., & Pham, V. N. H. (2023). Healthcare students’ knowledge, attitudes, and perspectives toward artificial intelligence in southern Vietnam. Heliyon, 9(12), e22653. https://doi.org/10.1016/j.heliyon.2023.e22653
  • [21] Veras, M., Dyer, J.-O., & Kairy, D. (2024). Artificial intelligence and digital divide in physiotherapy education. Cureus, 16(1), e52617. https://doi.org/10.7759/cureus.52617
  • [22] Verma, M. (2018). Artificial intelligence and its scope in different areas with special reference to the field of education. Online Submission, 3(1), 5–10.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Halk Sağlığı (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Aleyna Karahan 0009-0000-2059-2101

Büşra Duran 0009-0003-7067-4473

Eray Yüceel 0009-0004-3464-4266

Yağmur Deniz Erol 0009-0008-1928-9082

Leila Abdolalizadeh Khaselouei 0009-0008-4771-9166

Gönül Acar 0000-0002-6964-6614

Burcu Ersöz Hüseyinsinoğlu 0000-0002-4694-4440

Tuğba Kuru Çolak 0000-0002-3263-2278

Gönderilme Tarihi 14 Mayıs 2025
Kabul Tarihi 6 Ekim 2025
Yayımlanma Tarihi 29 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 6 Sayı: 1

Kaynak Göster

APA Karahan, A., Duran, B., Yüceel, E., Erol, Y. D., Abdolalizadeh Khaselouei, L., Acar, G., Ersöz Hüseyinsinoğlu, B., & Kuru Çolak, T. (2026). Omurga Rehabilitasyonunda Fizyoterapistlerin Yapay Zekâ ve Teknoloji Kullanımı. Journal of Health Sciences and Management, 6(1), 18-24. https://izlik.org/JA33GG59UK