Araştırma Makalesi
BibTex RIS Kaynak Göster

Tüketici Geri Bildirimleri Üzerinden Tatil Havayolu Pazarını Araştırma: Kullanıcı Yorumları Üzerine Bir Duygu Analizi

Yıl 2025, Cilt: 15 Sayı: 3, 544 - 558, 28.09.2025

Öz

Yüksek rekabet, küreselleşme ve farklı kullanıcı beklentileri gibi değişkenlere sahip havayolu pazarı, tüketicileri anlamayı ve geri bildirimlerini değerlendirmeyi gerekli kılmaktadır. Tatil havayolu pazarının kendine özgü özelliklerine uygun olarak bu çalışma, pazarı kullanıcı yorumları aracılığıyla incelemeyi amaçlamaktadır. Çalışmada Skytrax (Airlinequality.com) web sitesinde 10 havayolu şirketine ait 3571 kullanıcı değerlendirmesi örneklem olarak alınmış ve değerlendirmelerde yer alan duyguları incelemek için uygulanan duygu analizi yönteminde 3489 kullanıcı değerlendirmesi kullanılmıştır. Tanımlayıcı analiz aşamasında çalışmada, tatil havayolları için kullanıcı yorumlarında genel olarak olumsuz derecelendirme puanlarının baskın olduğu ve havayolu şirketleri arasında derecelendirme puanı kutuplaşmasında farklılıklar olduğu sonucuna varılmıştır. Çalışmanın duygu analizi aşamasında, kullanıcı yorumlarında nötr duygu (%24,7), iğrenme duygusu (%21,3) ve üzüntü duygusu (%14,9) başlıca duygular olarak bulunmuştur. Kullanıcı yorumlarında yer alan duygular sırasıyla sürpriz duygusu (%11,5), korku duygusu (%10,9), neşe duygusu (%9,9) ve öfke (%6,7) duygusu olarak sıralanmıştır. Çalışma, kullanıcı yorumları aracılığıyla pazar içgörüleri konusunda sektördeki karar vericilere yol gösterebilecek bir tatil havayolu pazarının incelemesini sunmaktadır.

Kaynakça

  • Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of online consumer reviews: Readers' objectives and review cues. International journal of electronic commerce, 17(2), 99-126.
  • Ban, H. J., & Kim, H. S. (2019). Understanding customer experience and satisfaction through airline passengers’ online review. Sustainability, 11(15), 4066.
  • Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31-40.
  • Chang, Y. C., Ku, C. H., & Le Nguyen, D. D. (2022). Predicting aspect-based sentiment using deep learning and information visualization: The impact of COVID-19 on the airline industry. Information & Management, 59(2), 103587.
  • Çallı, L., & Çallı, F. (2023). Understanding airline passengers during covid-19 outbreak to improve service quality: topic modeling approach to complaints with latent dirichlet allocation algorithm. Transportation research record, 2677(4), 656-673.
  • Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers) (pp. 4171-4186).
  • Farzadnia, S., & Vanani, I. R. (2022). Identification of opinion trends using sentiment analysis of airlines passengers’ reviews. Journal of Air Transport Management, 103, 102232.
  • Fink, L., Rosenfeld, L., & Ravid, G. (2018). Longer online reviews are not necessarily better. International Journal of Information Management, 39, 30-37.
  • Giatsoglou, M., Vozalis, M. G., Diamantaras, K., Vakali, A., Sarigiannidis, G., & Chatzisavvas, K. C. (2017). Sentiment analysis leveraging emotions and word embeddings. Expert Systems With Applications, 69, 214-224.
  • Gitto, S., & Mancuso, P. (2017). Improving airport services using sentiment analysis of the websites. Tourism Management Perspectives, 22, 132-136.
  • Ghadiridehkordi, A., Shao, J., Boojihawon, R., Wang, Q., & Li, H. (2025). Leveraging sentiment analysis via text mining to improve customer satisfaction in UK banks. International Journal of Bank Marketing, 43(4), 780-802.
  • Google. (2025). Google colab. (2025, June) https://colab.research.google.com/ Hartmann, J. (2022). Emotion english DistilRoBERTa-base. Hugging face. (2025, June 5) https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/
  • Hasib, K. M., Naseem, U., Keya, A. J., Maitra, S., Mithu, K., & Alam, M. G. R. (2024). Systematic literature review on sentiment analysis in airline industry. SN Computer Science, 6(1), 37.
  • Higgins, L. (2022). Classification of airline customer sentiment expressed in twitter tweets using lexicons, decision tree and naïve bayes. Unpublished PhD Thesis, National College of Ireland, Ireland
  • Hu, N., Zhang, T., Gao, B., & Bose, I. (2019). What do hotel customers complain about? Text analysis using structural topic model. Tourism Management, 72, 417-426.
  • IATA. (2024). Industry statistics. (2025, June) https://www.iata.org/en/iata-repository/pressroom/fact- sheets/industry-statistics/
  • Idris, S. L., & Mohamad, M. (2024, September). Temporal Shifts in Customer Sentiment: Analysing Airasia Pre-And Post-Pandemic Reviews. In 2024 5th International conference on artificial ıntelligence and data sciences (AiDAS) (pp. 327-331). IEEE.
  • Koroteev, M. V. (2021). BERT: a review of applications in natural language processing and understanding. arXiv preprint arXiv:2103.11943.

Investigating The Leisure Airline Market Through Consumer Feedback: A Sentiment Analysis On User Reviews

Yıl 2025, Cilt: 15 Sayı: 3, 544 - 558, 28.09.2025

Öz

The airline market, characterized by high competition, globalization, and diverse user expectations, necessitates understanding consumers and evaluating their feedback. In line with the unique characteristics of the leisure airline market, this study aims to examine the market through user reviews. A sample of 3,571 user reviews of 10 airlines on the Skytrax (Airlinequality.com) website was used for this study, and sentiment analysis was applied to examine the sentiments expressed in these reviews, utilizing 3,489 user reviews. The descriptive analysis concluded that user reviews for leisure airlines were generally dominated by negative ratings, with rating polarization differing among airlines. During the sentiment analysis phase of the study, the primary emotions found in user reviews were neutral (24.7%), disgust (21.3%), and sadness (14.9%). The feelings expressed in these reviews were surprise (11.5%), fear (10.9%), joy (9.9%), and anger (6.7%). The study provides an examination of the leisure airline market that can guide industry decision-makers in market insights through user reviews.

Kaynakça

  • Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of online consumer reviews: Readers' objectives and review cues. International journal of electronic commerce, 17(2), 99-126.
  • Ban, H. J., & Kim, H. S. (2019). Understanding customer experience and satisfaction through airline passengers’ online review. Sustainability, 11(15), 4066.
  • Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31-40.
  • Chang, Y. C., Ku, C. H., & Le Nguyen, D. D. (2022). Predicting aspect-based sentiment using deep learning and information visualization: The impact of COVID-19 on the airline industry. Information & Management, 59(2), 103587.
  • Çallı, L., & Çallı, F. (2023). Understanding airline passengers during covid-19 outbreak to improve service quality: topic modeling approach to complaints with latent dirichlet allocation algorithm. Transportation research record, 2677(4), 656-673.
  • Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers) (pp. 4171-4186).
  • Farzadnia, S., & Vanani, I. R. (2022). Identification of opinion trends using sentiment analysis of airlines passengers’ reviews. Journal of Air Transport Management, 103, 102232.
  • Fink, L., Rosenfeld, L., & Ravid, G. (2018). Longer online reviews are not necessarily better. International Journal of Information Management, 39, 30-37.
  • Giatsoglou, M., Vozalis, M. G., Diamantaras, K., Vakali, A., Sarigiannidis, G., & Chatzisavvas, K. C. (2017). Sentiment analysis leveraging emotions and word embeddings. Expert Systems With Applications, 69, 214-224.
  • Gitto, S., & Mancuso, P. (2017). Improving airport services using sentiment analysis of the websites. Tourism Management Perspectives, 22, 132-136.
  • Ghadiridehkordi, A., Shao, J., Boojihawon, R., Wang, Q., & Li, H. (2025). Leveraging sentiment analysis via text mining to improve customer satisfaction in UK banks. International Journal of Bank Marketing, 43(4), 780-802.
  • Google. (2025). Google colab. (2025, June) https://colab.research.google.com/ Hartmann, J. (2022). Emotion english DistilRoBERTa-base. Hugging face. (2025, June 5) https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/
  • Hasib, K. M., Naseem, U., Keya, A. J., Maitra, S., Mithu, K., & Alam, M. G. R. (2024). Systematic literature review on sentiment analysis in airline industry. SN Computer Science, 6(1), 37.
  • Higgins, L. (2022). Classification of airline customer sentiment expressed in twitter tweets using lexicons, decision tree and naïve bayes. Unpublished PhD Thesis, National College of Ireland, Ireland
  • Hu, N., Zhang, T., Gao, B., & Bose, I. (2019). What do hotel customers complain about? Text analysis using structural topic model. Tourism Management, 72, 417-426.
  • IATA. (2024). Industry statistics. (2025, June) https://www.iata.org/en/iata-repository/pressroom/fact- sheets/industry-statistics/
  • Idris, S. L., & Mohamad, M. (2024, September). Temporal Shifts in Customer Sentiment: Analysing Airasia Pre-And Post-Pandemic Reviews. In 2024 5th International conference on artificial ıntelligence and data sciences (AiDAS) (pp. 327-331). IEEE.
  • Koroteev, M. V. (2021). BERT: a review of applications in natural language processing and understanding. arXiv preprint arXiv:2103.11943.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Turizm (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Fatih Pınarbaşı 0000-0001-9005-0324

Gönderilme Tarihi 5 Ağustos 2025
Kabul Tarihi 17 Ağustos 2025
Yayımlanma Tarihi 28 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Pınarbaşı, F. (2025). Investigating The Leisure Airline Market Through Consumer Feedback: A Sentiment Analysis On User Reviews. Journal of Humanities and Tourism Research, 15(3), 544-558.