Araştırma Makalesi
BibTex RIS Kaynak Göster

Big Data AI System for Air Quality Prediction

Yıl 2021, Cilt: 4 Sayı: 2, 5 - 10, 31.12.2021

Öz

Air Quality has been a research field for many investigators from varied disciplines in respect to global heating, climate change, health effect theories and others. Predicting air quality status is becoming more complex with time due to different air gases and other components. This paper aims at presenting machine learning models and techniques to predict air quality levels in cities providing accuracy measures to support data driven decision making in various sectors aligned with sustainable development, economic growth and social values. The research supports air quality policies formulation with a forward looking to eliminate global related consequences, save the world from the dangerous earth pollution and to close the gap in air quality index standardization with emphasis on cities sustainable development.

Kaynakça

  • Rybarczyk, Y. and Zalakeviciute, R. (2018) ‘Machine learning Approaches for outdoor air quality modelling: A systematic review’, Applied Sciences. MDPI AG, 8(12), p. 2570. doi: 10.3390/app8122570.
  • Alkasassbeh, M et al. (2013) ‘Prediction of PM10 and TSP Air Pollution Parameters Using Artificial Neural Network Autoregressive, External Input Models: A Case Study in Salt, Jordan’, Middle-East Journal of Scientific Research, 14(7), pp. 999–1009. doi: 10.5829/idosi.mejsr.2013.14.7.2171.
  • Zhang, J., & Ding, W. (2017). Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong. International Journal of Environmental Research and Public Health, 14(2), 114. https://doi.org/10.3390/ijerph14020114
  • Rao, P. (2014) A survey on Air Quality forecasting Techniques. Available at: www.ijcsit.com (Accessed: 1 February 2020).
  • Gao, J. (2018) ‘Air Quality Prediction: Big Data and Machine Learning Approaches’. doi: 10.18178/ijesd.2018.9.1.1066.
  • Chapman, L. (2007). Transport and climate change: a review. Journal of Transport Geography, 15(5), 354–367. https://doi.org/10.1016/j.jtrangeo.2006.11.008
  • Grivas, G. and Chaloulakou, A. (2006) ‘Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece’, Atmospheric Environment. Pergamon, 40(7), pp. 1216–1229. doi: 10.1016/j.atmosenv.2005.10.036.
  • Zheng, Y., Yi, X., Li, M., Li, R., Shan, Z., Chang, E., & Li, T. (2015). Forecasting Fine-Grained Air Quality Based on Big Data. https://doi.org/10.1145/2783258.2788573
  • dos.gov.jo (Accessing date: 21 July 2021)
  • https://www.londonair.org.uk/LondonAir/Default.aspx
  • Zhou, Y., Chang, F. J., Chang, L. C., Kao, I. F., & Wang, Y. S. (2019). Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. Journal of Cleaner Production, 209, 134–145. https://doi.org/10.1016/j.jclepro.2018.10.243
  • Baldasano, J. M., Valera, E., & Jiménez, P. (2003). Air quality data from large cities. Science of the Total Environment, 307(1–3), 141–165. https://doi.org/10.1016/S0048-9697(02)00537-5.
Yıl 2021, Cilt: 4 Sayı: 2, 5 - 10, 31.12.2021

Öz

Kaynakça

  • Rybarczyk, Y. and Zalakeviciute, R. (2018) ‘Machine learning Approaches for outdoor air quality modelling: A systematic review’, Applied Sciences. MDPI AG, 8(12), p. 2570. doi: 10.3390/app8122570.
  • Alkasassbeh, M et al. (2013) ‘Prediction of PM10 and TSP Air Pollution Parameters Using Artificial Neural Network Autoregressive, External Input Models: A Case Study in Salt, Jordan’, Middle-East Journal of Scientific Research, 14(7), pp. 999–1009. doi: 10.5829/idosi.mejsr.2013.14.7.2171.
  • Zhang, J., & Ding, W. (2017). Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong. International Journal of Environmental Research and Public Health, 14(2), 114. https://doi.org/10.3390/ijerph14020114
  • Rao, P. (2014) A survey on Air Quality forecasting Techniques. Available at: www.ijcsit.com (Accessed: 1 February 2020).
  • Gao, J. (2018) ‘Air Quality Prediction: Big Data and Machine Learning Approaches’. doi: 10.18178/ijesd.2018.9.1.1066.
  • Chapman, L. (2007). Transport and climate change: a review. Journal of Transport Geography, 15(5), 354–367. https://doi.org/10.1016/j.jtrangeo.2006.11.008
  • Grivas, G. and Chaloulakou, A. (2006) ‘Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece’, Atmospheric Environment. Pergamon, 40(7), pp. 1216–1229. doi: 10.1016/j.atmosenv.2005.10.036.
  • Zheng, Y., Yi, X., Li, M., Li, R., Shan, Z., Chang, E., & Li, T. (2015). Forecasting Fine-Grained Air Quality Based on Big Data. https://doi.org/10.1145/2783258.2788573
  • dos.gov.jo (Accessing date: 21 July 2021)
  • https://www.londonair.org.uk/LondonAir/Default.aspx
  • Zhou, Y., Chang, F. J., Chang, L. C., Kao, I. F., & Wang, Y. S. (2019). Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. Journal of Cleaner Production, 209, 134–145. https://doi.org/10.1016/j.jclepro.2018.10.243
  • Baldasano, J. M., Valera, E., & Jiménez, P. (2003). Air quality data from large cities. Science of the Total Environment, 307(1–3), 141–165. https://doi.org/10.1016/S0048-9697(02)00537-5.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Öğrenmesi Algoritmaları
Bölüm Research Article
Yazarlar

Roba Zayed Bu kişi benim

Maysam Abbod Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 2

Kaynak Göster

IEEE R. Zayed ve M. Abbod, “Big Data AI System for Air Quality Prediction”, International Journal of Data Science and Applications, c. 4, sy. 2, ss. 5–10, 2021.

AI Research and Application Center, Sakarya University of Applied Sciences, Sakarya, Türkiye.