Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Location and Parameter exchange of set mass damping on the structural system performance

Yıl 2023, , 90 - 98, 29.12.2023
https://doi.org/10.58771/joinmet.1402079

Öz

This study investigates the effects of Tuned Mass Dampers (TMDs) on the structural system by considering parameter variation and placement. A multi-degree-of-freedom steel construction building model is designed by considering the parameters of the building model, and the system responses are investigated by adding the TMD to each floor of this building model separately. A separate simulation was performed for each floor. In addition, different values of the TMD's mass, stiffness, and damping parameters were used to investigate the effects of different parameters besides the story placements. Different approaches were utilized to determine the TMD parameters. The results show that the parameter variations with the placement of the TMD affect the system performance. The parameters obtained at higher mass ratios in the parameter ranges determined by the placement of the TMD towards the upper floors suppress the system responses more effectively.

Kaynakça

  • Aggümüş, H. (2022). Binalarda Kullanılan MR Damperli Yarı Aktif Kütle Sönümleyicisinin Performans Analizi. Journal of Marine and Engineering Technology (JOINMET), 2(1), 50-57.
  • Aggumus, H., & Cetin, S. (2018). Experimental investigation of semiactive robust control for structures with magnetorheological dampers. Journal of Low Frequency Noise, Vibration and Active Control, 37(2), 216–234. https://doi.org/10.1177/0263092317711985.
  • Aggumus, H., & Guclu, R. (2020). Robust H∞ Control of STMDs Used in Structural Systems by Hardware in the Loop Simulation Method. Actuators, 9(3), 55. https://doi.org/10.3390/act9030055.
  • Bekdaş, G., & Nigdeli, S. M. (2011). Estimating optimum parameters of tuned mass dampers using harmony search. Engineering Structures, 33(9), 2716–2723. https://doi.org/10.1016/j.engstruct.2011.05.024.
  • Cetin, H., Aydin, E., & Ozturk, B. (2013). Ayarli Kütle Sönümleyicilerin Üç Katli Yapi Modelinin Sismik ve Harmonik Davranisina Etkileri.
  • Cetin, S., Zergeroglu, E., Sivrioglu, S., & Yuksek, I. (2011). A new semiactive nonlinear adaptive controller for structures using MR damper: Design and experimental validation. Nonlinear Dynamics, 66(4), 731–743.
  • Connor, J. J. (2003). Structural Motion Control. Pearson Education, Inc. Den Hartog, J. P. (1947). Mechanical vibrations (3rd ed). New York, N.Y. : McGraw-Hill. https://trove.nla.gov.au/version/21341052.
  • Den Hartog, J. P., & Ormondroyd, J. (1928). Theory of the dynamic vibration absorber. ASME J. Appl. Mech, 50(7), 11–22.
  • Fadel Miguel, L. F., Lopez, R. H., Miguel, L. F. F., & Torii, A. J. (2016). A novel approach to the optimum design of MTMDs under seismic excitations: A Novel Approach to the Optimum Design of MTMDs Under Seismic Excitations. Structural Control and Health Monitoring, 23(11), 1290–1313. https://doi.org/10.1002/stc.1845.
  • Guclu, R., & Yazici, H. (2007). Fuzzy Logic Control of a Non-linear Structural System against Earthquake Induced Vibration. Journal of Vibration and Control, 13(11), 1535–1551. https://doi.org/10.1177/1077546307077663.
  • Leung, A. Y. T., & Zhang, H. (2009). Particle swarm optimization of tuned mass dampers. Engineering Structures, 31(3), 715–728. https://doi.org/10.1016/j.engstruct.2008.11.017.
  • Li, L., Song, G., & Ou, J. (2010). A Genetic Algorithm-based Two-phase Design for Optimal Placement of Semi-active Dampers for Nonlinear Benchmark Structure. Journal of Vibration and Control, 16(9), 1379–1392. https://doi.org/10.1177/1077546309103277.
  • Loh, C.-H., Agrawal, A. K., Lynch, J. P., & Yang, J. N. (2008). Development of experimental benchmark problems for international collaboration in structural response control. Saf Manag Heal Monit Inf, Bridg Maint, 3298–3305.
  • Mashaly, E. A., El-katt, M. H., AL-Janabi, A. I. M., & Abubakar, I. M. (2005). A Generalized Translational-Rotational Tuned Mass Damper (T-R TMD) system for passive control of vibrations in structures. WIT Transactions on The Built Environment, 81.
  • Miguel, L. F. F., Fadel Miguel, L. F., & Lopez, R. H. (2015). A firefly algorithm for the design of force and placement of friction dampers for control of man-induced vibrations in footbridges. Optimization and Engineering, 16(3), 633–661. https://doi.org/10.1007/s11081-014-9269-3.
  • Ohtori, Y., Christenson, R. E., Spencer, B. F., & Dyke, S. J. (2004). Benchmark Control Problems for Seismically Excited Nonlinear Buildings. Journal of Engineering Mechanics, 130(4), 366–385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366).
  • Sadek, F., Mohraz, B., Taylor, A. W., & Chung, R. M. (1997). A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics, 26(6), 617–635.
  • Wang, Jer-Fu, & Lin, Chi-Chang. (2015). Extracting parameters of TMD and primary structure from the combined system responses. Smart Structures and Systems, 16(5), 937–960. https://doi.org/10.12989/SSS.2015.16.5.937.
  • Warburton, G. B. (1982). Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics, 10(3), 381–401.

Ayarlı kütle sönümleyicilerinde yerleşim ve parametre değişiminin yapısal sistem performansına etkisi

Yıl 2023, , 90 - 98, 29.12.2023
https://doi.org/10.58771/joinmet.1402079

Öz

Bu çalışmada, Ayarlı Kütle Sönümleyicilerinin (AKS) yapısal sistem üzerinde etkileri parametre değişimi ve farklı katlara yerleşimleri dikkate alınarak incelenmiştir. Çok serbestlik dereceli çelik konstrüksiyon bir bina modelinin için tasarlanan AKS, bu bina modelinin her bir katına ayrı ayrı eklenerek sistem cevapları incelenmiştir. Her bir kat için ayrı bir simülasyon yapılmıştır. Ayrıca, kat yerleşimlerinin yanında değişiminin etkilerini incelemek amacıyla, AKS’nin farklı kütle, rijitlik ve sönüm parametreleri kullanılmıştır. Sistem cevapları farklı depremler etkisinde analiz edilmiştir. AKS parametrelerinin belirlenmesinde farklı yaklaşımlardan faydalanılmıştır. Sonuçlar, AKS’nin yerleşimi ile parametre değişimlerinin sistem performansını etkilediği, ve üst katlara doğru AKS yerleşimi ile yüksek kütle oranlarının, sistem cevaplarını daha etkili bir şekilde bastırdığını göstermiştir.

Kaynakça

  • Aggümüş, H. (2022). Binalarda Kullanılan MR Damperli Yarı Aktif Kütle Sönümleyicisinin Performans Analizi. Journal of Marine and Engineering Technology (JOINMET), 2(1), 50-57.
  • Aggumus, H., & Cetin, S. (2018). Experimental investigation of semiactive robust control for structures with magnetorheological dampers. Journal of Low Frequency Noise, Vibration and Active Control, 37(2), 216–234. https://doi.org/10.1177/0263092317711985.
  • Aggumus, H., & Guclu, R. (2020). Robust H∞ Control of STMDs Used in Structural Systems by Hardware in the Loop Simulation Method. Actuators, 9(3), 55. https://doi.org/10.3390/act9030055.
  • Bekdaş, G., & Nigdeli, S. M. (2011). Estimating optimum parameters of tuned mass dampers using harmony search. Engineering Structures, 33(9), 2716–2723. https://doi.org/10.1016/j.engstruct.2011.05.024.
  • Cetin, H., Aydin, E., & Ozturk, B. (2013). Ayarli Kütle Sönümleyicilerin Üç Katli Yapi Modelinin Sismik ve Harmonik Davranisina Etkileri.
  • Cetin, S., Zergeroglu, E., Sivrioglu, S., & Yuksek, I. (2011). A new semiactive nonlinear adaptive controller for structures using MR damper: Design and experimental validation. Nonlinear Dynamics, 66(4), 731–743.
  • Connor, J. J. (2003). Structural Motion Control. Pearson Education, Inc. Den Hartog, J. P. (1947). Mechanical vibrations (3rd ed). New York, N.Y. : McGraw-Hill. https://trove.nla.gov.au/version/21341052.
  • Den Hartog, J. P., & Ormondroyd, J. (1928). Theory of the dynamic vibration absorber. ASME J. Appl. Mech, 50(7), 11–22.
  • Fadel Miguel, L. F., Lopez, R. H., Miguel, L. F. F., & Torii, A. J. (2016). A novel approach to the optimum design of MTMDs under seismic excitations: A Novel Approach to the Optimum Design of MTMDs Under Seismic Excitations. Structural Control and Health Monitoring, 23(11), 1290–1313. https://doi.org/10.1002/stc.1845.
  • Guclu, R., & Yazici, H. (2007). Fuzzy Logic Control of a Non-linear Structural System against Earthquake Induced Vibration. Journal of Vibration and Control, 13(11), 1535–1551. https://doi.org/10.1177/1077546307077663.
  • Leung, A. Y. T., & Zhang, H. (2009). Particle swarm optimization of tuned mass dampers. Engineering Structures, 31(3), 715–728. https://doi.org/10.1016/j.engstruct.2008.11.017.
  • Li, L., Song, G., & Ou, J. (2010). A Genetic Algorithm-based Two-phase Design for Optimal Placement of Semi-active Dampers for Nonlinear Benchmark Structure. Journal of Vibration and Control, 16(9), 1379–1392. https://doi.org/10.1177/1077546309103277.
  • Loh, C.-H., Agrawal, A. K., Lynch, J. P., & Yang, J. N. (2008). Development of experimental benchmark problems for international collaboration in structural response control. Saf Manag Heal Monit Inf, Bridg Maint, 3298–3305.
  • Mashaly, E. A., El-katt, M. H., AL-Janabi, A. I. M., & Abubakar, I. M. (2005). A Generalized Translational-Rotational Tuned Mass Damper (T-R TMD) system for passive control of vibrations in structures. WIT Transactions on The Built Environment, 81.
  • Miguel, L. F. F., Fadel Miguel, L. F., & Lopez, R. H. (2015). A firefly algorithm for the design of force and placement of friction dampers for control of man-induced vibrations in footbridges. Optimization and Engineering, 16(3), 633–661. https://doi.org/10.1007/s11081-014-9269-3.
  • Ohtori, Y., Christenson, R. E., Spencer, B. F., & Dyke, S. J. (2004). Benchmark Control Problems for Seismically Excited Nonlinear Buildings. Journal of Engineering Mechanics, 130(4), 366–385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366).
  • Sadek, F., Mohraz, B., Taylor, A. W., & Chung, R. M. (1997). A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics, 26(6), 617–635.
  • Wang, Jer-Fu, & Lin, Chi-Chang. (2015). Extracting parameters of TMD and primary structure from the combined system responses. Smart Structures and Systems, 16(5), 937–960. https://doi.org/10.12989/SSS.2015.16.5.937.
  • Warburton, G. B. (1982). Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics, 10(3), 381–401.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Dinamikler, Titreşim ve Titreşim Kontrolü
Bölüm Araştırma Makaleleri
Yazarlar

Hüseyin Aggümüş 0000-0002-7158-677X

Yayımlanma Tarihi 29 Aralık 2023
Gönderilme Tarihi 8 Aralık 2023
Kabul Tarihi 24 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aggümüş, H. (2023). Ayarlı kütle sönümleyicilerinde yerleşim ve parametre değişiminin yapısal sistem performansına etkisi. Journal of Marine and Engineering Technology, 3(2), 90-98. https://doi.org/10.58771/joinmet.1402079