Araştırma Makalesi
BibTex RIS Kaynak Göster

Denizcilik Matematiği için Entegre Bir Dijital İkiz Çerçevesi: Seyrüsefer, Mühendislik, Lojistik ve Risk Değerlendirmesi

Yıl 2025, Cilt: 5 Sayı: 2, 127 - 149, 27.12.2025
https://doi.org/10.58771/joinmet.1789608

Öz

Matematik, navigasyonun ilk kullanımlarından hesaplamalı akışkanlar dinamiğine, stokastik optimizasyon ve güvenilirlik modellerindeki çağdaş uygulamalara kadar, tarihsel olarak denizciliğin ayrılmaz bir parçası olmuştur. Bu çalışma, geleneksel olarak küresel trigonometri ve logaritmik tablolarla kolaylaştırılan navigasyonla başlar. Şu anda, navigasyon GPS ve AIS teknolojileri içinde doğrusal olmayan cebirsel sistemlere ve Kalman filtrelemesine dayanmaktadır. Deniz mühendisliğinde, hidrodinamik, gövde optimizasyonu ve dalga yüklemesi altında yapısal güvenilirlik, diferansiyel denklemler, özdeğer kararlılık analizi ve sonlu elemanlar yöntemleriyle desteklenmektedir. Liman verimliliği için kuyruk modelleri, filo tahsisi için doğrusal programlama ve rotalama için çizge teorisi dahil olmak üzere optimizasyon metodolojileri, deniz lojistiğinde giderek daha hayati hale gelmektedir. Güvenlik ve sürdürülebilirlik alanındaki uygulamalar, yakıt verimliliği ve emisyon azaltımı için konveks optimizasyonu, dalga modellemesi için aşırı değer teorisi, Bayes risk değerlendirmesi ve olasılık teorisini kullanmaktadır. Çalışmanın birincil katkısı, risk, mühendislik, navigasyon ve lojistikten elde edilen matematiksel modelleri birleştirerek birleşik bir öngörücü ve uyarlanabilir mimaride birleştiren entegre bir dijital ikiz çerçevesidir. Çerçeve, deterministik ve stokastik modellerden oluşan matematiksel bir temel ile gerçek zamanlı fiziksel verileri (sensörler, GPS, AIS ve çevresel izleme) entegre ederek öngörücü simülasyonu, gerçek zamanlı optimizasyonu ve risk odaklı karar almayı kolaylaştırır. Önerilen DT, matematiksel uygulamaları alanlara göre bölümlere ayıran geleneksel yöntemlerin aksine, alanlar arası entegrasyonu kolaylaştırır, otonom karar verme sistemlerini destekler ve sürdürülebilir denizcilik operasyonlarına geçişi hızlandırır. Matematiksel titizliğin dijital ikiz mimarisiyle entegrasyonu, matematiği sadece tanımlayıcı bir araç olmaktan ziyade, yeni nesil denizcilik inovasyonu için dönüştürücü bir katalizör olarak konumlandırır.

Kaynakça

  • Acciaro, M., Hoffmann, P. N., & Eide, M. S. (2013). The energy efficiency gap in maritime transport. Journal of Shipping and Trade. https://api.semanticscholar.org/CorpusID:107340929
  • Akçacı, T., & Matyar Tanır, Y. (2025). Lojistik Sektöründe Dijital İkiz Uygulamaları. Econder Uluslararası Akademik Dergi, 9(1), 96-115. https://doi.org/10.35342/econder.1693393
  • Alamoush A.S., Ölçer A., & Ballini F. (2022). Ports’ role in shipping decarbonisation: A common port incentive scheme for shipping greenhouse gas emissions reduction. Cleaner Logistics and Supply Chain. 3, 100021, https://doi.org/10.1016/j.clscn.2021.100021.
  • Al-Asmakh A., Bicer Y., & Al-Ansari T. (2025). Alternative fuels and design modifications for environmentally sustainable marine vessels. Ocean Engineering, 330, https://doi.org/10.1016/j.oceaneng.2025.121226.
  • Baird, A. J. (2000). Port privatisation: Objectives, extent, process, and the UK experience. Maritime Policy & Management, 2. 173–183. https://doi.org/10.1057/ijme.2000.16
  • Bertram, V. (2012). Practical ship hydrodynamics. 2nd Ed. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-097150-6.10007-7
  • Bialystocki, N., & Konovessis, D. (2016). On the estimation of ship’s fuel consumption and speed curve: A statistical approach. Journal of Ocean Engineering and Science, 1(2), 157–166. https://doi.org/10.1016/j.joes.2016.02.001
  • Branch, A. E. (2007). Elements of shipping. 8th Ed. Routledge. https://doi.org/10.4324/9780203013083
  • Burns, M.G. (2015). Port Management and Operations (1st Ed.). CRC Press. https://doi.org/10.4324/9781315275215
  • Cariou, P. (2011). Is slow steaming a sustainable means of reducing CO₂ emissions from container shipping?. Transportation Research Part D, 16(3), 260–264. https://doi.org/10.1016/j.trd.2010.12.005
  • Chen, G., Govindan, K., & Golias, M. M. (2013). Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern. Transportation Research Part E: Logistics and Transportation Review. 55, 3–22. https://doi.org/10.1016/j.tre.2013.03.008.
  • Corbett, J. J., & Winebrake, J. J. (2008). Emissions Tradeoffs among Alternative Marine Fuels: Total Fuel Cycle Analysis of Residual Oil, Marine Gas Oil, and Marine Diesel Oil. Journal of the Air & Waste Management Association, 58(4), 538–542. https://doi.org/10.3155/1047-3289.58.4.538
  • Cullinane, K., & Khanna, M. (2000). Economies of scale in large containerships: Optimal size and geographical implications. Journal of Transport Geography, 8(3), 181–195. https://doi.org/10.1016/S0966-6923(00)00010-7
  • Engin, O., Yazıcı, K. M., Yaşa, E., & Çakırköy, F. (2025). Üretimde Dijital İkizlerin Kullanımı: ISO 23247 Standardı. Bartın University International Journal of Natural and Applied Sciences, 8(1), 157-177. https://doi.org/10.55930/jonas.1626558
  • Fagerholt, K., Gausel, N. T., Rakke, J. G., & Psaraftis, H. N. (2015). Maritime routing and speed optimization with emission control areas. Transportation Research Part C: Em. Tech., 52, 57–73. https://doi.org/10.1016/j.trc.2014.12.010
  • Faltinsen, O. M. (1993). Sea loads on ships and offshore structures. Cambridge University Press.
  • Fan A., Li B., Yan J., Yang L., Shu Y., Xiong Y., Zhang M. (2024). Analysing ship emissions under complex operating conditions: Insights from onboard measurement data. Marine Pollution Bulletin, 209, Part B, 117280, https://doi.org/10.1016/j.marpolbul.2024.117280.
  • Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119994138
  • Haezendonck, E. (2008). Transport Project Evaluation: Extending the Social Cost Benefit Approach. Marit. Econ. Logist., 10, 322–324. https://doi.org/10.1057/mel.2008.7
  • Harati-Mokhtari, A., Wall, A., Brooks, P., & Wang, J. (2007). Automatic Identification System (AIS): Data reliability and human error implications. Journal of Navigation, 60(3), 373–389. https://doi.org/10.1017/S0373463307004298
  • Hassan Zakerdoost, & Hassan Ghassemi. (2023). Probabilistic surrogate-based optimization of ship hull-propulsor design with bi-level infill sampling technique. Ocean Engineering, 286, 2, https://doi.org/10.1016/j.oceaneng.2023.115614.
  • IMO. (2018). Initial IMO strategy on reduction of GHG emissions from ships. International Maritime Organization. https://www.imo.org/en/ourwork/environment/pages/imo-strategy-on-reduction-of-ghg- emissions-from-ships.aspx
  • Jiang, S., Liu, L., Peng, P., Xu, M., & Yan, R. (2025). Prediction of vessel arrival time to port: a review of current studies. Maritime Policy & Management, 1-26. https://doi.org/10.1080/03088839.2025.2488376
  • Jin J., Meng L., Wang X., & He J. (2024). Carbon emission reduction strategy in shipping industry: A joint mechanism. Advanced Engineering Informatics, 62, 102728. https://doi.org/10.1016/j.aei.2024.102728.
  • Kim, W. J., Van, S. H., & Kim, D. H. (2001). Measurement of flows around modern commercial ship models. Experiments in Fluids, 31, 567-578. https://doi.org/10.1007/s003480100332
  • Kontovas, C., & Psaraftis, H. N. (2011). Reduction of emissions along the maritime intermodal container chain: operational models and policies. Maritime Policy & Management, 38(4), 451–469. https://doi.org/10.1080/03088839.2011.588262
  • Kristensen, H. O. (2015). Energy demand and exhaust gas emissions of marine engines. Work Package 2. 3, Report no. 03 Technical University of Denmark Report.
  • Lam, J. S. L., & Notteboom, T. (2014). The greening of ports: A comparison of port management tools used by leading ports in Asia and Europe. Transport Reviews, 34(2), 169–189. https://doi.org/10.1080/01441647.2014.891162
  • Larsson, L., Stern, F., & Visonneau, M. (2014). Numerical ship hydrodynamics: An assessment of the Gothenburg 2010 Workshop. Springer. https://doi.org/10.1007/978-94-007-7189-5
  • Lindstad, H., Asbjørnslett, B. E., & Strømman, A. H. (2011). Reductions in greenhouse gas emissions and cost by shipping at lower speeds. Energy Policy, 39(6), 3456–3464. https://doi.org/10.1016/j.enpol.2011.03.044
  • Min-Guk Seo, & Yonghwan Kim. (2011). Numerical analysis on ship maneuvering coupled with ship motion in waves. Ocean Engineering, 38, 17-18, https://doi.org/10.1016/j.oceaneng.2011.09.023.
  • Molland, A. F., Turnock, S. R., & Hudson, D. A. (2011). Ship resistance and propulsion: Practical estimation of propulsive power. Cambridge University Press. https://doi.org/10.1017/CBO9780511974113
  • Mou, J., van der Tak, C., & Ligteringen, H. (2010). Study on collision avoidance in busy waterways by using AIS data. Ocean Engineering, 37(5-6), 483–490. https://doi.org/10.1016/j.oceaneng.2010.01.012
  • Pallotta, G., Vespe, M., & Bryan, K. (2013). Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and Route Prediction. Entropy, 15(6), 2218-2245. https://doi.org/10.3390/e15062218
  • Perera, L. P., Oliveira, P., & Soares, C. G. (2012). Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1188–1200. https://doi.org/10.1109/TITS.2012.2187282
  • Psaraftis, H. N., & Kontovas, C. A. (2010). Balancing the economic and environmental performance of maritime transportation. Transportation Research Part D: Transport and Environment, 15(8), 458–462. https://doi.org/10.1016/j.trd.2010.05.001
  • Psaraftis, H. N., & Kontovas, C. A. (2021). Decarbonization of Maritime Transport: Is There Light at the End of the Tunnel?. Sustainability, 13(1), 237. https://doi.org/10.3390/su13010237
  • Rawson, K. J., & Tupper, E. C. (2001). Basic ship theory. 5th Ed. Butterworth-Heinemann.
  • Richard B., & Gordon W. (2025). Container alliance strategies, market concentration and equality: A dynamic time warping clustering approach, Journal of Transport Geography. 126 .104249, https://doi.org/10.1016/j.jtrangeo.2025.104249.
  • Rodrigue, J. P. (2024). The geography of transport systems (6th Ed.). Routledge. https://doi.org/10.4324/9781003343196
  • Ronen, D. (2011). The effect of oil price on containership speed and fleet size. Journal of the Operational Research Society, 62(1), 211–216. https://doi.org/10.1057/jors.2009.169
  • Sanrı, Ö. (2022). Akıllı Limanlar Üzerine Bibliyometrik Bir Literatür Araştırması. Doğuş Üniversitesi Dergisi, 23(2), 15-31. https://doi.org/10.31671/doujournal.1057815
  • Sheng D., Meng Q., & Li Z.C. (2019). Optimal vessel speed and fleet size for industrial shipping services under the emission control area regulation, Transportation Research Part C: Emerging Technologies, 105, 37- 53, https://doi.org/10.1016/j.trc.2019.05.038.
  • Simonsen, C. D., Otzen, J. F., Joncquez, S., & Stern, F. (2013). EFD and CFD for KCS heaving and pitching in regular head waves Journal of Marine Science and Technology, 18, 435–459. https://doi.org/10.1007/s00773-013-0219-0
  • Stopford, M. (2009). Maritime economics. 3rd Ed. Routledge.
  • Talley, W. K. (2018). Port economics. 2nd Ed. Routledge.
  • Tezdogan, T., Incecik, A., & Turan, O. (2015). Full-scale unsteady RANS CFD simulations of ship behaviour and performance in head seas due to slow steaming. Ocean Engineering, 97, 186–206. https://doi.org/10.1016/j.oceaneng.2015.01.011
  • Tu E., Zhang G., Rachmawati L., Rajabally E., & Huang G.B., (2018). Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey From Data to Methodology. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1559-1582. https://doi.org/10.1109/TITS.2017.2724551
  • UNCTAD. (2022). Review of maritime transport 2022. United Nations Conference on Trade and Development. https://unctad.org/rmt2022
  • Verny, J., & Grigentin, C. (2009). Container shipping on the Northern Sea Route. International Journal of Production Economics, 122(1). 107-117. https://doi.org/10.1016/j.ijpe.2009.03.018
  • Wang N., Yuen K.F., Yuan J., & Li D. (2024). Ship collision risk assessment: A multi-criteria decision-making framework based on Dempster–Shafer evidence theory. Applied Soft Computing. 162. 111823. https://doi.org/10.1016/j.asoc.2024.111823.
  • Wang, S., & Meng, Q. (2012). Sailing speed optimization for container ships in a liner shipping network. Transportation Research Part E, 48(3), 701–714. https://doi.org/10.1016/j.tre.2011.12.003
  • Yim, J., Kim, W. H., Cho, S. J., Kim, C. W., & Park, J. Y. (2024). Investigating maritime traffic routes: integrating AIS data and topographic statistics. Maritime Policy & Management, 52(4), 590–608. https://doi.org/10.1080/03088839.2024.2428646
  • Yorulmaz, M., & Derici, M. (2023). Akıllı Limanlar ve Türkiye’deki Limanların Digital Teknoloji Uygulamaları. Asya Studies, 7(26), 291-308. https://doi.org/10.31455/asya.1348223

An Integrated Digital Twin Framework for Maritime Mathematics: Navigation, Engineering, Logistics, and Risk Assessment

Yıl 2025, Cilt: 5 Sayı: 2, 127 - 149, 27.12.2025
https://doi.org/10.58771/joinmet.1789608

Öz

Mathematics has historically been integral to shipping, from its early use in celestial navigation to contemporary applications in computational fluid dynamics, stochastic optimization, and reliability models. It enhances the sustainability, durability, and efficiency of shipping. This review commences with navigation, which has traditionally been facilitated by spherical trigonometry and logarithmic tables. Currently, navigation relies on nonlinear algebraic systems and Kalman filtering within GPS and AIS technologies. In marine engineering, hydrodynamics, hull optimization, and structural reliability under wave loading are underpinned by differential equations, eigenvalue stability analysis, and finite element methods. Optimization methodologies, including queueing models for port efficiency, linear programming for fleet allocation, and graph theory for routing, are increasingly vital in maritime logistics. Applications in safety and sustainability utilize convex optimization for fuel efficiency and emission mitigation, extreme value theory for wave modeling, Bayesian risk assessment, and probability theory. The primary contribution of the study is an integrated digital twin framework that consolidates mathematical models from risk, engineering, navigation, and logistics into a unified predictive and adaptive architecture. The framework facilitates predictive simulation, real-time optimization, and risk-informed decision-making by integrating real-time physical data (sensors, GPS, AIS, and environmental monitoring) with a mathematical foundation comprising deterministic and stochastic models. The proposed DT facilitates cross-domain integration, endorses autonomous decision-making systems, and propels the transition to sustainable maritime operations, unlike traditional methods that compartmentalize mathematical applications by domain. The integration of mathematical rigor with digital twin architecture positions mathematics as a transformative catalyst for next-generation maritime innovation, rather than merely a descriptive instrument.

Kaynakça

  • Acciaro, M., Hoffmann, P. N., & Eide, M. S. (2013). The energy efficiency gap in maritime transport. Journal of Shipping and Trade. https://api.semanticscholar.org/CorpusID:107340929
  • Akçacı, T., & Matyar Tanır, Y. (2025). Lojistik Sektöründe Dijital İkiz Uygulamaları. Econder Uluslararası Akademik Dergi, 9(1), 96-115. https://doi.org/10.35342/econder.1693393
  • Alamoush A.S., Ölçer A., & Ballini F. (2022). Ports’ role in shipping decarbonisation: A common port incentive scheme for shipping greenhouse gas emissions reduction. Cleaner Logistics and Supply Chain. 3, 100021, https://doi.org/10.1016/j.clscn.2021.100021.
  • Al-Asmakh A., Bicer Y., & Al-Ansari T. (2025). Alternative fuels and design modifications for environmentally sustainable marine vessels. Ocean Engineering, 330, https://doi.org/10.1016/j.oceaneng.2025.121226.
  • Baird, A. J. (2000). Port privatisation: Objectives, extent, process, and the UK experience. Maritime Policy & Management, 2. 173–183. https://doi.org/10.1057/ijme.2000.16
  • Bertram, V. (2012). Practical ship hydrodynamics. 2nd Ed. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-097150-6.10007-7
  • Bialystocki, N., & Konovessis, D. (2016). On the estimation of ship’s fuel consumption and speed curve: A statistical approach. Journal of Ocean Engineering and Science, 1(2), 157–166. https://doi.org/10.1016/j.joes.2016.02.001
  • Branch, A. E. (2007). Elements of shipping. 8th Ed. Routledge. https://doi.org/10.4324/9780203013083
  • Burns, M.G. (2015). Port Management and Operations (1st Ed.). CRC Press. https://doi.org/10.4324/9781315275215
  • Cariou, P. (2011). Is slow steaming a sustainable means of reducing CO₂ emissions from container shipping?. Transportation Research Part D, 16(3), 260–264. https://doi.org/10.1016/j.trd.2010.12.005
  • Chen, G., Govindan, K., & Golias, M. M. (2013). Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern. Transportation Research Part E: Logistics and Transportation Review. 55, 3–22. https://doi.org/10.1016/j.tre.2013.03.008.
  • Corbett, J. J., & Winebrake, J. J. (2008). Emissions Tradeoffs among Alternative Marine Fuels: Total Fuel Cycle Analysis of Residual Oil, Marine Gas Oil, and Marine Diesel Oil. Journal of the Air & Waste Management Association, 58(4), 538–542. https://doi.org/10.3155/1047-3289.58.4.538
  • Cullinane, K., & Khanna, M. (2000). Economies of scale in large containerships: Optimal size and geographical implications. Journal of Transport Geography, 8(3), 181–195. https://doi.org/10.1016/S0966-6923(00)00010-7
  • Engin, O., Yazıcı, K. M., Yaşa, E., & Çakırköy, F. (2025). Üretimde Dijital İkizlerin Kullanımı: ISO 23247 Standardı. Bartın University International Journal of Natural and Applied Sciences, 8(1), 157-177. https://doi.org/10.55930/jonas.1626558
  • Fagerholt, K., Gausel, N. T., Rakke, J. G., & Psaraftis, H. N. (2015). Maritime routing and speed optimization with emission control areas. Transportation Research Part C: Em. Tech., 52, 57–73. https://doi.org/10.1016/j.trc.2014.12.010
  • Faltinsen, O. M. (1993). Sea loads on ships and offshore structures. Cambridge University Press.
  • Fan A., Li B., Yan J., Yang L., Shu Y., Xiong Y., Zhang M. (2024). Analysing ship emissions under complex operating conditions: Insights from onboard measurement data. Marine Pollution Bulletin, 209, Part B, 117280, https://doi.org/10.1016/j.marpolbul.2024.117280.
  • Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119994138
  • Haezendonck, E. (2008). Transport Project Evaluation: Extending the Social Cost Benefit Approach. Marit. Econ. Logist., 10, 322–324. https://doi.org/10.1057/mel.2008.7
  • Harati-Mokhtari, A., Wall, A., Brooks, P., & Wang, J. (2007). Automatic Identification System (AIS): Data reliability and human error implications. Journal of Navigation, 60(3), 373–389. https://doi.org/10.1017/S0373463307004298
  • Hassan Zakerdoost, & Hassan Ghassemi. (2023). Probabilistic surrogate-based optimization of ship hull-propulsor design with bi-level infill sampling technique. Ocean Engineering, 286, 2, https://doi.org/10.1016/j.oceaneng.2023.115614.
  • IMO. (2018). Initial IMO strategy on reduction of GHG emissions from ships. International Maritime Organization. https://www.imo.org/en/ourwork/environment/pages/imo-strategy-on-reduction-of-ghg- emissions-from-ships.aspx
  • Jiang, S., Liu, L., Peng, P., Xu, M., & Yan, R. (2025). Prediction of vessel arrival time to port: a review of current studies. Maritime Policy & Management, 1-26. https://doi.org/10.1080/03088839.2025.2488376
  • Jin J., Meng L., Wang X., & He J. (2024). Carbon emission reduction strategy in shipping industry: A joint mechanism. Advanced Engineering Informatics, 62, 102728. https://doi.org/10.1016/j.aei.2024.102728.
  • Kim, W. J., Van, S. H., & Kim, D. H. (2001). Measurement of flows around modern commercial ship models. Experiments in Fluids, 31, 567-578. https://doi.org/10.1007/s003480100332
  • Kontovas, C., & Psaraftis, H. N. (2011). Reduction of emissions along the maritime intermodal container chain: operational models and policies. Maritime Policy & Management, 38(4), 451–469. https://doi.org/10.1080/03088839.2011.588262
  • Kristensen, H. O. (2015). Energy demand and exhaust gas emissions of marine engines. Work Package 2. 3, Report no. 03 Technical University of Denmark Report.
  • Lam, J. S. L., & Notteboom, T. (2014). The greening of ports: A comparison of port management tools used by leading ports in Asia and Europe. Transport Reviews, 34(2), 169–189. https://doi.org/10.1080/01441647.2014.891162
  • Larsson, L., Stern, F., & Visonneau, M. (2014). Numerical ship hydrodynamics: An assessment of the Gothenburg 2010 Workshop. Springer. https://doi.org/10.1007/978-94-007-7189-5
  • Lindstad, H., Asbjørnslett, B. E., & Strømman, A. H. (2011). Reductions in greenhouse gas emissions and cost by shipping at lower speeds. Energy Policy, 39(6), 3456–3464. https://doi.org/10.1016/j.enpol.2011.03.044
  • Min-Guk Seo, & Yonghwan Kim. (2011). Numerical analysis on ship maneuvering coupled with ship motion in waves. Ocean Engineering, 38, 17-18, https://doi.org/10.1016/j.oceaneng.2011.09.023.
  • Molland, A. F., Turnock, S. R., & Hudson, D. A. (2011). Ship resistance and propulsion: Practical estimation of propulsive power. Cambridge University Press. https://doi.org/10.1017/CBO9780511974113
  • Mou, J., van der Tak, C., & Ligteringen, H. (2010). Study on collision avoidance in busy waterways by using AIS data. Ocean Engineering, 37(5-6), 483–490. https://doi.org/10.1016/j.oceaneng.2010.01.012
  • Pallotta, G., Vespe, M., & Bryan, K. (2013). Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and Route Prediction. Entropy, 15(6), 2218-2245. https://doi.org/10.3390/e15062218
  • Perera, L. P., Oliveira, P., & Soares, C. G. (2012). Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1188–1200. https://doi.org/10.1109/TITS.2012.2187282
  • Psaraftis, H. N., & Kontovas, C. A. (2010). Balancing the economic and environmental performance of maritime transportation. Transportation Research Part D: Transport and Environment, 15(8), 458–462. https://doi.org/10.1016/j.trd.2010.05.001
  • Psaraftis, H. N., & Kontovas, C. A. (2021). Decarbonization of Maritime Transport: Is There Light at the End of the Tunnel?. Sustainability, 13(1), 237. https://doi.org/10.3390/su13010237
  • Rawson, K. J., & Tupper, E. C. (2001). Basic ship theory. 5th Ed. Butterworth-Heinemann.
  • Richard B., & Gordon W. (2025). Container alliance strategies, market concentration and equality: A dynamic time warping clustering approach, Journal of Transport Geography. 126 .104249, https://doi.org/10.1016/j.jtrangeo.2025.104249.
  • Rodrigue, J. P. (2024). The geography of transport systems (6th Ed.). Routledge. https://doi.org/10.4324/9781003343196
  • Ronen, D. (2011). The effect of oil price on containership speed and fleet size. Journal of the Operational Research Society, 62(1), 211–216. https://doi.org/10.1057/jors.2009.169
  • Sanrı, Ö. (2022). Akıllı Limanlar Üzerine Bibliyometrik Bir Literatür Araştırması. Doğuş Üniversitesi Dergisi, 23(2), 15-31. https://doi.org/10.31671/doujournal.1057815
  • Sheng D., Meng Q., & Li Z.C. (2019). Optimal vessel speed and fleet size for industrial shipping services under the emission control area regulation, Transportation Research Part C: Emerging Technologies, 105, 37- 53, https://doi.org/10.1016/j.trc.2019.05.038.
  • Simonsen, C. D., Otzen, J. F., Joncquez, S., & Stern, F. (2013). EFD and CFD for KCS heaving and pitching in regular head waves Journal of Marine Science and Technology, 18, 435–459. https://doi.org/10.1007/s00773-013-0219-0
  • Stopford, M. (2009). Maritime economics. 3rd Ed. Routledge.
  • Talley, W. K. (2018). Port economics. 2nd Ed. Routledge.
  • Tezdogan, T., Incecik, A., & Turan, O. (2015). Full-scale unsteady RANS CFD simulations of ship behaviour and performance in head seas due to slow steaming. Ocean Engineering, 97, 186–206. https://doi.org/10.1016/j.oceaneng.2015.01.011
  • Tu E., Zhang G., Rachmawati L., Rajabally E., & Huang G.B., (2018). Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey From Data to Methodology. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1559-1582. https://doi.org/10.1109/TITS.2017.2724551
  • UNCTAD. (2022). Review of maritime transport 2022. United Nations Conference on Trade and Development. https://unctad.org/rmt2022
  • Verny, J., & Grigentin, C. (2009). Container shipping on the Northern Sea Route. International Journal of Production Economics, 122(1). 107-117. https://doi.org/10.1016/j.ijpe.2009.03.018
  • Wang N., Yuen K.F., Yuan J., & Li D. (2024). Ship collision risk assessment: A multi-criteria decision-making framework based on Dempster–Shafer evidence theory. Applied Soft Computing. 162. 111823. https://doi.org/10.1016/j.asoc.2024.111823.
  • Wang, S., & Meng, Q. (2012). Sailing speed optimization for container ships in a liner shipping network. Transportation Research Part E, 48(3), 701–714. https://doi.org/10.1016/j.tre.2011.12.003
  • Yim, J., Kim, W. H., Cho, S. J., Kim, C. W., & Park, J. Y. (2024). Investigating maritime traffic routes: integrating AIS data and topographic statistics. Maritime Policy & Management, 52(4), 590–608. https://doi.org/10.1080/03088839.2024.2428646
  • Yorulmaz, M., & Derici, M. (2023). Akıllı Limanlar ve Türkiye’deki Limanların Digital Teknoloji Uygulamaları. Asya Studies, 7(26), 291-308. https://doi.org/10.31455/asya.1348223
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Uygulaması
Bölüm Araştırma Makalesi
Yazarlar

Engin Can 0000-0002-4105-6460

Gönderilme Tarihi 23 Eylül 2025
Kabul Tarihi 7 Kasım 2025
Yayımlanma Tarihi 27 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 2

Kaynak Göster

APA Can, E. (2025). An Integrated Digital Twin Framework for Maritime Mathematics: Navigation, Engineering, Logistics, and Risk Assessment. Journal of Marine and Engineering Technology, 5(2), 127-149. https://doi.org/10.58771/joinmet.1789608