Araştırma Makalesi
BibTex RIS Kaynak Göster

YOLOv8 Mimarileri Kullanılarak Karmaşık Ortamlarda Uyarlanabilir Kara Mayını Tespiti ve Tanıma

Yıl 2024, , 110 - 120, 20.12.2024
https://doi.org/10.58769/joinssr.1542886

Öz

Kara mayını tespiti ve tanınması, sivil nüfus ve askeri personel üzerindeki kara mayınlarının yıkıcı etkisini azaltmayı amaçlayan insani ve askeri operasyonlarda kritik görevleri temsil eder. Bilgisayarlı görüş kullanarak kara mayını tespiti ve tanımlaması çeşitli avantajlar sunar. Tehlikeli ortamlarda insanlara maruz kalmanın azalması nedeniyle güvenlik artar. Gizli yerlerin yerini tespit etmede yüksek doğruluk ve verimlilikle çalışan bir bilgisayar sisteminin performansını artırmak için gelişmiş algoritmalar uygulanır. Zaman açısından hassas süreçler için olmazsa olmaz olan gerçek zamanlı işleme sayesinde hızlı tespit mümkün hale gelir. Dahası, insan operatörlerin aksine, bilgisayarlı görüş yorulmadan sürekli çalışabilir. Bu sistemlerin etkinliği, çeşitli ortamlara uyum sağlama kapasiteleriyle daha da artar. Bu özet, kara mayını tespiti ve tanıma alanında son teknoloji bir nesne tespit algoritması olan You Only Look Once'ın (YOLO) uygulamasını araştırmaktadır. YOLO, görüntüler ve video akışları içindeki nesneleri tanımlamada gerçek zamanlı performans ve yüksek doğruluk sunarak kara mayını tespit süreçlerini otomatikleştirmek için umut vadeden bir aday haline getirir. Algoritma, çeşitli kara mayını türleri, araziler ve çevre koşulları içeren açıklamalı veri kümeleri üzerinde YOLO'yu eğiterek kara mayınlarını olağanüstü bir hassasiyetle tespit etmeyi ve sınıflandırmayı öğrenebilir. YOLO'yu insansız hava araçları (İHA) veya kara tabanlı robotik sistemlerle entegre etmek, geniş alanların hızlı ve sistematik bir şekilde incelenmesini sağlayarak madencilik operasyonlarının verimliliğini ve güvenliğini artırır. YOLOv8, bu araştırmada gerçek dünyadaki kara mayını tespitinde kaçırılan tespit ve düşük doğruluk sorununu ele almak için kullanılmıştır. Bu çalışma için, çeşitli ışık ve arka plan koşullarında çekilmiş 1055 fotoğraftan oluşan bir veri kümesi oluşturduk. Resim verilerini kullanan deneyde, modeli veri kümesi üzerinde birçok kez eğittikten sonra mAP = %93,2, hassasiyet = %92,9 ve geri çağırma = %84,3 ile çok iyi sonuçlar elde ettik. Deneysel sonuçlara göre, YOLOv8 kara mayını veri kümesine dayalı olarak daha iyi tespit doğruluğuna ve geri çağırmaya sahiptir.

Kaynakça

  • [1] G. Wang, Y. Chen, P. An, H. Hong, J. Hu, and T. Huang, "UAV-YOLOv8: A small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios," Sensors, vol. 23, no. 16, p. 7190, 2023.
  • [2] Y. Li, Q. Fan, H. Huang, Z. Han, and Q. Gu, "A modified YOLOv8 detection network for UAV aerial image recognition," Drones, vol. 7, no. 5, p. 304, 2023.
  • [3] J. Terven, D. M. Córdova-Esparza, and J. A. Romero-González, "A comprehensive review of YOLO architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-NAS," Machine Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1680–1716, 2023.
  • [4] H. Kasban, O. Zahran, S. M. Elaraby, M. El-Kordy, and F. E. Abd El-Samie, "A comparative study of landmine detection techniques," Sensing and Imaging: An International Journal, vol. 11, pp. 89–112, 2010.
  • [5] A. K. Gupta, A. Seal, M. Prasad, and P. Khanna, "Salient object detection techniques in computer vision—A survey," Entropy, vol. 22, no. 10, p. 1174, 2020.
  • [6] A. R. Pathak, M. Pandey, and S. Rautaray, "Application of deep learning for object detection," Procedia Computer Science, vol. 132, pp. 1706–1717, 2018.
  • [7] A. Borji, M. M. Cheng, Q. Hou, H. Jiang, and J. Li, "Salient object detection: A survey," Computational Visual Media, vol. 5, pp. 117–150, 2019.
  • [8] A. S. A. Al-Slemani and A. Zengin, "A new surveillance and security alert system based on real-time motion detection," Journal of Smart Systems Research, vol. 4, no. 1, pp. 31–47, 2023.
  • [9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2014, pp. 580–587.
  • [10] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, "A review of YOLO algorithm developments," Procedia Computer Science, vol. 199, pp. 1066–1073, 2022.
  • [11] L. Tan, T. Huangfu, L. Wu, and W. Chen, "Comparison of YOLOv3, Faster R-CNN, and SSD for real-time pill identification," 2021.
  • [12] S. Singh, "Leveraging YOLO object detection for accurate and efficient visual recognition," Labellerr, Jan. 05, 2023. [Online]. Available: https://www.labellerr.com/blog/why-is-the-yolo-algorithm-important/. [Accessed: Sep. 2024].
  • [13] M. Sohan, T. Sai Ram, R. Reddy, and C. Venkata, "A review on YOLOv8 and its advancements," in Proc. Int. Conf. Data Intelligence and Cognitive Informatics, Springer, Singapore, 2024, pp. 529–545.
  • [14] B. Xiao, M. Nguyen, and W. Q. Yan, "Fruit ripeness identification using YOLOv8 model," Multimedia Tools and Applications, vol. 83, no. 9, pp. 28039–28056, 2024.
  • [15] X. Wang, H. Gao, Z. Jia, and Z. Li, "BL-YOLOv8: An improved road defect detection model based on YOLOv8," Sensors, vol. 23, no. 20, p. 8361, 2023.
  • [16] M. Hussain, "YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection," Machines, vol. 11, no. 7, p. 677, 2023.
  • [17] Q. Ling, N. A. M. Isa, and M. S. M. Asaari, "Precise detection for dense PCB components based on modified YOLOv8," IEEE Access, 2023.
  • [18] M. Safaldin, N. Zaghden, and M. Mejdoub, "An improved YOLOv8 to detect moving objects," IEEE Access, 2024.
  • [19] I. P. Sary, S. Andromeda, and E. U. Armin, "Performance comparison of YOLOv5 and YOLOv8 architectures in human detection using aerial images," Ultima Computing: Jurnal Sistem Komputer, vol. 15, no. 1, pp. 8–13, 2023.
  • [20] H. Yi, B. Liu, B. Zhao, and E. Liu, "Small object detection algorithm based on improved YOLOv8 for remote sensing," IEEE J. Sel. Topics Appl. Earth Observations Remote Sensing, 2023.
  • [21] R. Laroca, E. Severo, L. A. Zanlorensi, L. S. Oliveira, G. R. Gonçalves, W. R. Schwartz, and D. Menotti, "A robust real-time automatic license plate recognition based on the YOLO detector," in Proc. Int. Joint Conf. Neural Networks (IJCNN), 2018, pp. 1–10.
  • [22] D. Garg, P. Goel, S. Pandya, A. Ganatra, and K. Kotecha, "A deep learning approach for face detection using YOLO," in Proc. IEEE Punecon, 2018, pp. 1–4.
  • [23] S. Huang, Y. He, and X. Chen, "M-YOLO: A nighttime vehicle detection method combining MobileNet V2 and YOLOv3," in J. Phys.: Conf. Series, vol. 1883, no. 1, p. 012094, 2021.
  • [24] Y. Li, S. Li, H. Du, L. Chen, D. Zhang, and Y. Li, "YOLO-ACN: Focusing on small target and occluded object detection," IEEE Access, vol. 8, pp. 227288–227303, 2020.

Adaptive Landmine Detection and Recognition in Complex Environments using YOLOv8 Architectures

Yıl 2024, , 110 - 120, 20.12.2024
https://doi.org/10.58769/joinssr.1542886

Öz

Landmine detection and recognition represent critical tasks in humanitarian and military operations, aiming to mitigate the devastating impact of landmines on civilian populations and military personnel. Landmine detection and identification using computer vision offers several advantages. Safety is enhanced, given the reduced exposure to humans in dangerous environments. Advanced algorithms are applied to increase the performance of a computer system operating with high accuracy and efficiency in the location of hidden. Fast detection is made possible by real-time processing, which is essential for time-sensitive processes. Furthermore, unlike human operators, computer vision can work continuously without getting tired. The efficacy of these systems is further enhanced by their capacity to adapt to various environments. This abstract explores the application of You Only Look Once (YOLO), a state-of-the-art object detection algorithm, in the domain of landmine detection and recognition. YOLO offers real-time performance and high accuracy in identifying objects within images and video streams, making it a promising candidate for automating landmine detection processes. By training YOLO on annotated datasets containing diverse landmine types, terrains, and environmental conditions, the algorithm can learn to detect and classify landmines with remarkable precision. Integrating YOLO with unmanned aerial vehicles (UAVs) or ground-based robotic systems enables rapid and systematic surveying of large areas, enhancing the efficiency and safety of demining operations. The YOLOv8 is employed in this research to address the issue of missed detection and low accuracy in real-world landmine detection. For this study, we have assembled a data set of 1055 photos that were shot in various lighting and backdrop situations. In the experiment employing picture data, we obtained very good results with mAP = 93.2%, precision = 92.9%, and recall = 84.3% after training the model on the dataset numerous times. According to experimental results, the YOLOv8 has better detection accuracy and recall based on the landmine dataset.

Kaynakça

  • [1] G. Wang, Y. Chen, P. An, H. Hong, J. Hu, and T. Huang, "UAV-YOLOv8: A small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios," Sensors, vol. 23, no. 16, p. 7190, 2023.
  • [2] Y. Li, Q. Fan, H. Huang, Z. Han, and Q. Gu, "A modified YOLOv8 detection network for UAV aerial image recognition," Drones, vol. 7, no. 5, p. 304, 2023.
  • [3] J. Terven, D. M. Córdova-Esparza, and J. A. Romero-González, "A comprehensive review of YOLO architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-NAS," Machine Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1680–1716, 2023.
  • [4] H. Kasban, O. Zahran, S. M. Elaraby, M. El-Kordy, and F. E. Abd El-Samie, "A comparative study of landmine detection techniques," Sensing and Imaging: An International Journal, vol. 11, pp. 89–112, 2010.
  • [5] A. K. Gupta, A. Seal, M. Prasad, and P. Khanna, "Salient object detection techniques in computer vision—A survey," Entropy, vol. 22, no. 10, p. 1174, 2020.
  • [6] A. R. Pathak, M. Pandey, and S. Rautaray, "Application of deep learning for object detection," Procedia Computer Science, vol. 132, pp. 1706–1717, 2018.
  • [7] A. Borji, M. M. Cheng, Q. Hou, H. Jiang, and J. Li, "Salient object detection: A survey," Computational Visual Media, vol. 5, pp. 117–150, 2019.
  • [8] A. S. A. Al-Slemani and A. Zengin, "A new surveillance and security alert system based on real-time motion detection," Journal of Smart Systems Research, vol. 4, no. 1, pp. 31–47, 2023.
  • [9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2014, pp. 580–587.
  • [10] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, "A review of YOLO algorithm developments," Procedia Computer Science, vol. 199, pp. 1066–1073, 2022.
  • [11] L. Tan, T. Huangfu, L. Wu, and W. Chen, "Comparison of YOLOv3, Faster R-CNN, and SSD for real-time pill identification," 2021.
  • [12] S. Singh, "Leveraging YOLO object detection for accurate and efficient visual recognition," Labellerr, Jan. 05, 2023. [Online]. Available: https://www.labellerr.com/blog/why-is-the-yolo-algorithm-important/. [Accessed: Sep. 2024].
  • [13] M. Sohan, T. Sai Ram, R. Reddy, and C. Venkata, "A review on YOLOv8 and its advancements," in Proc. Int. Conf. Data Intelligence and Cognitive Informatics, Springer, Singapore, 2024, pp. 529–545.
  • [14] B. Xiao, M. Nguyen, and W. Q. Yan, "Fruit ripeness identification using YOLOv8 model," Multimedia Tools and Applications, vol. 83, no. 9, pp. 28039–28056, 2024.
  • [15] X. Wang, H. Gao, Z. Jia, and Z. Li, "BL-YOLOv8: An improved road defect detection model based on YOLOv8," Sensors, vol. 23, no. 20, p. 8361, 2023.
  • [16] M. Hussain, "YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection," Machines, vol. 11, no. 7, p. 677, 2023.
  • [17] Q. Ling, N. A. M. Isa, and M. S. M. Asaari, "Precise detection for dense PCB components based on modified YOLOv8," IEEE Access, 2023.
  • [18] M. Safaldin, N. Zaghden, and M. Mejdoub, "An improved YOLOv8 to detect moving objects," IEEE Access, 2024.
  • [19] I. P. Sary, S. Andromeda, and E. U. Armin, "Performance comparison of YOLOv5 and YOLOv8 architectures in human detection using aerial images," Ultima Computing: Jurnal Sistem Komputer, vol. 15, no. 1, pp. 8–13, 2023.
  • [20] H. Yi, B. Liu, B. Zhao, and E. Liu, "Small object detection algorithm based on improved YOLOv8 for remote sensing," IEEE J. Sel. Topics Appl. Earth Observations Remote Sensing, 2023.
  • [21] R. Laroca, E. Severo, L. A. Zanlorensi, L. S. Oliveira, G. R. Gonçalves, W. R. Schwartz, and D. Menotti, "A robust real-time automatic license plate recognition based on the YOLO detector," in Proc. Int. Joint Conf. Neural Networks (IJCNN), 2018, pp. 1–10.
  • [22] D. Garg, P. Goel, S. Pandya, A. Ganatra, and K. Kotecha, "A deep learning approach for face detection using YOLO," in Proc. IEEE Punecon, 2018, pp. 1–4.
  • [23] S. Huang, Y. He, and X. Chen, "M-YOLO: A nighttime vehicle detection method combining MobileNet V2 and YOLOv3," in J. Phys.: Conf. Series, vol. 1883, no. 1, p. 012094, 2021.
  • [24] Y. Li, S. Li, H. Du, L. Chen, D. Zhang, and Y. Li, "YOLO-ACN: Focusing on small target and occluded object detection," IEEE Access, vol. 8, pp. 227288–227303, 2020.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Derin Öğrenme, Yapay Zeka (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ahmed Shahab Ahmed Al-slemani

Govar Abubakr 0009-0000-5464-0749

Yayımlanma Tarihi 20 Aralık 2024
Gönderilme Tarihi 5 Eylül 2024
Kabul Tarihi 1 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Al-slemani, A. S. A., & Abubakr, G. (2024). Adaptive Landmine Detection and Recognition in Complex Environments using YOLOv8 Architectures. Journal of Smart Systems Research, 5(2), 110-120. https://doi.org/10.58769/joinssr.1542886
AMA Al-slemani ASA, Abubakr G. Adaptive Landmine Detection and Recognition in Complex Environments using YOLOv8 Architectures. JoinSSR. Aralık 2024;5(2):110-120. doi:10.58769/joinssr.1542886
Chicago Al-slemani, Ahmed Shahab Ahmed, ve Govar Abubakr. “Adaptive Landmine Detection and Recognition in Complex Environments Using YOLOv8 Architectures”. Journal of Smart Systems Research 5, sy. 2 (Aralık 2024): 110-20. https://doi.org/10.58769/joinssr.1542886.
EndNote Al-slemani ASA, Abubakr G (01 Aralık 2024) Adaptive Landmine Detection and Recognition in Complex Environments using YOLOv8 Architectures. Journal of Smart Systems Research 5 2 110–120.
IEEE A. S. A. Al-slemani ve G. Abubakr, “Adaptive Landmine Detection and Recognition in Complex Environments using YOLOv8 Architectures”, JoinSSR, c. 5, sy. 2, ss. 110–120, 2024, doi: 10.58769/joinssr.1542886.
ISNAD Al-slemani, Ahmed Shahab Ahmed - Abubakr, Govar. “Adaptive Landmine Detection and Recognition in Complex Environments Using YOLOv8 Architectures”. Journal of Smart Systems Research 5/2 (Aralık 2024), 110-120. https://doi.org/10.58769/joinssr.1542886.
JAMA Al-slemani ASA, Abubakr G. Adaptive Landmine Detection and Recognition in Complex Environments using YOLOv8 Architectures. JoinSSR. 2024;5:110–120.
MLA Al-slemani, Ahmed Shahab Ahmed ve Govar Abubakr. “Adaptive Landmine Detection and Recognition in Complex Environments Using YOLOv8 Architectures”. Journal of Smart Systems Research, c. 5, sy. 2, 2024, ss. 110-2, doi:10.58769/joinssr.1542886.
Vancouver Al-slemani ASA, Abubakr G. Adaptive Landmine Detection and Recognition in Complex Environments using YOLOv8 Architectures. JoinSSR. 2024;5(2):110-2.