Sistematik Derlemeler ve Meta Analiz
BibTex RIS Kaynak Göster

Piezoelectric Fans: A Narrative Review

Yıl 2022, Cilt: 3 Sayı: 1, 22 - 29, 29.06.2022

Öz

Piezoelectric Zirconate Titanate (PZT) is a material that has many applications. One of its application is in piezoelectric (PE) fans. PZT material that acts as an actuator, by sticking to the surface of a beam or plate-like structural element, or by embedding in it a sandwich blade is obtained. The blade in the shape of a beam or plate is exposed to vibration by applying AC voltage to the PZT actuator. The blade that is exposed to vibration ensures the removal of hot ambient air. In recent years, PE fans have been used in technologically sensitive areas for heat transfer due to some important advantages. Therefore, literature survey shows that there are many studies about fans with PE actuators. In this review paper the historical background and the research areas of studies on PE fans are explained in detail to readers. Studies on the electro-mechanical properties and components of PE fans are described in detail. In addition, innovative analytical, numerical and experimental studies on PE fans in the open literature were investigated. Finally, the visual representations of the physical and experimental models used in the studies are summarized in a table. According to literature survey, it is clear that studies on PE fans have only recently begun and are gradually advancing. In particular, analytical modeling and fan blade solving methods, vibration control, blade-actuator optimization for optimum energy performance with minimum energy, experimental setups to accurately measure blade velocity and performance, the types of used PZT materials are the most popular research topics.

Teşekkür

Special thanks to the ArelMED-I members for their motivations, recommendations and feedback.

Kaynakça

  • [1] Asadi Dereshgi, H., Dal, H., & Sayan, M. E. (2020). Analytical analysis of a circular unimorph piezoelectric actuator in the range of low voltages and pressures. Microsystem Technologies, 26(8), 2453-2464.
  • [2] Anton, S. R., & Sodano, H. A. (2007). A review of power harvesting using piezoelectric materials (2003–2006). Smart materials and Structures, 16(3), R1.
  • [3] Sodano, H. A., Inman, D. J., & Park, G. (2004). A review of power harvesting from vibration using piezoelectric materials. Shock and Vibration Digest, 36(3), 197-206.
  • [4] Maaspuro, M. (2016). Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs—A review. Microelectronics Reliability, 63, 342-353.
  • [5] Hales, A., & Jiang, X. (2018). A review of piezoelectric fans for low energy cooling of power electronics. Applied Energy, 215, 321-337.
  • [6] Park, S. H., Park, G. J., & Choi, S. D. (2004). Heat Transfer Characteristics Around a Surface-Mounted Module Cooled by Piezoelectric Fan. Transactions of the Korean Society of Mechanical Engineers B, 28(7), 780-788.
  • [7] Açıkalın, T., Raman, A., & Garimella, S. V. (2003). Two-dimensional streaming flows induced by resonating, thin beams. The Journal of the Acoustical Society of America, 114(4), 1785-1795.
  • [8] Park, S. H., Oh, M. H., Kim, Y. H., & Choi, M. (2019). Effects of freestream on piezoelectric fan performance. Journal of Fluids and Structures, 87, 302-318.
  • [9] Kimber, M., Suzuki, K., Kitsunai, N., Seki, K., & Garimella, S. V. (2008, May). Quantification of piezoelectric fan flow rate performance and experimental identification of installation effects. In 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (pp. 471-479). IEEE.
  • [10] Chen, Y., Li, J., Wang, Z., Yan, Y., & Cui, J. (2021). Unsteady Flow Characteristics of an Oscillating Piezoelectric Fan Blade at High Reynolds Numbers. Applied Sciences, 11(20), 9510.
  • [11] Liu, S. F., Huang, R. T., Sheu, W. J., & Wang, C. C. (2009). Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement. International Journal of Heat and Mass Transfer, 52(11-12), 2565-2570.
  • [12] Abdullah, M. K., Ismail, N. C., Abdullah, M. Z., Mujeebu, M. A., Ahmad, K. A., & Ripin, Z. M. (2012). Effects of tip gap and amplitude of piezoelectric fans on the performance of heat sinks in microelectronic cooling. Heat and Mass Transfer, 48(6), 893-901.
  • [13] Hales, A., & Jiang, X. (2018). A review of piezoelectric fans for low energy cooling of power electronics. Applied Energy, 215, 321-337.
  • [14] Huang, L., Yeom, T., Simon, T., & Cui, T. (2021). An experimental and numerical study on heat transfer enhancement of a heat sink fin by synthetic jet impingement. Heat and Mass Transfer, 57(4), 583-593.
  • [15] Liu, T. J. C., Chen, Y. S., Ho, H. Y., & Liu, J. T. (2020). Vibration and cooling performances of piezoelectric cooling fan: numerical and experimental investigations. In MATEC Web of Conferences (Vol. 306, p. 04002). EDP Sciences.
  • [16] Abdullah, M. K., Abdullah, M. Z., Ramana, M. V., Khor, C. Y., Ahmad, K. A., Mujeebu, M. A., ... & Ripin, Z. M. (2009). Numerical and experimental investigations on effect of fan height on the performance of piezoelectric fan in microelectronic cooling. International Communications in Heat and Mass Transfer, 36(1), 51-58.
  • [17] Kimber, M., & Garimella, S. V. (2009). Measurement and prediction of the cooling characteristics of a generalized vibrating piezoelectric fan. International Journal of Heat and Mass Transfer, 52(19-20), 4470-4478.
  • [18] Lin, C. N. (2012). Analysis of three-dimensional heat and fluid flow induced by piezoelectric fan. International Journal of Heat and Mass Transfer, 55(11-12), 3043-3053.
  • [19] Ma, H. K., Su, H. C., Liu, C. L., & Ho, W. H. (2012). Investigation of a piezoelectric fan embedded in a heat sink. International Communications in Heat and Mass Transfer, 39(5), 603-609.
  • [20] Huang, C. H., Chen, Y. F., & Ay, H. (2012). An inverse problem in determining the optimal position for piezoelectric fan with experimental verification. International Journal of Heat and Mass Transfer, 55(19-20), 5289-5301.
  • [21] Ma, H. K., Su, H. C., & Luo, W. F. (2013). Investigation of a piezoelectric fan cooling system with multiple magnetic fans. Sensors and Actuators A: Physical, 189, 356-363.
  • [22] Shyu, J. C., & Syu, J. Z. (2014). Plate-fin array cooling using a finger-like piezoelectric fan. Applied Thermal Engineering, 62(2), 573-580.
  • [23] Lin, C. N., Jang, J. Y., & Leu, J. S. (2016). A study of an effective heat-dissipating piezoelectric fan for high heat density devices. Energies, 9(8), 610.
  • [24] Uç, E., & Ekici, Ö. (2020). Thermal performance of horizontally/vertically oriented piezoelectric fans in varying fin-array width. Heat Transfer Engineering, 1-17.
  • [25] Yorinaga, M., Makino, D., Kawaguchi, K., & Naito, M. (1985). A piezoelectric fan using PZT ceramics. Japanese Journal of Applied Physics, 24(S3), 203.
  • [26] Wait, S. M., Basak, S., Garimella, S. V., & Raman, A. (2007). Piezoelectric fans using higher flexural modes for electronics cooling applications. IEEE transactions on components and packaging technologies, 30(1), 119-128.
  • [27] Fairuz, Z. M., Sufian, S. F., Abdullah, M. Z., Zubair, M., & Aziz, M. A. (2014). Effect of piezoelectric fan mode shape on the heat transfer characteristics. International Communications in Heat and Mass Transfer, 52, 140-151.
  • [28] Ma, S. L., Chen, J. W., Li, H. Y., & Yang, J. T. (2015). Mechanism of enhancement of heat transfer for plate-fin heat sinks with dual piezoelectric fans. International Journal of Heat and Mass Transfer, 90, 454-465.
  • [29] Chen, Y., Peng, D., & Liu, Y. (2020). Heat transfer enhancement of turbulent channel flow using a piezoelectric fan. International Journal of Heat and Mass Transfer, 147, 118964.
  • [30] Yao, K., & Uchino, K. (2001). Analysis on a composite cantilever beam coupling a piezoelectric bimorph to an elastic blade. Sensors and Actuators A: Physical, 89(3), 215-221.
  • [31] Lin, C. N. (2013). Enhanced heat transfer performance of cylindrical surface by piezoelectric fan under forced convection conditions. International Journal of Heat and Mass Transfer, 60, 296-308.
  • [32] Li, X., Zhang, J., & Tan, X. (2018). Experimental and numerical investigations on convective heat transfer of dual piezoelectric fans. Science China Technological Sciences, 61(2), 232-241.
  • [33] Hu, J., Jing, C., & Zhao, Y. (2020). Heat transfer enhancement research of dynamical vortex generator in a solar air heater by using the piezoelectric fan array. Heat and Mass Transfer, 56(3), 825-847.
  • [34] Qing, L., Kun, W., Can, L., & Min, W. (2020, August). A New cooling system based on Piezoelectric fan. In Journal of Physics: Conference Series (Vol. 1605, No. 1, p. 012056). IOP Publishing.
  • [35] Ding, P., & Liu, Z. (2020, November). Study on the Convective Heat Transfer Characteristic of a Horizontal Piezoelectric Fan. In Journal of Physics: Conference Series (Vol. 1670, No. 1, p. 012013). IOP Publishing.
  • [36] Lin, C. N. (2013). Heat transfer enhancement analysis of a cylindrical surface by a piezoelectric fan. Applied Thermal Engineering, 50(1), 693-703.
  • [37] Jiahong, F. U., Yichen, C. H. E. N., Zhang, Y., & Zhang, X. (2021). Enhanced Heat Transfer Research In Liquid-cooled Channel Based On Piezoelectric Vibrating Cantilever. Thermal Science, 25, 823-832
  • [38] Schmidt, R. R. (1994, May). Local and average transfer coefficients on a vertical surface due to convection from a piezoelectric fan. In Proceedings of 1994 4th Intersociety Conference on Thermal Phenomena in Electronic Systems (I-THERM) (pp. 41-49). IEEE.
  • [39] Acikalin, T., Wait, S. M., Garimella, S. V., & Raman, A. (2004). Experimental investigation of the thermal performance of piezoelectric fans. Heat Transfer Engineering, 25(1), 4-14.
  • [40] Açıkalın, T., Garimella, S. V., Raman, A., & Petroski, J. (2007). Characterization and optimization of the thermal performance of miniature piezoelectric fans. International Journal of Heat and Fluid Flow, 28(4), 806-820.
  • [41] Kimber, M., Garimella, S. V., & Raman, A. (2007). Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers.
  • [42] Kimber, M., Suzuki, K., Kitsunai, N., Seki, K., & Garimella, S. V. (2009). Pressure and flow rate performance of piezoelectric fans. IEEE transactions on components and packaging technologies, 32(4), 766-775.
  • [43] Gilson, G. M., Pickering, S. J., Hann, D. B., & Gerada, C. (2012). Piezoelectric fan cooling: A novel high reliability electric machine thermal management solution. IEEE Transactions on Industrial Electronics, 60(11), 4841-4851.
  • [44] Jeng, T. M., & Liu, C. H. (2015). Moving-orientation and position effects of the piezoelectric fan on thermal characteristics of the heat sink partially filled in a channel with axial flow. International Journal of Heat and Mass Transfer, 85, 950-964.
  • [45] Yu, B., Kum, S. M., Lee, C. E., & Lee, S. (2016). Experimental study on the effects of the number of heat exchanger modules on thermal characteristics in a premixed combustion system. Journal of Mechanical Science and Technology, 30(1), 447-456.
  • [46] Li, X. J., Zhang, J. Z., & Tan, X. M. (2017). Convective heat transfer on a flat surface induced by a vertically-oriented piezoelectric fan in the presence of cross flow. Heat and Mass Transfer, 53(9), 2745-2768.
  • [47] Qiu, Y. L., Wu, C. J., & Chen, W. F. (2020). Local heat transfer enhancement induced by a piezoelectric fan in a channel with axial flow. Journal of Zhejiang University-SCIENCE A, 21(12), 1008-1022.
  • [48] Yoo, J. H., Hong, J. I., & Cao, W. (2000). Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices. Sensors and Actuators A: Physical, 79(1), 8-12.
  • [49] Burmann, P., Raman, A., & Garimella, S. V. (2002). Dynamics and topology optimization of piezoelectric fans. IEEE Transactions on Components and Packaging Technologies, 25(4), 592-600.
  • [50] Açikalin, T., Garimella, S. V., Petroski, J., & Raman, A. (2004, June). Optimal design of miniature piezoelectric fans for cooling light emitting diodes. In The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No. 04CH37543) (Vol. 1, pp. 663-671). IEEE.
  • [51] Kimber, M., Garimella, S. V., & Raman, A. (2006, May). An experimental study of fluidic coupling between multiple piezoelectric fans. In Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006. (pp. 333-340). IEEE.
  • [52] Petroski, J., Arik, M., & Gursoy, M. (2008, January). Piezoelectric fans: Heat transfer enhancements for electronics cooling. In Heat Transfer Summer Conference (Vol. 48487, pp. 671-677).
  • [53] Kimber, M., Suzuki, K., Kitsunai, N., Seki, K., & Garimella, S. V. (2008, May). Quantification of piezoelectric fan flow rate performance and experimental identification of installation effects. In 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (pp. 471-479). IEEE.
  • [54] Sheu, W. J., Huang, R. T., & Wang, C. C. (2008). Influence of bonding glues on the vibration of piezoelectric fans. Sensors and Actuators A: Physical, 148(1), 115-121.
  • [55] Eastman, A., & Kimber, M. (2009, January). Flow field analysis of a single piezoelectric fan. In ASME International Mechanical Engineering Congress and Exposition (Vol. 43826, pp. 1429-1436).
  • [56] Chung, H. C., Kummari, K. L., Croucher, S. J., Lawson, N. J., Guo, S., Whatmore, R. W., & Huang, Z. (2009). Development of piezoelectric fans for flapping wing application. Sensors and Actuators A: Physical, 149(1), 136-142. [57] Kimber, M., & Garimella, S. V. (2009). Cooling performance of arrays of vibrating cantilevers. Journal of Heat Transfer, 131(11).
  • [58] Mun, N. K., Sauciuc, I., Wada, H., & Tanaka, N. Cooling performance of piezoelectric fan in notebook system. In 2010 34th IEEE/CPMT International Electronic Manufacturing Technology Symposium (IEMT) (pp. 1-6). IEEE.
  • [59] Ma, H. K., Liu, C. L., Su, H. C., & Ho, W. H. (2012, March). Study of a cooling system with a piezoelectric fan. In 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM) (pp. 243-248). IEEE.
  • [60] Lin, C. N. (2012). Analysis of three-dimensional heat and fluid flow induced by piezoelectric fan. International Journal of Heat and Mass Transfer, 55(11-12), 3043-3053.
  • [61] Bidakhvidi, M. A., Vanlanduit, S., Shirzadeh, R., & Vucinic, D. (2012, July). Experimental and computational analysis of the flow induced by a piezoelectric fan. In Proceedings of the 15th International Symposium on Flow Visualization, Minsk, Belarus.
  • [62] Abdullah, M. K., Ismail, N. C., Mujeebu, M. A., Abdullah, M. Z., Ahmad, K. A., Husaini, M., & Hamid, M. N. A. (2012). Optimum tip gap and orientation of multi-piezofan for heat transfer enhancement of finned heat sink in microelectronic cooling. International Journal of Heat and Mass Transfer, 55(21-22), 5514-5525.
  • [63] Li, H. Y., Chao, S. M., Chen, J. W., & Yang, J. T. (2013). Thermal performance of plate-fin heat sinks with piezoelectric cooling fan. International Journal of Heat and Mass Transfer, 57(2), 722-732. Şubat
  • [64] Sufian, S. F., Abdullah, M. Z., & Mohamed, J. J. (2013). Effect of synchronized piezoelectric fans on microelectronic cooling performance. International Communications in Heat and Mass Transfer, 43, 81-89. nisan
  • [65] Sufian, S. F., Abdullah, M. Z., Abdullah, M. K., & Mohamed, J. J. (2013). Effect of side and tip gaps of a piezoelectric fan on microelectronic cooling. IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(9), 1545-1553. Eylül
  • [66] Liu, T. J. C., Chen, Y. S., Ho, H. Y., Liu, J. T., & Lee, C. C. (2013). Notes on vibration design for piezoelectric cooling fan. International Journal of Mechanical and Mechatronics Engineering, 7(2), 294-298.
  • [67] Lei, T., Jing-zhou, Z., & Xiao-ming, T. (2014). Numerical investigation of convective heat transfer on a vertical surface due to resonating cantilever beam. International journal of thermal sciences, 80, 93-107.
  • [68] Ma, H. K., Tan, L. K., Li, Y. T., & Liu, C. L. (2014). Optimum thermal resistance of the multiple piezoelectric–magnetic fan system. International Communications in Heat and Mass Transfer, 55, 77-83.
  • [69] Stafford, J., & Jeffers, N. (2014, July). Aerodynamic performance of a vibrating piezoelectric fan under varied operational conditions. In Journal of Physics: Conference Series (Vol. 525, No. 1, p. 012025). IOP Publishing.
  • [70] Sufian, S. F., Fairuz, Z. M., Zubair, M., Abdullah, M. Z., & Mohamed, J. J. (2014). Thermal analysis of dual piezoelectric fans for cooling multi-LED packages. Microelectronics Reliability, 54(8), 1534-1543.
  • [71] Eastman, A., & Kimber, M. L. (2014). Flow shaping and thrust enhancement of sidewall bounded oscillating cantilevers. International journal of heat and fluid flow, 48, 35-42.
  • [72] Eastman, A., & Kimber, M. L. (2014). Aerodynamic damping of sidewall bounded oscillating cantilevers. Journal of Fluids and Structures, 51, 148-160.
  • [73] Lin, C. N., & Leu, J. S. (2014). Study of thermal and flow characteristics of a heated cylinder under dual piezoelectric fans actuation. International Journal of Heat and Mass Transfer, 78, 1008-1022.
  • [74] Ma, H. K., Tan, L. K., & Li, Y. T. (2014). Investigation of a multiple piezoelectric–magnetic fan system embedded in a heat sink. International Communications in Heat and Mass Transfer, 59, 166-173.
  • [75] Srivastava, S., Yadav, S. K., & Mukherjee, S. (2015, April). Effect of material uncertainties on dynamic analysis of piezoelectric fans. In Active and Passive Smart,Structures and Integrated Systems 2015 (Vol. 9431, p. 94311W). International Society for Optics and Photonics.
  • [76] Ma, H. K., & Li, Y. T. (2015). Thermal performance of a dual-sided multiple fans system with a piezoelectric actuator on LEDs. International Communications in Heat and Mass Transfer, 66, 40-46.
  • [77] Ma, H. K., Li, Y. T., Ke, S. Y., & Lin, C. P. (2015). The role of housing design in a multiple fans system with a piezoelectric actuator. Applied Thermal Engineering, 91, 986-993.
  • [78] Huang, C. H., & Fan, G. Y. (2016). Determination of relative positions and phase angle of dual piezoelectric fans for maximum heat dissipation of fin surface. International Journal of Heat and Mass Transfer, 92, 523-538.
  • [79] Maaspuro, M. (2016). Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs—A review. Microelectronics Reliability, 63, 342-353.
  • [80] Shyu, J. C., & Jheng, S. K. (2017, July). Heat Transfer of Pico Projector Using a Piezoelectric Fan With an Aluminum Blade. In Fluids Engineering Division Summer Meeting (Vol. 58059, p. V01BT06A021). American Society of Mechanical Engineers.
  • [81] Li, X. J., Zhang, J. Z., & Tan, X. M. (2018). Effects of piezoelectric fan on overall performance of air-based micro pin-fin heat sink. International Journal of Thermal Sciences, 126, 1-12.
  • [82] Shyu, J. C., & Jheng, S. K. (2018). Cooling performance and characteristics of metal piezoelectric fans in a heat sink-equipped handheld projector. Microelectronics Reliability, 84, 75-87.
  • [83] Razak, F. A., Ahmad, R., & Sarip, S. (2018, July). Investigation of Radial Piezoelectric-Magnetic Fan for Electronic Cooling System. In 2018 2nd International Conference on Smart Sensors and Application (ICSSA) (pp. 116-119). IEEE.
  • [84] Oh, M. H., Seo, J., Kim, Y. H., & Choi, M. (2019). Endwall effects on 3d flow around a piezoelectric fan. European Journal of Mechanics-B/Fluids, 75, 339-351.
  • [85] Ren, Y., Tang, W., Wang, Y., Wang, L., Cui, M., & Li, Z. (2019, June). Switch Controlled Charge Recovery Technique for Piezoelectric Fan. In 2019 Chinese Control And Decision Conference (CCDC) (pp. 2259-2264). IEEE.
  • [86] Hales, A., & Jiang, X. (2019). Geometric optimisation of piezoelectric fan arrays for low energy cooling. International Journal of Heat and Mass Transfer, 137, 52-63.
  • [87] Hales, A., & Jiang, X. (2019). Optimisation of low energy cooling through phase variation between adjacent piezoelectric fan blades. International Journal of Heat and Mass Transfer, 139, 362-372.
  • [88] Tiwari, J., & Yeom, T. (2021). Enhancement of channel-flow convection heat transfer using piezoelectric fans. Applied Thermal Engineering, 191, 116917.
  • [89] Li, X., Chen, W., & Lu, S. (2021). Characterization of the thermal performance of multi piezoelectric fans for cooling a semi-cylindrical concave surface. International Journal of Mechanical Sciences, 208, 106672.
Yıl 2022, Cilt: 3 Sayı: 1, 22 - 29, 29.06.2022

Öz

Kaynakça

  • [1] Asadi Dereshgi, H., Dal, H., & Sayan, M. E. (2020). Analytical analysis of a circular unimorph piezoelectric actuator in the range of low voltages and pressures. Microsystem Technologies, 26(8), 2453-2464.
  • [2] Anton, S. R., & Sodano, H. A. (2007). A review of power harvesting using piezoelectric materials (2003–2006). Smart materials and Structures, 16(3), R1.
  • [3] Sodano, H. A., Inman, D. J., & Park, G. (2004). A review of power harvesting from vibration using piezoelectric materials. Shock and Vibration Digest, 36(3), 197-206.
  • [4] Maaspuro, M. (2016). Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs—A review. Microelectronics Reliability, 63, 342-353.
  • [5] Hales, A., & Jiang, X. (2018). A review of piezoelectric fans for low energy cooling of power electronics. Applied Energy, 215, 321-337.
  • [6] Park, S. H., Park, G. J., & Choi, S. D. (2004). Heat Transfer Characteristics Around a Surface-Mounted Module Cooled by Piezoelectric Fan. Transactions of the Korean Society of Mechanical Engineers B, 28(7), 780-788.
  • [7] Açıkalın, T., Raman, A., & Garimella, S. V. (2003). Two-dimensional streaming flows induced by resonating, thin beams. The Journal of the Acoustical Society of America, 114(4), 1785-1795.
  • [8] Park, S. H., Oh, M. H., Kim, Y. H., & Choi, M. (2019). Effects of freestream on piezoelectric fan performance. Journal of Fluids and Structures, 87, 302-318.
  • [9] Kimber, M., Suzuki, K., Kitsunai, N., Seki, K., & Garimella, S. V. (2008, May). Quantification of piezoelectric fan flow rate performance and experimental identification of installation effects. In 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (pp. 471-479). IEEE.
  • [10] Chen, Y., Li, J., Wang, Z., Yan, Y., & Cui, J. (2021). Unsteady Flow Characteristics of an Oscillating Piezoelectric Fan Blade at High Reynolds Numbers. Applied Sciences, 11(20), 9510.
  • [11] Liu, S. F., Huang, R. T., Sheu, W. J., & Wang, C. C. (2009). Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement. International Journal of Heat and Mass Transfer, 52(11-12), 2565-2570.
  • [12] Abdullah, M. K., Ismail, N. C., Abdullah, M. Z., Mujeebu, M. A., Ahmad, K. A., & Ripin, Z. M. (2012). Effects of tip gap and amplitude of piezoelectric fans on the performance of heat sinks in microelectronic cooling. Heat and Mass Transfer, 48(6), 893-901.
  • [13] Hales, A., & Jiang, X. (2018). A review of piezoelectric fans for low energy cooling of power electronics. Applied Energy, 215, 321-337.
  • [14] Huang, L., Yeom, T., Simon, T., & Cui, T. (2021). An experimental and numerical study on heat transfer enhancement of a heat sink fin by synthetic jet impingement. Heat and Mass Transfer, 57(4), 583-593.
  • [15] Liu, T. J. C., Chen, Y. S., Ho, H. Y., & Liu, J. T. (2020). Vibration and cooling performances of piezoelectric cooling fan: numerical and experimental investigations. In MATEC Web of Conferences (Vol. 306, p. 04002). EDP Sciences.
  • [16] Abdullah, M. K., Abdullah, M. Z., Ramana, M. V., Khor, C. Y., Ahmad, K. A., Mujeebu, M. A., ... & Ripin, Z. M. (2009). Numerical and experimental investigations on effect of fan height on the performance of piezoelectric fan in microelectronic cooling. International Communications in Heat and Mass Transfer, 36(1), 51-58.
  • [17] Kimber, M., & Garimella, S. V. (2009). Measurement and prediction of the cooling characteristics of a generalized vibrating piezoelectric fan. International Journal of Heat and Mass Transfer, 52(19-20), 4470-4478.
  • [18] Lin, C. N. (2012). Analysis of three-dimensional heat and fluid flow induced by piezoelectric fan. International Journal of Heat and Mass Transfer, 55(11-12), 3043-3053.
  • [19] Ma, H. K., Su, H. C., Liu, C. L., & Ho, W. H. (2012). Investigation of a piezoelectric fan embedded in a heat sink. International Communications in Heat and Mass Transfer, 39(5), 603-609.
  • [20] Huang, C. H., Chen, Y. F., & Ay, H. (2012). An inverse problem in determining the optimal position for piezoelectric fan with experimental verification. International Journal of Heat and Mass Transfer, 55(19-20), 5289-5301.
  • [21] Ma, H. K., Su, H. C., & Luo, W. F. (2013). Investigation of a piezoelectric fan cooling system with multiple magnetic fans. Sensors and Actuators A: Physical, 189, 356-363.
  • [22] Shyu, J. C., & Syu, J. Z. (2014). Plate-fin array cooling using a finger-like piezoelectric fan. Applied Thermal Engineering, 62(2), 573-580.
  • [23] Lin, C. N., Jang, J. Y., & Leu, J. S. (2016). A study of an effective heat-dissipating piezoelectric fan for high heat density devices. Energies, 9(8), 610.
  • [24] Uç, E., & Ekici, Ö. (2020). Thermal performance of horizontally/vertically oriented piezoelectric fans in varying fin-array width. Heat Transfer Engineering, 1-17.
  • [25] Yorinaga, M., Makino, D., Kawaguchi, K., & Naito, M. (1985). A piezoelectric fan using PZT ceramics. Japanese Journal of Applied Physics, 24(S3), 203.
  • [26] Wait, S. M., Basak, S., Garimella, S. V., & Raman, A. (2007). Piezoelectric fans using higher flexural modes for electronics cooling applications. IEEE transactions on components and packaging technologies, 30(1), 119-128.
  • [27] Fairuz, Z. M., Sufian, S. F., Abdullah, M. Z., Zubair, M., & Aziz, M. A. (2014). Effect of piezoelectric fan mode shape on the heat transfer characteristics. International Communications in Heat and Mass Transfer, 52, 140-151.
  • [28] Ma, S. L., Chen, J. W., Li, H. Y., & Yang, J. T. (2015). Mechanism of enhancement of heat transfer for plate-fin heat sinks with dual piezoelectric fans. International Journal of Heat and Mass Transfer, 90, 454-465.
  • [29] Chen, Y., Peng, D., & Liu, Y. (2020). Heat transfer enhancement of turbulent channel flow using a piezoelectric fan. International Journal of Heat and Mass Transfer, 147, 118964.
  • [30] Yao, K., & Uchino, K. (2001). Analysis on a composite cantilever beam coupling a piezoelectric bimorph to an elastic blade. Sensors and Actuators A: Physical, 89(3), 215-221.
  • [31] Lin, C. N. (2013). Enhanced heat transfer performance of cylindrical surface by piezoelectric fan under forced convection conditions. International Journal of Heat and Mass Transfer, 60, 296-308.
  • [32] Li, X., Zhang, J., & Tan, X. (2018). Experimental and numerical investigations on convective heat transfer of dual piezoelectric fans. Science China Technological Sciences, 61(2), 232-241.
  • [33] Hu, J., Jing, C., & Zhao, Y. (2020). Heat transfer enhancement research of dynamical vortex generator in a solar air heater by using the piezoelectric fan array. Heat and Mass Transfer, 56(3), 825-847.
  • [34] Qing, L., Kun, W., Can, L., & Min, W. (2020, August). A New cooling system based on Piezoelectric fan. In Journal of Physics: Conference Series (Vol. 1605, No. 1, p. 012056). IOP Publishing.
  • [35] Ding, P., & Liu, Z. (2020, November). Study on the Convective Heat Transfer Characteristic of a Horizontal Piezoelectric Fan. In Journal of Physics: Conference Series (Vol. 1670, No. 1, p. 012013). IOP Publishing.
  • [36] Lin, C. N. (2013). Heat transfer enhancement analysis of a cylindrical surface by a piezoelectric fan. Applied Thermal Engineering, 50(1), 693-703.
  • [37] Jiahong, F. U., Yichen, C. H. E. N., Zhang, Y., & Zhang, X. (2021). Enhanced Heat Transfer Research In Liquid-cooled Channel Based On Piezoelectric Vibrating Cantilever. Thermal Science, 25, 823-832
  • [38] Schmidt, R. R. (1994, May). Local and average transfer coefficients on a vertical surface due to convection from a piezoelectric fan. In Proceedings of 1994 4th Intersociety Conference on Thermal Phenomena in Electronic Systems (I-THERM) (pp. 41-49). IEEE.
  • [39] Acikalin, T., Wait, S. M., Garimella, S. V., & Raman, A. (2004). Experimental investigation of the thermal performance of piezoelectric fans. Heat Transfer Engineering, 25(1), 4-14.
  • [40] Açıkalın, T., Garimella, S. V., Raman, A., & Petroski, J. (2007). Characterization and optimization of the thermal performance of miniature piezoelectric fans. International Journal of Heat and Fluid Flow, 28(4), 806-820.
  • [41] Kimber, M., Garimella, S. V., & Raman, A. (2007). Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers.
  • [42] Kimber, M., Suzuki, K., Kitsunai, N., Seki, K., & Garimella, S. V. (2009). Pressure and flow rate performance of piezoelectric fans. IEEE transactions on components and packaging technologies, 32(4), 766-775.
  • [43] Gilson, G. M., Pickering, S. J., Hann, D. B., & Gerada, C. (2012). Piezoelectric fan cooling: A novel high reliability electric machine thermal management solution. IEEE Transactions on Industrial Electronics, 60(11), 4841-4851.
  • [44] Jeng, T. M., & Liu, C. H. (2015). Moving-orientation and position effects of the piezoelectric fan on thermal characteristics of the heat sink partially filled in a channel with axial flow. International Journal of Heat and Mass Transfer, 85, 950-964.
  • [45] Yu, B., Kum, S. M., Lee, C. E., & Lee, S. (2016). Experimental study on the effects of the number of heat exchanger modules on thermal characteristics in a premixed combustion system. Journal of Mechanical Science and Technology, 30(1), 447-456.
  • [46] Li, X. J., Zhang, J. Z., & Tan, X. M. (2017). Convective heat transfer on a flat surface induced by a vertically-oriented piezoelectric fan in the presence of cross flow. Heat and Mass Transfer, 53(9), 2745-2768.
  • [47] Qiu, Y. L., Wu, C. J., & Chen, W. F. (2020). Local heat transfer enhancement induced by a piezoelectric fan in a channel with axial flow. Journal of Zhejiang University-SCIENCE A, 21(12), 1008-1022.
  • [48] Yoo, J. H., Hong, J. I., & Cao, W. (2000). Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices. Sensors and Actuators A: Physical, 79(1), 8-12.
  • [49] Burmann, P., Raman, A., & Garimella, S. V. (2002). Dynamics and topology optimization of piezoelectric fans. IEEE Transactions on Components and Packaging Technologies, 25(4), 592-600.
  • [50] Açikalin, T., Garimella, S. V., Petroski, J., & Raman, A. (2004, June). Optimal design of miniature piezoelectric fans for cooling light emitting diodes. In The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No. 04CH37543) (Vol. 1, pp. 663-671). IEEE.
  • [51] Kimber, M., Garimella, S. V., & Raman, A. (2006, May). An experimental study of fluidic coupling between multiple piezoelectric fans. In Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006. (pp. 333-340). IEEE.
  • [52] Petroski, J., Arik, M., & Gursoy, M. (2008, January). Piezoelectric fans: Heat transfer enhancements for electronics cooling. In Heat Transfer Summer Conference (Vol. 48487, pp. 671-677).
  • [53] Kimber, M., Suzuki, K., Kitsunai, N., Seki, K., & Garimella, S. V. (2008, May). Quantification of piezoelectric fan flow rate performance and experimental identification of installation effects. In 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (pp. 471-479). IEEE.
  • [54] Sheu, W. J., Huang, R. T., & Wang, C. C. (2008). Influence of bonding glues on the vibration of piezoelectric fans. Sensors and Actuators A: Physical, 148(1), 115-121.
  • [55] Eastman, A., & Kimber, M. (2009, January). Flow field analysis of a single piezoelectric fan. In ASME International Mechanical Engineering Congress and Exposition (Vol. 43826, pp. 1429-1436).
  • [56] Chung, H. C., Kummari, K. L., Croucher, S. J., Lawson, N. J., Guo, S., Whatmore, R. W., & Huang, Z. (2009). Development of piezoelectric fans for flapping wing application. Sensors and Actuators A: Physical, 149(1), 136-142. [57] Kimber, M., & Garimella, S. V. (2009). Cooling performance of arrays of vibrating cantilevers. Journal of Heat Transfer, 131(11).
  • [58] Mun, N. K., Sauciuc, I., Wada, H., & Tanaka, N. Cooling performance of piezoelectric fan in notebook system. In 2010 34th IEEE/CPMT International Electronic Manufacturing Technology Symposium (IEMT) (pp. 1-6). IEEE.
  • [59] Ma, H. K., Liu, C. L., Su, H. C., & Ho, W. H. (2012, March). Study of a cooling system with a piezoelectric fan. In 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM) (pp. 243-248). IEEE.
  • [60] Lin, C. N. (2012). Analysis of three-dimensional heat and fluid flow induced by piezoelectric fan. International Journal of Heat and Mass Transfer, 55(11-12), 3043-3053.
  • [61] Bidakhvidi, M. A., Vanlanduit, S., Shirzadeh, R., & Vucinic, D. (2012, July). Experimental and computational analysis of the flow induced by a piezoelectric fan. In Proceedings of the 15th International Symposium on Flow Visualization, Minsk, Belarus.
  • [62] Abdullah, M. K., Ismail, N. C., Mujeebu, M. A., Abdullah, M. Z., Ahmad, K. A., Husaini, M., & Hamid, M. N. A. (2012). Optimum tip gap and orientation of multi-piezofan for heat transfer enhancement of finned heat sink in microelectronic cooling. International Journal of Heat and Mass Transfer, 55(21-22), 5514-5525.
  • [63] Li, H. Y., Chao, S. M., Chen, J. W., & Yang, J. T. (2013). Thermal performance of plate-fin heat sinks with piezoelectric cooling fan. International Journal of Heat and Mass Transfer, 57(2), 722-732. Şubat
  • [64] Sufian, S. F., Abdullah, M. Z., & Mohamed, J. J. (2013). Effect of synchronized piezoelectric fans on microelectronic cooling performance. International Communications in Heat and Mass Transfer, 43, 81-89. nisan
  • [65] Sufian, S. F., Abdullah, M. Z., Abdullah, M. K., & Mohamed, J. J. (2013). Effect of side and tip gaps of a piezoelectric fan on microelectronic cooling. IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(9), 1545-1553. Eylül
  • [66] Liu, T. J. C., Chen, Y. S., Ho, H. Y., Liu, J. T., & Lee, C. C. (2013). Notes on vibration design for piezoelectric cooling fan. International Journal of Mechanical and Mechatronics Engineering, 7(2), 294-298.
  • [67] Lei, T., Jing-zhou, Z., & Xiao-ming, T. (2014). Numerical investigation of convective heat transfer on a vertical surface due to resonating cantilever beam. International journal of thermal sciences, 80, 93-107.
  • [68] Ma, H. K., Tan, L. K., Li, Y. T., & Liu, C. L. (2014). Optimum thermal resistance of the multiple piezoelectric–magnetic fan system. International Communications in Heat and Mass Transfer, 55, 77-83.
  • [69] Stafford, J., & Jeffers, N. (2014, July). Aerodynamic performance of a vibrating piezoelectric fan under varied operational conditions. In Journal of Physics: Conference Series (Vol. 525, No. 1, p. 012025). IOP Publishing.
  • [70] Sufian, S. F., Fairuz, Z. M., Zubair, M., Abdullah, M. Z., & Mohamed, J. J. (2014). Thermal analysis of dual piezoelectric fans for cooling multi-LED packages. Microelectronics Reliability, 54(8), 1534-1543.
  • [71] Eastman, A., & Kimber, M. L. (2014). Flow shaping and thrust enhancement of sidewall bounded oscillating cantilevers. International journal of heat and fluid flow, 48, 35-42.
  • [72] Eastman, A., & Kimber, M. L. (2014). Aerodynamic damping of sidewall bounded oscillating cantilevers. Journal of Fluids and Structures, 51, 148-160.
  • [73] Lin, C. N., & Leu, J. S. (2014). Study of thermal and flow characteristics of a heated cylinder under dual piezoelectric fans actuation. International Journal of Heat and Mass Transfer, 78, 1008-1022.
  • [74] Ma, H. K., Tan, L. K., & Li, Y. T. (2014). Investigation of a multiple piezoelectric–magnetic fan system embedded in a heat sink. International Communications in Heat and Mass Transfer, 59, 166-173.
  • [75] Srivastava, S., Yadav, S. K., & Mukherjee, S. (2015, April). Effect of material uncertainties on dynamic analysis of piezoelectric fans. In Active and Passive Smart,Structures and Integrated Systems 2015 (Vol. 9431, p. 94311W). International Society for Optics and Photonics.
  • [76] Ma, H. K., & Li, Y. T. (2015). Thermal performance of a dual-sided multiple fans system with a piezoelectric actuator on LEDs. International Communications in Heat and Mass Transfer, 66, 40-46.
  • [77] Ma, H. K., Li, Y. T., Ke, S. Y., & Lin, C. P. (2015). The role of housing design in a multiple fans system with a piezoelectric actuator. Applied Thermal Engineering, 91, 986-993.
  • [78] Huang, C. H., & Fan, G. Y. (2016). Determination of relative positions and phase angle of dual piezoelectric fans for maximum heat dissipation of fin surface. International Journal of Heat and Mass Transfer, 92, 523-538.
  • [79] Maaspuro, M. (2016). Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs—A review. Microelectronics Reliability, 63, 342-353.
  • [80] Shyu, J. C., & Jheng, S. K. (2017, July). Heat Transfer of Pico Projector Using a Piezoelectric Fan With an Aluminum Blade. In Fluids Engineering Division Summer Meeting (Vol. 58059, p. V01BT06A021). American Society of Mechanical Engineers.
  • [81] Li, X. J., Zhang, J. Z., & Tan, X. M. (2018). Effects of piezoelectric fan on overall performance of air-based micro pin-fin heat sink. International Journal of Thermal Sciences, 126, 1-12.
  • [82] Shyu, J. C., & Jheng, S. K. (2018). Cooling performance and characteristics of metal piezoelectric fans in a heat sink-equipped handheld projector. Microelectronics Reliability, 84, 75-87.
  • [83] Razak, F. A., Ahmad, R., & Sarip, S. (2018, July). Investigation of Radial Piezoelectric-Magnetic Fan for Electronic Cooling System. In 2018 2nd International Conference on Smart Sensors and Application (ICSSA) (pp. 116-119). IEEE.
  • [84] Oh, M. H., Seo, J., Kim, Y. H., & Choi, M. (2019). Endwall effects on 3d flow around a piezoelectric fan. European Journal of Mechanics-B/Fluids, 75, 339-351.
  • [85] Ren, Y., Tang, W., Wang, Y., Wang, L., Cui, M., & Li, Z. (2019, June). Switch Controlled Charge Recovery Technique for Piezoelectric Fan. In 2019 Chinese Control And Decision Conference (CCDC) (pp. 2259-2264). IEEE.
  • [86] Hales, A., & Jiang, X. (2019). Geometric optimisation of piezoelectric fan arrays for low energy cooling. International Journal of Heat and Mass Transfer, 137, 52-63.
  • [87] Hales, A., & Jiang, X. (2019). Optimisation of low energy cooling through phase variation between adjacent piezoelectric fan blades. International Journal of Heat and Mass Transfer, 139, 362-372.
  • [88] Tiwari, J., & Yeom, T. (2021). Enhancement of channel-flow convection heat transfer using piezoelectric fans. Applied Thermal Engineering, 191, 116917.
  • [89] Li, X., Chen, W., & Lu, S. (2021). Characterization of the thermal performance of multi piezoelectric fans for cooling a semi-cylindrical concave surface. International Journal of Mechanical Sciences, 208, 106672.
Toplam 88 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapay Zeka
Bölüm Derlemeler
Yazarlar

Hamid Asadi Dereshgi 0000-0002-8500-6625

Hüseyin Dal 0000-0003-2868-9463

Rabia Güzide Al

Yayımlanma Tarihi 29 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 1

Kaynak Göster

APA Asadi Dereshgi, H., Dal, H., & Al, R. G. (2022). Piezoelectric Fans: A Narrative Review. Journal of Smart Systems Research, 3(1), 22-29.
AMA Asadi Dereshgi H, Dal H, Al RG. Piezoelectric Fans: A Narrative Review. JoinSSR. Haziran 2022;3(1):22-29.
Chicago Asadi Dereshgi, Hamid, Hüseyin Dal, ve Rabia Güzide Al. “Piezoelectric Fans: A Narrative Review”. Journal of Smart Systems Research 3, sy. 1 (Haziran 2022): 22-29.
EndNote Asadi Dereshgi H, Dal H, Al RG (01 Haziran 2022) Piezoelectric Fans: A Narrative Review. Journal of Smart Systems Research 3 1 22–29.
IEEE H. Asadi Dereshgi, H. Dal, ve R. G. Al, “Piezoelectric Fans: A Narrative Review”, JoinSSR, c. 3, sy. 1, ss. 22–29, 2022.
ISNAD Asadi Dereshgi, Hamid vd. “Piezoelectric Fans: A Narrative Review”. Journal of Smart Systems Research 3/1 (Haziran 2022), 22-29.
JAMA Asadi Dereshgi H, Dal H, Al RG. Piezoelectric Fans: A Narrative Review. JoinSSR. 2022;3:22–29.
MLA Asadi Dereshgi, Hamid vd. “Piezoelectric Fans: A Narrative Review”. Journal of Smart Systems Research, c. 3, sy. 1, 2022, ss. 22-29.
Vancouver Asadi Dereshgi H, Dal H, Al RG. Piezoelectric Fans: A Narrative Review. JoinSSR. 2022;3(1):22-9.